Guideline for Hand Hygiene in Health-Care Settings

Size: px
Start display at page:

Download "Guideline for Hand Hygiene in Health-Care Settings"

Transcription

1 Morbidity and Mortality Weekly Report Recommendations and Reports October 25, 2002 / Vol. 51 / No. RR-16 Guideline for Hand Hygiene in Health-Care Settings Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force INSIDE: Continuing Education Examination Centers for Disease Control and Prevention SAFER HEALTHIER PEOPLE TM

2 MMWR CONTENTS The MMWR series of publications is published by the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA SUGGESTED CITATION Centers for Disease Control and Prevention. Guideline for Hand Hygiene in Health-Care Settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR 2002;51(No. RR- 16):[inclusive page numbers]. Centers for Disease Control and Prevention Julie L. Gerberding, M.D., M.P.H. Director David W. Fleming, M.D. Deputy Director for Science and Public Health Dixie E. Snider, Jr., M.D., M.P.H. Associate Director for Science Epidemiology Program Office Stephen B. Thacker, M.D., M.Sc. Director Office of Scientific and Health Communications John W. Ward, M.D. Director Editor, MMWR Series Suzanne M. Hewitt, M.P.A. Managing Editor Rachel J. Wilson Douglas W. Weatherwax Project Editors Malbea A. Heilman Beverly J. Holland Visual Information Specialists Quang M. Doan Erica R. Shaver Information Technology Specialists Part I. Review of the Scientific Data Regarding Hand Hygiene... 1 Historical Perspective... 1 Normal Bacterial Skin Flora... 2 Physiology of Normal Skin... 2 Definition of Terms... 3 Evidence of Transmission of Pathogens on Hands... 4 Models of Hand Transmission... 5 Relation of Hand Hygiene and Acquisition of Health-Care Associated Pathogens... 5 Methods Used To Evaluate the Efficacy of Hand-Hygiene Products... 6 Review of Preparations Used for Hand Hygiene... 8 Activity of Antiseptic Agents Against Spore-Forming Bacteria Reduced Susceptibility of Bacteria to Antiseptics Surgical Hand Antisepsis Relative Efficacy of Plain Soap, Antiseptic Soap/Detergent, and Alcohols Irritant Contact Dermatitis Resulting from Hand-Hygiene Measures Proposed Methods for Reducing Adverse Effects of Agents Factors To Consider When Selecting Hand-Hygiene Products Hand-Hygiene Practices Among HCWs Lessons Learned from Behavioral Theories Methods Used To Promote Improved Hand Hygiene Efficacy of Promotion and Impact of Improved Hand Hygiene Other Policies Related to Hand Hygiene Hand-Hygiene Research Agenda Web-Based Hand-Hygiene Resources Part II. Recommendations Categories Recommendations Part III. Performance Indicators References Appendix Continuing Education Activity... CE-1

3 Vol. 51 / RR-16 Recommendations and Reports 1 Guideline for Hand Hygiene in Health-Care Settings Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force Prepared by John M. Boyce, M.D. 1 Didier Pittet, M.D. 2 1 Hospital of Saint Raphael New Haven, Connecticut 2 University of Geneva Geneva, Switzerland Summary The Guideline for Hand Hygiene in Health-Care Settings provides health-care workers (HCWs) with a review of data regarding handwashing and hand antisepsis in health-care settings. In addition, it provides specific recommendations to promote improved hand-hygiene practices and reduce transmission of pathogenic microorganisms to patients and personnel in health-care settings. This report reviews studies published since the 1985 CDC guideline (Garner JS, Favero MS. CDC guideline for handwashing and hospital environmental control, Infect Control 1986;7:231 43) and the 1995 APIC guideline (Larson EL, APIC Guidelines Committee. APIC guideline for handwashing and hand antisepsis in health care settings. Am J Infect Control 1995;23:251 69) were issued and provides an in-depth review of hand-hygiene practices of HCWs, levels of adherence of personnel to recommended handwashing practices, and factors adversely affecting adherence. New studies of the in vivo efficacy of alcohol-based hand rubs and the low incidence of dermatitis associated with their use are reviewed. Recent studies demonstrating the value of multidisciplinary hand-hygiene promotion programs and the potential role of alcohol-based hand rubs in improving hand-hygiene practices are summarized. Recommendations concerning related issues (e.g., the use of surgical hand antiseptics, hand lotions or creams, and wearing of artificial fingernails) are also included. Part I. Review of the Scientific Data Regarding Hand Hygiene Historical Perspective For generations, handwashing with soap and water has been considered a measure of personal hygiene (1). The concept of cleansing hands with an antiseptic agent probably emerged in the early 19 th century. As early as 1822, a French pharmacist demonstrated that solutions containing chlorides of lime or soda could eradicate the foul odors associated with human corpses and that such solutions could be used as disinfectants and antiseptics (2). In a paper published in 1825, this pharmacist stated that physicians and other persons attending patients with contagious diseases would benefit from moistening their hands with a liquid chloride solution (2). In 1846, Ignaz Semmelweis observed that women whose babies were delivered by students and physicians in the First Clinic at the General Hospital of Vienna consistently had a The material in this report originated in the National Center for Infectious Diseases, James M. Hughes, M.D., Director; and the Division of Healthcare Quality Promotion, Steve Solomon, M.D., Acting Director. higher mortality rate than those whose babies were delivered by midwives in the Second Clinic (3). He noted that physicians who went directly from the autopsy suite to the obstetrics ward had a disagreeable odor on their hands despite washing their hands with soap and water upon entering the obstetrics clinic. He postulated that the puerperal fever that affected so many parturient women was caused by cadaverous particles transmitted from the autopsy suite to the obstetrics ward via the hands of students and physicians. Perhaps because of the known deodorizing effect of chlorine compounds, as of May 1847, he insisted that students and physicians clean their hands with a chlorine solution between each patient in the clinic. The maternal mortality rate in the First Clinic subsequently dropped dramatically and remained low for years. This intervention by Semmelweis represents the first evidence indicating that cleansing heavily contaminated hands with an antiseptic agent between patient contacts may reduce health-care associated transmission of contagious diseases more effectively than handwashing with plain soap and water. In 1843, Oliver Wendell Holmes concluded independently that puerperal fever was spread by the hands of health personnel (1). Although he described measures that could be taken to limit its spread, his recommendations had little impact on

4 2 MMWR October 25, 2002 obstetric practices at the time. However, as a result of the seminal studies by Semmelweis and Holmes, handwashing gradually became accepted as one of the most important measures for preventing transmission of pathogens in health-care facilities. In 1961, the U. S. Public Health Service produced a training film that demonstrated handwashing techniques recommended for use by health-care workers (HCWs) (4). At the time, recommendations directed that personnel wash their hands with soap and water for 1 2 minutes before and after patient contact. Rinsing hands with an antiseptic agent was believed to be less effective than handwashing and was recommended only in emergencies or in areas where sinks were unavailable. In 1975 and 1985, formal written guidelines on handwashing practices in hospitals were published by CDC (5,6). These guidelines recommended handwashing with nonantimicrobial soap between the majority of patient contacts and washing with antimicrobial soap before and after performing invasive procedures or caring for patients at high risk. Use of waterless antiseptic agents (e.g., alcohol-based solutions) was recommended only in situations where sinks were not available. In 1988 and 1995, guidelines for handwashing and hand antisepsis were published by the Association for Professionals in Infection Control (APIC) (7,8). Recommended indications for handwashing were similar to those listed in the CDC guidelines. The 1995 APIC guideline included more detailed discussion of alcohol-based hand rubs and supported their use in more clinical settings than had been recommended in earlier guidelines. In 1995 and 1996, the Healthcare Infection Control Practices Advisory Committee (HICPAC) recommended that either antimicrobial soap or a waterless antiseptic agent be used for cleaning hands upon leaving the rooms of patients with multidrug-resistant pathogens (e.g., vancomycin-resistant enterococci [VRE] and methicillin-resistant Staphylococcus aureus [MRSA]) (9,10). These guidelines also provided recommendations for handwashing and hand antisepsis in other clinical settings, including routine patient care. Although the APIC and HICPAC guidelines have been adopted by the majority of hospitals, adherence of HCWs to recommended handwashing practices has remained low (11,12). Recent developments in the field have stimulated a review of the scientific data regarding hand hygiene and the development of new guidelines designed to improve hand-hygiene practices in health-care facilities. This literature review and accompanying recommendations have been prepared by a Hand Hygiene Task Force, comprising representatives from HICPAC, the Society for Healthcare Epidemiology of America (SHEA), APIC, and the Infectious Diseases Society of America (IDSA). Normal Bacterial Skin Flora To understand the objectives of different approaches to hand cleansing, a knowledge of normal bacterial skin flora is essential. Normal human skin is colonized with bacteria; different areas of the body have varied total aerobic bacterial counts (e.g., 1 x 10 6 colony forming units (CFUs)/cm 2 on the scalp, 5 x 10 5 CFUs/cm 2 in the axilla, 4 x 10 4 CFUs/cm 2 on the abdomen, and 1 x 10 4 CFUs/cm 2 on the forearm) (13). Total bacterial counts on the hands of medical personnel have ranged from 3.9 x 10 4 to 4.6 x 10 6 (14 17). In 1938, bacteria recovered from the hands were divided into two categories: transient and resident (14). Transient flora, which colonize the superficial layers of the skin, are more amenable to removal by routine handwashing. They are often acquired by HCWs during direct contact with patients or contact with contaminated environmental surfaces within close proximity of the patient. Transient flora are the organisms most frequently associated with health-care associated infections. Resident flora, which are attached to deeper layers of the skin, are more resistant to removal. In addition, resident flora (e.g., coagulase-negative staphylococci and diphtheroids) are less likely to be associated with such infections. The hands of HCWs may become persistently colonized with pathogenic flora (e.g., S. aureus), gramnegative bacilli, or yeast. Investigators have documented that, although the number of transient and resident flora varies considerably from person to person, it is often relatively constant for any specific person (14,18). Physiology of Normal Skin The primary function of the skin is to reduce water loss, provide protection against abrasive action and microorganisms, and act as a permeability barrier to the environment. The basic structure of skin includes, from outer- to innermost layer, the superficial region (i.e., the stratum corneum or horny layer, which is 10- to 20-µm thick), the viable epidermis (50- to 100-µm thick), the dermis (1- to 2-mm thick), and the hypodermis (1- to 2-mm thick). The barrier to percutaneous absorption lies within the stratum corneum, the thinnest and smallest compartment of the skin. The stratum corneum contains the corneocytes (or horny cells), which are flat, polyhedral-shaped nonnucleated cells, remnants of the terminally differentiated keratinocytes located in the viable epidermis. Corneocytes are composed primarily of insoluble bundled keratins surrounded by a cell envelope stabilized by cross-linked proteins and covalently bound lipid. Interconnecting the corneocytes of the stratum corneum are polar structures (e.g., corneodesmosomes), which contribute to stratum corneum cohesion.

5 Vol. 51 / RR-16 Recommendations and Reports 3 The intercellular region of the stratum corneum is composed of lipid primarily generated from the exocytosis of lamellar bodies during the terminal differentiation of the keratinocytes. The intercellular lipid is required for a competent skin barrier and forms the only continuous domain. Directly under the stratum corneum is a stratified epidermis, which is composed primarily of layers of keratinizing epithelial cells that are responsible for the synthesis of the stratum corneum. This layer also contains melanocytes involved in skin pigmentation; Langerhans cells, which are important for antigen presentation and immune responses; and Merkel cells, whose precise role in sensory reception has yet to be fully delineated. As keratinocytes undergo terminal differentiation, they begin to flatten out and assume the dimensions characteristic of the corneocytes (i.e., their diameter changes from µm to µm, and their volume increases by 10- to 20-fold). The viable epidermis does not contain a vascular network, and the keratinocytes obtain their nutrients from below by passive diffusion through the interstitial fluid. The skin is a dynamic structure. Barrier function does not simply arise from the dying, degeneration, and compaction of the underlying epidermis. Rather, the processes of cornification and desquamation are intimately linked; synthesis of the stratum corneum occurs at the same rate as loss. Substantial evidence now confirms that the formation of the skin barrier is under homeostatic control, which is illustrated by the epidermal response to barrier perturbation by skin stripping or solvent extraction. Circumstantial evidence indicates that the rate of keratinocyte proliferation directly influences the integrity of the skin barrier. A general increase in the rate of proliferation results in a decrease in the time available for 1) uptake of nutrients (e.g., essential fatty acids), 2) protein and lipid synthesis, and 3) processing of the precursor molecules required for skin-barrier function. Whether chronic but quantitatively smaller increases in rate of epidermal proliferation also lead to changes in skin-barrier function remains unclear. Thus, the extent to which the decreased barrier function caused by irritants is caused by an increased epidermal proliferation also is unknown. The current understanding of the formation of the stratum corneum has come from studies of the epidermal responses to perturbation of the skin barrier. Experimental manipulations that disrupt the skin barrier include 1) extraction of skin lipids with apolar solvents, 2) physical stripping of the stratum corneum using adhesive tape, and 3) chemically induced irritation. All of these experimental manipulations lead to a decreased skin barrier as determined by transepidermal water loss (TEWL). The most studied experimental system is the treatment of mouse skin with acetone. This experiment results in a marked and immediate increase in TEWL, and therefore a decrease in skin-barrier function. Acetone treatment selectively removes glycerolipids and sterols from the skin, which indicates that these lipids are necessary, though perhaps not sufficient in themselves, for barrier function. Detergents act like acetone on the intercellular lipid domain. The return to normal barrier function is biphasic: 50% 60% of barrier recovery typically occurs within 6 hours, but complete normalization of barrier function requires 5 6 days. Definition of Terms Alcohol-based hand rub. An alcohol-containing preparation designed for application to the hands for reducing the number of viable microorganisms on the hands. In the United States, such preparations usually contain 60% 95% ethanol or isopropanol. Antimicrobial soap. Soap (i.e., detergent) containing an antiseptic agent. Antiseptic agent. Antimicrobial substances that are applied to the skin to reduce the number of microbial flora. Examples include alcohols, chlorhexidine, chlorine, hexachlorophene, iodine, chloroxylenol (PCMX), quaternary ammonium compounds, and triclosan. Antiseptic handwash. Washing hands with water and soap or other detergents containing an antiseptic agent. Antiseptic hand rub. Applying an antiseptic hand-rub product to all surfaces of the hands to reduce the number of microorganisms present. Cumulative effect. A progressive decrease in the numbers of microorganisms recovered after repeated applications of a test material. Decontaminate hands. To Reduce bacterial counts on hands by performing antiseptic hand rub or antiseptic handwash. Detergent. Detergents (i.e., surfactants) are compounds that possess a cleaning action. They are composed of both hydrophilic and lipophilic parts and can be divided into four groups: anionic, cationic, amphoteric, and nonionic detergents. Although products used for handwashing or antiseptic handwash in health-care settings represent various types of detergents, the term soap is used to refer to such detergents in this guideline. Hand antisepsis. Refers to either antiseptic handwash or antiseptic hand rub. Hand hygiene. A general term that applies to either handwashing, antiseptic handwash, antiseptic hand rub, or surgical hand antisepsis. Handwashing. Washing hands with plain (i.e., non-antimicrobial) soap and water.

6 4 MMWR October 25, 2002 Persistent activity. Persistent activity is defined as the prolonged or extended antimicrobial activity that prevents or inhibits the proliferation or survival of microorganisms after application of the product. This activity may be demonstrated by sampling a site several minutes or hours after application and demonstrating bacterial antimicrobial effectiveness when compared with a baseline level. This property also has been referred to as residual activity. Both substantive and nonsubstantive active ingredients can show a persistent effect if they substantially lower the number of bacteria during the wash period. Plain soap. Plain soap refers to detergents that do not contain antimicrobial agents or contain low concentrations of antimicrobial agents that are effective solely as preservatives. Substantivity. Substantivity is an attribute of certain active ingredients that adhere to the stratum corneum (i.e., remain on the skin after rinsing or drying) to provide an inhibitory effect on the growth of bacteria remaining on the skin. Surgical hand antisepsis. Antiseptic handwash or antiseptic hand rub performed preoperatively by surgical personnel to eliminate transient and reduce resident hand flora. Antiseptic detergent preparations often have persistent antimicrobial activity. Visibly soiled hands. Hands showing visible dirt or visibly contaminated with proteinaceous material, blood, or other body fluids (e.g., fecal material or urine). Waterless antiseptic agent. An antiseptic agent that does not require use of exogenous water. After applying such an agent, the hands are rubbed together until the agent has dried. Food and Drug Administration (FDA) product categories. The 1994 FDA Tentative Final Monograph for Health-Care Antiseptic Drug Products divided products into three categories and defined them as follows (19): Patient preoperative skin preparation. A fast-acting, broadspectrum, and persistent antiseptic-containing preparation that substantially reduces the number of microorganisms on intact skin. Antiseptic handwash or HCW handwash. An antisepticcontaining preparation designed for frequent use; it reduces the number of microorganisms on intact skin to an initial baseline level after adequate washing, rinsing, and drying; it is broad-spectrum, fast-acting, and if possible, persistent. Surgical hand scrub. An antiseptic-containing preparation that substantially reduces the number of microorganisms on intact skin; it is broad-spectrum, fast-acting, and persistent. Evidence of Transmission of Pathogens on Hands Transmission of health-care associated pathogens from one patient to another via the hands of HCWs requires the following sequence of events: Organisms present on the patient s skin, or that have been shed onto inanimate objects in close proximity to the patient, must be transferred to the hands of HCWs. These organisms must then be capable of surviving for at least several minutes on the hands of personnel. Next, handwashing or hand antisepsis by the worker must be inadequate or omitted entirely, or the agent used for hand hygiene must be inappropriate. Finally, the contaminated hands of the caregiver must come in direct contact with another patient, or with an inanimate object that will come into direct contact with the patient. Health-care associated pathogens can be recovered not only from infected or draining wounds, but also from frequently colonized areas of normal, intact patient skin (20 31). The perineal or inguinal areas are usually most heavily colonized, but the axillae, trunk, and upper extremities (including the hands) also are frequently colonized (23,25,26,28,30 32). The number of organisms (e.g., S. aureus, Proteus mirabilis, Klebsiella spp., and Acinetobacter spp.) present on intact areas of the skin of certain patients can vary from 100 to 10 6 /cm 2 (25,29,31,33). Persons with diabetes, patients undergoing dialysis for chronic renal failure, and those with chronic dermatitis are likely to have areas of intact skin that are colonized with S. aureus (34 41). Because approximately 10 6 skin squames containing viable microorganisms are shed daily from normal skin (42), patient gowns, bed linen, bedside furniture, and other objects in the patient s immediate environment can easily become contaminated with patient flora (30,43 46). Such contamination is particularly likely to be caused by staphylococci or enterococci, which are resistant to dessication. Data are limited regarding the types of patient-care activities that result in transmission of patient flora to the hands of personnel (26,45 51). In the past, attempts have been made to stratify patient-care activities into those most likely to cause hand contamination (52), but such stratification schemes were never validated by quantifying the level of bacterial contamination that occurred. Nurses can contaminate their hands with 100 1,000 CFUs of Klebsiella spp. during clean activities (e.g., lifting a patient; taking a patient s pulse, blood pressure, or oral temperature; or touching a patient s hand, shoulder, or groin) (48). Similarly, in another study, hands were cultured of nurses who touched the groins of patients heavily colonized with P. mirabilis (25); CFUs/mL of this

7 Vol. 51 / RR-16 Recommendations and Reports 5 organism were recovered from glove juice samples from the nurses hands. Recently, other researchers studied contamination of HCWs hands during activities that involved direct patient-contact wound care, intravascular catheter care, respiratorytract care, and the handling of patient secretions (51). Agar fingertip impression plates were used to culture bacteria; the number of bacteria recovered from fingertips ranged from 0 to 300 CFUs. Data from this study indicated that direct patient contact and respiratory-tract care were most likely to contaminate the fingers of caregivers. Gram-negative bacilli accounted for 15% of isolates and S. aureus for 11%. Duration of patient-care activity was strongly associated with the intensity of bacterial contamination of HCWs hands. HCWs can contaminate their hands with gram-negative bacilli, S. aureus, enterococci, or Clostridium difficile by performing clean procedures or touching intact areas of the skin of hospitalized patients (26,45,46,53). Furthermore, personnel caring for infants with respiratory syncytial virus (RSV) infections have acquired RSV by performing certain activities (e.g., feeding infants, changing diapers, and playing with infants) (49). Personnel who had contact only with surfaces contaminated with the infants secretions also acquired RSV by contaminating their hands with RSV and inoculating their oral or conjunctival mucosa. Other studies also have documented that HCWs may contaminate their hands (or gloves) merely by touching inanimate objects in patient rooms (46,53 56). None of the studies concerning hand contamination of hospital personnel were designed to determine if the contamination resulted in transmission of pathogens to susceptible patients. Other studies have documented contamination of HCWs hands with potential health-care associated pathogens, but did not relate their findings to the specific type of preceding patient contact (15,17,57 62). For example, before glove use was common among HCWs, 15% of nurses working in an isolation unit carried a median of 1 x 10 4 CFUs of S. aureus on their hands (61). Of nurses working in a general hospital, 29% had S. aureus on their hands (median count: 3,800 CFUs), whereas 78% of those working in a hospital for dermatology patients had the organism on their hands (median count: 14.3 x 10 6 CFUs). Similarly, 17% 30% of nurses carried gramnegative bacilli on their hands (median counts: 3,400 38,000 CFUs). One study found that S. aureus could be recovered from the hands of 21% of intensive-care unit personnel and that 21% of physician and 5% of nurse carriers had >1,000 CFUs of the organism on their hands (59). Another study found lower levels of colonization on the hands of personnel working in a neurosurgery unit, with an average of 3 CFUs of S. aureus and 11 CFUs of gram-negative bacilli (16). Serial cultures revealed that 100% of HCWs carried gram-negative bacilli at least once, and 64% carried S. aureus at least once. Models of Hand Transmission Several investigators have studied transmission of infectious agents by using different experimental models. In one study, nurses were asked to touch the groins of patients heavily colonized with gram-negative bacilli for 15 seconds as though they were taking a femoral pulse (25). Nurses then cleaned their hands by washing with plain soap and water or by using an alcohol hand rinse. After cleaning their hands, they touched a piece of urinary catheter material with their fingers, and the catheter segment was cultured. The study revealed that touching intact areas of moist skin of the patient transferred enough organisms to the nurses hands to result in subsequent transmission to catheter material, despite handwashing with plain soap and water. The transmission of organisms from artificially contaminated donor fabrics to clean recipient fabrics via hand contact also has been studied. Results indicated that the number of organisms transmitted was greater if the donor fabric or the hands were wet upon contact (63). Overall, only 0.06% of the organisms obtained from the contaminated donor fabric were transferred to recipient fabric via hand contact. Staphylococcus saprophyticus, Pseudomonas aeruginosa, and Serratia spp. were also transferred in greater numbers than was Escherichia coli from contaminated fabric to clean fabric after hand contact (64). Organisms are transferred to various types of surfaces in much larger numbers (i.e., >10 4 ) from wet hands than from hands that are thoroughly dried (65). Relation of Hand Hygiene and Acquisition of Health-Care Associated Pathogens Hand antisepsis reduces the incidence of health-care associated infections (66,67). An intervention trial using historical controls demonstrated in 1847 that the mortality rate among mothers who delivered in the First Obstetrics Clinic at the General Hospital of Vienna was substantially lower when hospital staff cleaned their hands with an antiseptic agent than when they washed their hands with plain soap and water (3). In the 1960s, a prospective, controlled trial sponsored by the National Institutes of Health and the Office of the Surgeon General demonstrated that infants cared for by nurses who did not wash their hands after handling an index infant colonized with S. aureus acquired the organism more often and more rapidly than did infants cared for by nurses who used hexachlorophene to clean their hands between infant

8 6 MMWR October 25, 2002 contacts (68). This trial provided evidence that, when compared with no handwashing, washing hands with an antiseptic agent between patient contacts reduces transmission of health-care associated pathogens. Trials have studied the effects of handwashing with plain soap and water versus some form of hand antisepsis on healthcare associated infection rates (69,70). Health-care associated infection rates were lower when antiseptic handwashing was performed by personnel (69). In another study, antiseptic handwashing was associated with lower health-care associated infection rates in certain intensive-care units, but not in others (70). Health-care associated infection rates were lower after antiseptic handwashing using a chlorhexidine-containing detergent compared with handwashing with plain soap or use of an alcohol-based hand rinse (71). However, because only a minimal amount of the alcohol rinse was used during periods when the combination regimen also was in use and because adherence to policies was higher when chlorhexidine was available, determining which factor (i.e., the hand-hygiene regimen or differences in adherence) accounted for the lower infection rates was difficult. Investigators have determined also that health-care associated acquisition of MRSA was reduced when the antimicrobial soap used for hygienic handwashing was changed (72,73). Increased handwashing frequency among hospital staff has been associated with decreased transmission of Klebsiella spp. among patients (48); these studies, however, did not quantitate the level of handwashing among personnel. In a recent study, the acquisition of various health-care associated pathogens was reduced when hand antisepsis was performed more frequently by hospital personnel (74); both this study and another (75) documented that the prevalence of health-care associated infections decreased as adherence to recommended hand-hygiene measures improved. Outbreak investigations have indicated an association between infections and understaffing or overcrowding; the association was consistently linked with poor adherence to hand hygiene. During an outbreak investigation of risk factors for central venous catheter-associated bloodstream infections (76), after adjustment for confounding factors, the patient-to-nurse ratio remained an independent risk factor for bloodstream infection, indicating that nursing staff reduction below a critical threshold may have contributed to this outbreak by jeopardizing adequate catheter care. The understaffing of nurses can facilitate the spread of MRSA in intensive-care settings (77) through relaxed attention to basic control measures (e.g., hand hygiene). In an outbreak of Enterobacter cloacae in a neonatal intensive-care unit (78), the daily number of hospitalized children was above the maximum capacity of the unit, resulting in an available space per child below current recommendations. In parallel, the number of staff members on duty was substantially less than the number necessitated by the workload, which also resulted in relaxed attention to basic infection-control measures. Adherence to hand-hygiene practices before device contact was only 25% during the workload peak, but increased to 70% after the end of the understaffing and overcrowding period. Surveillance documented that being hospitalized during this period was associated with a fourfold increased risk of acquiring a health-care associated infection. This study not only demonstrates the association between workload and infections, but it also highlights the intermediate cause of antimicrobial spread: poor adherence to hand-hygiene policies. Methods Used To Evaluate the Efficacy of Hand-Hygiene Products Current Methods Investigators use different methods to study the in vivo efficacy of handwashing, antiseptic handwash, and surgical hand antisepsis protocols. Differences among the various studies include 1) whether hands are purposely contaminated with bacteria before use of test agents, 2) the method used to contaminate fingers or hands, 3) the volume of hand-hygiene product applied to the hands, 4) the time the product is in contact with the skin, 5) the method used to recover bacteria from the skin after the test solution has been used, and 6) the method of expressing the efficacy of the product (i.e., either percent reduction in bacteria recovered from the skin or log reduction of bacteria released from the skin). Despite these differences, the majority of studies can be placed into one of two major categories: studies focusing on products to remove transient flora and studies involving products that are used to remove resident flora from the hands. The majority of studies of products for removing transient flora from the hands of HCWs involve artificial contamination of the volunteer s skin with a defined inoculum of a test organism before the volunteer uses a plain soap, an antimicrobial soap, or a waterless antiseptic agent. In contrast, products tested for the preoperative cleansing of surgeons hands (which must comply with surgical handantisepsis protocols) are tested for their ability to remove resident flora from without artificially contaminating the volunteers hands. In the United States, antiseptic handwash products intended for use by HCWs are regulated by FDA s Division of Overthe-Counter Drug Products (OTC). Requirements for in vitro and in vivo testing of HCW handwash products and surgical

9 Vol. 51 / RR-16 Recommendations and Reports 7 hand scrubs are outlined in the FDA Tentative Final Monograph for Healthcare Antiseptic Drug Products (TFM) (19). Products intended for use as HCW handwashes are evaluated by using a standardized method (19). Tests are performed in accordance with use directions for the test material. Before baseline bacterial sampling and before each wash with the test material, 5 ml of a standardized suspension of Serratia marcescens are applied to the hands and then rubbed over the surfaces of the hands. A specified volume of the test material is dispensed into the hands and is spread over the hands and lower one third of the forearms. A small amount of tap water is added to the hands, and hands are completely lathered for a specified time, covering all surfaces of the hands and the lower third of the forearms. Volunteers then rinse hands and forearms under 40 º C tap water for 30 seconds. Ten washes with the test formulation are required. After the first, third, seventh, and tenth washes, rubber gloves or polyethylene bags used for sampling are placed on the right and left hands, and 75 ml of sampling solution is added to each glove; gloves are secured above the wrist. All surfaces of the hand are massaged for 1 minute, and samples are obtained aseptically for quantitative culture. No neutralizer of the antimicrobial is routinely added to the sampling solution, but if dilution of the antimicrobial in the sampling fluid does not result in demonstrable neutralization, a neutralizer specific for the test formulation is added to the sampling solution. For waterless formulations, a similar procedure is used. TFM criteria for efficacy are as follows: a 2-log 10 reduction of the indicator organism on each hand within 5 minutes after the first use, and a 3-log 10 reduction of the indicator organism on each hand within 5 minutes after the tenth use (19). Products intended for use as surgical hand scrubs have been evaluated also by using a standardized method (19). Volunteers clean under fingernails with a nail stick and clip their fingernails. All jewelry is removed from hands and arms. Hands and two thirds of forearms are rinsed with tap water (38 º C 42 º C) for 30 seconds, and then they are washed with a nonantimicrobial soap for 30 seconds and are rinsed for 30 seconds under tap water. Baseline microbial hand counts can then be determined. Next, a surgical scrub is performed with the test formulation using directions provided by the manufacturer. If no instructions are provided with the formulation, two 5-minute scrubs of hands and forearms followed by rinsing are performed. Reduction from baseline microbial hand counts is determined in a series of 11 scrubs conducted during 5 days. Hands are sampled at 1 minute, 3 hours, and 6 hours after the first scrubs on day 1, day 2, and day 5. After washing, volunteers wear rubber gloves; 75 ml of sampling solution are then added to one glove, and all surfaces of the hands are massaged for 1 minute. Samples are then taken aseptically and cultured quantitatively. The other glove remains on the other hand for 6 hours and is sampled in the same manner. TFM requires that formulations reduce the number of bacteria 1 log 10 on each hand within 1 minute of product application and that the bacterial cell count on each hand does not subsequently exceed baseline within 6 hours on day 1; the formulation must produce a 2-log 10 reduction in microbial flora on each hand within 1 minute of product application by the end of the second day of enumeration and a 3-log 10 reduction of microbial flora on each hand within 1 minute of product use by the end of the fifth day when compared with the established baseline (19). The method most widely used in Europe to evaluate the efficacy of hand-hygiene agents is European Standard (EN 1500 Chemical disinfectants and antiseptics. Hygienic hand-rub test method and requirements) (79). This method requires test volunteers and an 18- to 24-hour growth of broth culture of E. coli K12. Hands are washed with a soft soap, dried, and then immersed halfway to the metacarpals in the broth culture for 5 seconds. Hands are removed from the broth culture, excess fluid is drained off, and hands are dried in the air for 3 minutes. Bacterial recovery for the initial value is obtained by kneading the fingertips of each hand separately for 60 seconds in 10 ml of tryptic soy broth (TSB) without neutralizers. The hands are removed from the broth and disinfected with 3 ml of the hand-rub agent for 30 seconds in a set design. The same operation is repeated with total disinfection time not exceeding 60 seconds. Both hands are rinsed in running water for 5 seconds and water is drained off. Fingertips of each hand are kneaded separately in 10 ml of TSB with added neutralizers. These broths are used to obtain the final value. Log 10 dilutions of recovery medium are prepared and plated out. Within 3 hours, the same volunteers are tested with the reference disinfectant (60% 2- propanol [isopropanol]) and the test product. Colony counts are performed after 24 and 48 hours of incubation at 36 º C. The average colony count of both left and right hand is used for evaluation. The log-reduction factor is calculated and compared with the initial and final values. The reduction factor of the test product should be superior or the same as the reference alcohol-based rub for acceptance. If a difference exists, then the results are analyzed statistically using the Wilcoxon test. Products that have log reductions substantially less than that observed with the reference alcohol-based hand rub (i.e., approximately 4 log 10 reduction) are classified as not meeting the standard. Because of different standards for efficacy, criteria cited in FDA TFM and the European EN 1500 document for establishing alcohol-based hand rubs vary (1,19,79). Alcohol-based

10 8 MMWR October 25, 2002 hand rubs that meet TFM criteria for efficacy may not necessarily meet the EN 1500 criteria for efficacy (80). In addition, scientific studies have not established the extent to which counts of bacteria or other microorganisms on the hands need to be reduced to minimize transmission of pathogens in healthcare facilities (1,8); whether bacterial counts on the hands must be reduced by 1 log 10 (90% reduction), 2 log 10 (99%), 3 log 10 (99.9%), or 4 log 10 (99.99%) is unknown. Several other methods also have been used to measure the efficacy of antiseptic agents against various viral pathogens (81 83). Shortcomings of Traditional Methodologies Accepted methods of evaluating hand-hygiene products intended for use by HCWs require that test volunteers wash their hands with a plain or antimicrobial soap for 30 seconds or 1 minute, despite the observation in the majority of studies that the average duration of handwashing by hospital personnel is <15 seconds (52,84 89). A limited number of investigators have used 15-second handwashing or hygienic hand-wash protocols (90 94). Therefore, almost no data exist regarding the efficacy of plain or antimicrobial soaps under conditions in which they are actually used by HCWs. Similarly, certain accepted methods for evaluating waterless antiseptic agents for use as antiseptic hand rubs require that 3 ml of alcohol be rubbed into the hands for 30 seconds, followed by a repeat application for the same duration. This type of protocol also does not reflect actual usage patterns among HCWs. Furthermore, volunteers used in evaluations of products are usually surrogates for HCWs, and their hand flora may not reflect flora found on the hands of personnel working in health-care settings. Further studies should be conducted among practicing HCWs using standardized protocols to obtain more realistic views of microbial colonization and risk of bacterial transfer and cross-transmission (51). Review of Preparations Used for Hand Hygiene Plain (Non-Antimicrobial) Soap Soaps are detergent-based products that contain esterified fatty acids and sodium or potassium hydroxide. They are available in various forms including bar soap, tissue, leaflet, and liquid preparations. Their cleaning activity can be attributed to their detergent properties, which result in removal of dirt, soil, and various organic substances from the hands. Plain soaps have minimal, if any, antimicrobial activity. However, handwashing with plain soap can remove loosely adherent transient flora. For example, handwashing with plain soap and water for 15 seconds reduces bacterial counts on the skin by log 10, whereas washing for 30 seconds reduces counts by log 10 (1). However, in several studies, handwashing with plain soap failed to remove pathogens from the hands of hospital personnel (25,45). Handwashing with plain soap can result in paradoxical increases in bacterial counts on the skin (92,95 97). Non-antimicrobial soaps may be associated with considerable skin irritation and dryness (92,96,98), although adding emollients to soap preparations may reduce their propensity to cause irritation. Occasionally, plain soaps have become contaminated, which may lead to colonization of hands of personnel with gram-negative bacilli (99). Alcohols The majority of alcohol-based hand antiseptics contain either isopropanol, ethanol, n-propanol, or a combination of two of these products. Although n-propanol has been used in alcohol-based hand rubs in parts of Europe for many years, it is not listed in TFM as an approved active agent for HCW handwashes or surgical hand-scrub preparations in the United States. The majority of studies of alcohols have evaluated individual alcohols in varying concentrations. Other studies have focused on combinations of two alcohols or alcohol solutions containing limited amounts of hexachlorophene, quaternary ammonium compounds, povidone-iodine, triclosan, or chlorhexidine gluconate (61,93, ). The antimicrobial activity of alcohols can be attributed to their ability to denature proteins (120). Alcohol solutions containing 60% 95% alcohol are most effective, and higher concentrations are less potent ( ) because proteins are not denatured easily in the absence of water (120). The alcohol content of solutions may be expressed as percent by weight (w/w), which is not affected by temperature or other variables, or as percent by volume (vol/vol), which can be affected by temperature, specific gravity, and reaction concentration (123). For example, 70% alcohol by weight is equivalent to 76.8% by volume if prepared at 15 º C, or 80.5% if prepared at 25 º C (123). Alcohol concentrations in antiseptic hand rubs are often expressed as percent by volume (19). Alcohols have excellent in vitro germicidal activity against gram-positive and gram-negative vegetative bacteria, including multidrug-resistant pathogens (e.g., MRSA and VRE), Mycobacterium tuberculosis, and various fungi ( , ). Certain enveloped (lipophilic) viruses (e.g., herpes simplex virus, human immunodeficiency virus [HIV], influenza virus, respiratory syncytial virus, and vaccinia virus) are susceptible to alcohols when tested in vitro (120,130,131) (Table 1). Hepatitis B virus is an enveloped virus that is somewhat less susceptible but is killed by 60% 70% alcohol; hepatitis C virus also is likely killed by this percentage of alcohol (132). In a porcine tissue carrier model used to study antiseptic activity, 70% ethanol and 70% isopropanol were found to

11 Vol. 51 / RR-16 Recommendations and Reports 9 TABLE 1. Virucidal activity of antiseptic agents against enveloped viruses Ref. no. Test method Viruses Agent Results (379) Suspension HIV 19% EA LR = 2.0 in 5 minutes (380) Suspension HIV 50% EA LR > % IPA LR > 3.7 (381) Suspension HIV 70% EA LR = 7.0 in 1 minute (382) Suspension HIV 70% EA LR = 3.2B 5.5 in 30 seconds (383) Suspension HIV 70% IPA/0.5% CHG LR = 6.0 in 15 seconds 4% CHG LR = 6.0 in 15 seconds (384) Suspension HIV Chloroxylenol Inactivated in 1 minute Benzalkonium chloride Inactivated in 1 minute (385) Suspension HIV Povidone-iodine Inactivated Chlorhexidine Inactivated (386) Suspension HIV Detergent/0.5% Inactivated in 30 seconds PCMX (387) Suspension/dried plasma HBV 70% IPA LR = 6.0 in 10 minutes chimpanzee challenge (388) Suspension/plasma HBV 80% EA LR = 7.0 in 2 minutes chimpanzee challenge (389) Suspension HSV 95% EA LR > 5.0 in 1 minute 75% EA LR > % IPA LR > % EA + 0.5% CHG LR > 5.0 (130) Suspension RSV 35% IPA LR > 4.3 in 1 minute 4% CHG LR > 3.3 (141) Suspension Influenza 95% EA Undetectable in 30 seconds Vaccinia 95% EA Undetectable in 30 seconds (141) Hand test Influenza 95% EA LR > 2.5 Vaccinia 95% EA LR > 2.5 Note: HIV = human immunodeficiency virus, EA = ethanol, LR = Log 10 reduction, IPA = isopropanol, CHG = chlorhexidine gluconate, HBV = hepatitis B virus, RSV = respiratory syncitial virus, HSV = herpes simplex virus, HAV = hepatitis A virus, and PCMX = chloroxylenol. reduce titers of an enveloped bacteriophage more effectively than an antimicrobial soap containing 4% chlorhexidine gluconate (133). Despite its effectiveness against these organisms, alcohols have very poor activity against bacterial spores, protozoan oocysts, and certain nonenveloped (nonlipophilic) viruses. Numerous studies have documented the in vivo antimicrobial activity of alcohols. Alcohols effectively reduce bacterial counts on the hands (14,121,125,134). Typically, log reductions of the release of test bacteria from artificially contaminated hands average 3.5 log 10 after a 30-second application and log 10 after a 1-minute application (1). In 1994, the FDA TFM classified ethanol 60% 95% as a Category I agent (i.e., generally safe and effective for use in antiseptic handwash or HCW hand-wash products) (19). Although TFM placed isopropanol 70% 91.3% in category IIIE (i.e., insufficient data to classify as effective), 60% isopropanol has subsequently been adopted in Europe as the reference standard against which alcohol-based hand-rub products are compared (79). Alcohols are rapidly germicidal when applied to the skin, but they have no appreciable persistent (i.e., residual) activity. However, regrowth of bacteria on the skin occurs slowly after use of alcohol-based hand antiseptics, presumably because of the sublethal effect alcohols have on some of the skin bacteria (135,136). Addition of chlorhexidine, quaternary ammonium compounds, octenidine, or triclosan to alcohol-based solutions can result in persistent activity (1). Alcohols, when used in concentrations present in alcoholbased hand rubs, also have in vivo activity against several nonenveloped viruses (Table 2). For example, 70% isopropanol and 70% ethanol are more effective than medicated soap or nonmedicated soap in reducing rotavirus titers on fingerpads (137,138). A more recent study using the same test methods evaluated a commercially available product containing 60%

12 10 MMWR October 25, 2002 TABLE 2. Virucidal activity of antiseptic agents against nonenveloped viruses Ref. no. Test method Viruses Antiseptic Result (390) Suspension Rotavirus 4% CHG LR < 3.0 in 1 minute 10% Povidone-Iodine LR > % IPA/0.1% HCP LR > 3.0 (141) Hand test Adenovirus 95% EA LR > 1.4 Poliovirus 95% EA LR = Coxsackie 95% EA LR = Finger test Adenovirus 95% EA LR > 2.3 Poliovirus 95% EA LR = Coxsackie 95% EA LR = 2.9 (389) Suspension ECHO virus 95% EA LR > 3.0 in 1 minute 75% EA LR < % IPA LR = 0 70% IPA + 0.5% CHG LR = 0 (140) Finger pad HAV 70% EA 87.4% reduction 62% EA foam 89.3% reduction plain soap 78.0% reduction 4% CHG 89.6% reduction 0.3% Triclosan 92.0% reduction (105) Finger tips Bovine n-propanol + IPA LR = 3.8 in 30 seconds Rotavirus 70% IPA LR = % EA LR = 2.9 2% triclosan LR = 2.1 water (control) LR = % povidone-iodine LR = 1.3 plain soap LR = 1.2 4% CHG LR = 0.5 (137) Finger pad Human 70% IPA 98.9% decrease in 10 seconds Rotavirus plain soap 77.1% (138) Finger pad Human 70% IPA 99.6% decrease in 10 seconds Rotavirus 2% CHG 80.3% plain soap 72.5% (81) Finger pad Rotavirus 60% EA gel LR > 3.0 in 10 seconds Rhinovirus 60% EA gel LR > 3.0 Adenovirus 60% EA gel LR > 3.0 (139) Finger pad Poliovirus 70% EA LR = 1.6 in 10 seconds 70% IPA LR = 0.8 (200) Finger tips Poliovirus Plain soap LR = % EA LR = 0.4 Note: HIV = human immunodeficiency virus, EA = ethanol, LR = Log 10 reduction, IPA = isopropanol, CHG = chlorhexidine gluconate, HBV = hepatitis B virus, RSV = respiratory syncitial virus, HSV = herpes simplex virus, and HAV = hepatitis A virus. ethanol and found that the product reduced the infectivity titers of three nonenveloped viruses (i.e., rotavirus, adenovirus, and rhinovirus) by >3 logs (81). Other nonenveloped viruses such as hepatitis A and enteroviruses (e.g., poliovirus) may require 70% 80% alcohol to be reliably inactivated (82,139). However, both 70% ethanol and a 62% ethanol foam product with emollients reduced hepatitis A virus titers on whole hands or fingertips more than nonmedicated soap; both were equally as effective as antimicrobial soap containing 4% chlorhexidine gluconate in reducing reduced viral counts on hands (140). In the same study, both 70% ethanol and the 62% ethanol foam product demonstrated greater virucidal activity against poliovirus than either non-antimicrobial soap or a 4% chlorhexidine gluconate-containing soap (140). However, depending on the alcohol concentration, the amount of time that hands are exposed to the alcohol, and viral variant, alcohol may not be effective against hepatitis A and other nonlipophilic viruses. The inactivation of nonenveloped viruses is influenced by temperature, disinfectant-virus volume ratio, and protein load (141). Ethanol has greater activity against viruses than isopropanol. Further in vitro and in vivo studies of both alcohol-based formulations and antimicrobial soaps are warranted to establish the minimal level of virucidal activity that is required to interrupt direct contact transmission of viruses in health-care settings.

DISCUSS HAND HYGIENE AND PERFORM HAND ANTISEPSIS

DISCUSS HAND HYGIENE AND PERFORM HAND ANTISEPSIS DISCUSS HAND HYGIENE AND PERFORM HAND ANTISEPSIS 1. TITLE SLIDE: DISCUSS HAND HYGIENE AND PERFORM HAND ANTISEPSIS. Hands are one of the most common sources of the spread of pathogenic microorganisms. Hand

More information

So Why All the Fuss About Hand Hygiene?

So Why All the Fuss About Hand Hygiene? CARING PROFESSIONAL SERVICES, INC. HAND HYGIENE In-Service So Why All the Fuss About Hand Hygiene? Most common mode of transmission of pathogens is via hands! Infections acquired in healthcare Spread of

More information

Policy Forum. Environmental and Professional Hygiene: Toward the Prevention of Drug Resistant Infections

Policy Forum. Environmental and Professional Hygiene: Toward the Prevention of Drug Resistant Infections Policy Forum Environmental and Professional Hygiene: Toward the Prevention of Drug Resistant Infections International Society of Microbial Resistance and Office of International Medical Policy School of

More information

Hand Hygiene FactFinder

Hand Hygiene FactFinder Hand Hygiene FactFinder Committed to providing helpful information to International Spine Intervention Society members about key patient safety issues, the Society s Patient Safety Committee has developed

More information

APPENDIX. Hand Hygiene Observation Tool (Suggest one observation session by one observer)

APPENDIX. Hand Hygiene Observation Tool (Suggest one observation session by one observer) APPENDIX Hand Hygiene Observation Tool (Suggest one observation session by one observer) Date of Observation Time Observed - Person Observed (RN, RT, NNP, MD, Surgeon, OT/PT, etc.) Opportunity Assessed

More information

GUIDE TO INFECTION CONTROL IN THE HOSPITAL. Hand Hygiene CHAPTER 6: Authors A. J. Stewardson, MBBS, PhD D. Pittet, MD, MS

GUIDE TO INFECTION CONTROL IN THE HOSPITAL. Hand Hygiene CHAPTER 6: Authors A. J. Stewardson, MBBS, PhD D. Pittet, MD, MS GUIDE TO INFECTION CONTROL IN THE HOSPITAL CHAPTER 6: Hand Hygiene Authors A. J. Stewardson, MBBS, PhD D. Pittet, MD, MS Chapter Editor Shaheen Mehtar, MD, MBBS, FRC Path, FCPath (Micro) Topic Outline

More information

Hand disinfection Topics

Hand disinfection Topics Hand disinfection Mongolia 2011 Walter Popp, Hospital Hygiene, University Clinics Essen, Germany 1 Topics History Hand washing vs. hand disinfection Importance of hand disinfection Compliance campaigns

More information

Overview of Infection Control and Prevention

Overview of Infection Control and Prevention Overview of Infection Control and Prevention Review of the Cesarean-section Antibiotic Prophylaxis Program in Jordan and Workshop on Rational Medicine Use and Infection Control Terry Green and Salah Gammouh

More information

2.0 Scope These guidelines refer to all Cheshire Ireland employees, service users, their relatives, carers and visitors.

2.0 Scope These guidelines refer to all Cheshire Ireland employees, service users, their relatives, carers and visitors. Status: Guideline: Offers direction and guidance on good practice, need not necessarily be strictly adhered to. Title: Guidelines for Hand Hygiene Written by: Clinical Practice Project Group Policy No:

More information

FDA Consumer Antimicrobial Handwash Proposed Rule: What Does It Mean and Does It Impact Healthcare or Not? Megan J. DiGiorgio MSN, RN, CIC

FDA Consumer Antimicrobial Handwash Proposed Rule: What Does It Mean and Does It Impact Healthcare or Not? Megan J. DiGiorgio MSN, RN, CIC FDA Consumer Antimicrobial Handwash Proposed Rule: What Does It Mean and Does It Impact Healthcare or Not? Megan J. DiGiorgio MSN, RN, CIC Foreword The following whitepaper is designed for healthcare professionals

More information

Infection Control and Standard Precautions

Infection Control and Standard Precautions Home Care Aide Training Guide Infection Control and Standard Precautions Pre-Service Training Course #1 Home Care Aide Orientation Training Manual: Infection Control & Standard Precautions Page 2 Table

More information

1. GOJO Industries, Inc. 2. Handwashing for Life 3. BioScience Laboratories IAFP 13July09 T2-08

1. GOJO Industries, Inc. 2. Handwashing for Life 3. BioScience Laboratories IAFP 13July09 T2-08 Sarah Edmonds 1, Cara Bondi 1, Robert McCormack 3, David Macinga 1, James Arbogast 1, James Mann 2, Michael Dolan 1 1. GOJO Industries, Inc. 2. Handwashing for Life 3. BioScience Laboratories IAFP 13July09

More information

EcoHydra Antimicrobial Handwash. Product Overview. Physical Properties. Product Description. Regulatory Compliance. Key Features and Benefits

EcoHydra Antimicrobial Handwash. Product Overview. Physical Properties. Product Description. Regulatory Compliance. Key Features and Benefits EcoHydra Antimicrobial Handwash Product Overview Product Description The EcoHydra Antimicrobial Handwash is a liquid soap substitute for the wet method of washing and disinfecting to remove dirt and kill

More information

Hand. Hygiene LEARNING OBJECTIVES. List 5 moments for hand hygiene. Identify 3 reported factors for noncompliance with hand hygiene.

Hand. Hygiene LEARNING OBJECTIVES. List 5 moments for hand hygiene. Identify 3 reported factors for noncompliance with hand hygiene. Hand Hygiene LEARNING OBJECTIVES 1 Identify 3 reported factors for noncompliance with hand hygiene. 2 List 5 moments for hand hygiene. 3 Identify the amount of time for proper handwashing and use of ABHR.

More information

SYMMETRY ANTIMICROBIAL FOAMING HANDWASH with 0.3% PCMX Technical Data

SYMMETRY ANTIMICROBIAL FOAMING HANDWASH with 0.3% PCMX Technical Data 408 SYMMETRY ANTIMICROBIAL FOAMING HANDWASH with 0.3% PCMX Technical Data Physical Properties Active Ingredient: Chloroxylenol (PCMX) 0.3% Appearance: Clear, Amber Solution Fragrance: Floral Form: Liquid

More information

Sequential Application of Hand Antiseptic for Use in No-Water Situations (dubbed SaniTwice) A New Hand Hygiene Option Robert R. McCormack BioScience Laboratories, Inc. March 25, 2009 BioScience Laboratories,

More information

Multi-Drug Resistant Organisms (MDRO)

Multi-Drug Resistant Organisms (MDRO) Multi-Drug Resistant Organisms (MDRO) 2016 What are MDROs? Multi-drug resistant organisms, or MDROs, are bacteria resistant to current antibiotic therapy and therefore difficult to treat. MDROs can cause

More information

Blood-borne Pathogens

Blood-borne Pathogens Blood-borne Pathogens Objectives: Identify what BBPs are and how they are transmitted List why health care workers are a risk Protection strategies What are BBP? Hepatitis B (Hep B) Hepatitis C (Hep C)

More information

CAVICIDE1. Technical Bulletin

CAVICIDE1. Technical Bulletin CAVICIDE1 Technical Bulletin CaviCide1 is a multi-purpose disinfectant intended for use in cleaning, decontaminating and disinfecting hard non-porous, inanimate surfaces and non-critical instruments in

More information

Your Guide to Managing. Multi Drug-resistant Organisms (MDROs)

Your Guide to Managing. Multi Drug-resistant Organisms (MDROs) Agency for Integrated Care 5 Maxwell Road #10-00 Tower Block MND Complex Singapore 069110 Singapore Silver Line: 1800-650-6060 Email: enquiries@aic.sg Website: www.silverpages.sg Facebook: www.facebook.com/carerssg

More information

Preventing Multi-Drug Resistant Organism (MDRO) Infections. For National Patient Safety Goal

Preventing Multi-Drug Resistant Organism (MDRO) Infections. For National Patient Safety Goal Preventing Multi-Drug Resistant Organism (MDRO) Infections For National Patient Safety Goal 07.03.01 2009 Methicillin Resistant Staphlococcus aureus (MRSA) About 3-8% of the population at large is a carrier

More information

Presented by: Mary McGoldrick, MS, RN, CRNI

Presented by: Mary McGoldrick, MS, RN, CRNI Managing Infection Control Challenges in the Home Mary McGoldrick, MS, RN, CRNI Home Care and Hospice Consultant Saint Simons Island, GA CE Credit in Five Easy Steps! 1. Scan your badge as you enter each

More information

Test Method Modified Association of Analytical Communities Test Method Modified Germicidal Spray Products as Disinfectants

Test Method Modified Association of Analytical Communities Test Method Modified Germicidal Spray Products as Disinfectants Study Title Antibacterial Activity and Efficacy of E-Mist Innovations' Electrostatic Sprayer Product with Multiple Disinfectants Method Modified Association of Analytical Communities Method 961.02 Modified

More information

Handwashing Event Hazard Analysis -- updated

Handwashing Event Hazard Analysis -- updated CFP 2012-2014 Hand Hygiene Committee Handwashing Event Hazard Analysis Hand Contamination Event Hazard Chart 1 06-18-2013 Handwashing Event Hazard Analysis -- updated 06-18-2013 FDA Food Code "when to

More information

TABLE OF CONTENTS. 1. Purpose of the WRHA Infection Prevention and Control Manual 2.1 and approval process

TABLE OF CONTENTS. 1. Purpose of the WRHA Infection Prevention and Control Manual 2.1 and approval process TABLE OF CONTENTS Winnipeg Regional Health Authority Introduction Page Number 1. Purpose of the WRHA Infection Prevention and Control Manual 2.1 and approval process 2. WRHA Infection Prevention and Control

More information

Clorox Germicidal Wipes & Spray. The Easy & Most Effective Way to Disinfect

Clorox Germicidal Wipes & Spray. The Easy & Most Effective Way to Disinfect Clorox Germicidal Wipes & Spray The Easy & Most Effective Way to Disinfect Clorox Germicidal Wipes Clorox Germicidal Spray The power of bleach in two easy-to-control, easy-to-use forms Provides hospital

More information

The Disinfecting Effect of Electrolyzed Water Produced by GEN-X-3. Laboratory of Diagnostic Medicine, College of Medicine, Soonchunhyang University

The Disinfecting Effect of Electrolyzed Water Produced by GEN-X-3. Laboratory of Diagnostic Medicine, College of Medicine, Soonchunhyang University The Disinfecting Effect of Electrolyzed Water Produced by GEN-X-3 Laboratory of Diagnostic Medicine, College of Medicine, Soonchunhyang University Tae-yoon Choi ABSTRACT BACKGROUND: The use of disinfectants

More information

Cleaning and Disinfection Protocol Vegetative Bacteria

Cleaning and Disinfection Protocol Vegetative Bacteria Cleaning and Disinfection Protocol Vegetative Bacteria This document has been developed in accordance with current applicable infection control and biosecurity guidelines. It is intended for use as a guideline

More information

SYMMETRY FOAMING HAND SANITIZER with Aloe & Vitamin E Technical Data

SYMMETRY FOAMING HAND SANITIZER with Aloe & Vitamin E Technical Data 508 SYMMETRY FOAMING HAND SANITIZER with Aloe & Vitamin E Technical Data Physical Properties Active Ingredient: Ethyl Alcohol 62% (70% v/v) Appearance: Clear, Colorless Solution Fragrance: Floral Form:

More information

TEAT DIP- POST DIP- PRE DIP- STRIPING

TEAT DIP- POST DIP- PRE DIP- STRIPING TEAT DIP- POST DIP- PRE DIP- STRIPING KRISHIMATE AGRO AND DAIRY PVT LTD NO.1176, 1ST CROSS, 12TH B MAIN, H A L 2ND STAGE, INDIRANAGAR BANGALORE-560008, INDIA Email: sales@srisaiagro.com Www.srisaiagro.com

More information

APIC CHAPTER PRESENTATION 7/2014

APIC CHAPTER PRESENTATION 7/2014 2014 CRE THE SUPER BUG - WHY ALL THE BUZZ? Susan Burns BS, MT, CIC, VA-BC Medical Science Liaison DISCLOSURE I am a paid employee of the clinical team of PDI Healthcare. The content of this presentation

More information

Hand Hygiene and MDRO (Multidrug-resistant Organisms) - Science and Myth PROF MARGARET IP DEPT OF MICROBIOLOGY

Hand Hygiene and MDRO (Multidrug-resistant Organisms) - Science and Myth PROF MARGARET IP DEPT OF MICROBIOLOGY Hand Hygiene and MDRO (Multidrug-resistant Organisms) - Science and Myth PROF MARGARET IP DEPT OF MICROBIOLOGY MDROs and Hand Hygiene Guidelines HH Apr14 The Science of Hand Hygiene in Healthcare Settings

More information

MICRO-ORGANISMS by COMPANY PROFILE

MICRO-ORGANISMS by COMPANY PROFILE MICRO-ORGANISMS by COMPANY PROFILE 2017 1 SAPROPHYTES AND PATHOGENES SAPROPHYTES Not dangerous PATHOGENES Inducing diseases Have to be eradicated WHERE ARE THERE? EVERYWHERE COMPANY PROFILE 2017 3 MICROORGANISMS

More information

A solution for current veterinary challenges

A solution for current veterinary challenges A solution for current veterinary challenges 2 www.jakmarketing.co.uk Introduction The current disease challenge in veterinary practices is increasingly coming from pathogens that are resistant to both

More information

Is biocide resistance already a clinical problem?

Is biocide resistance already a clinical problem? Is biocide resistance already a clinical problem? Stephan Harbarth, MD MS University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland Important points Biocide resistance exists Antibiotic

More information

Cleaning and Disinfection Protocol for Gram-Negative and Gram-Positive Bacteria, including Antibiotic Resistant Bacteria

Cleaning and Disinfection Protocol for Gram-Negative and Gram-Positive Bacteria, including Antibiotic Resistant Bacteria Cleaning and Disinfection Protocol for Gram-Negative and Gram-Positive Bacteria, including Antibiotic Resistant Bacteria This document has been developed in accordance with current applicable infection

More information

The Spread of the Superbug

The Spread of the Superbug The Spread of the Superbug AST staff As technology continues to allow scientists to make medical advances that once were considered difficult, new threats to public health are rising. Superbugs are deadly

More information

Infection Prevention Highlights for the Medical Staff. Pamela Rohrbach MSN, RN, CIC Director of Infection Prevention

Infection Prevention Highlights for the Medical Staff. Pamela Rohrbach MSN, RN, CIC Director of Infection Prevention Highlights for the Medical Staff Pamela Rohrbach MSN, RN, CIC Director of Infection Prevention Standard Precautions every patient every time a. Hand Hygiene b. Use of Personal Protective Equipment (PPE)

More information

Conference for Food Protection 2010 Issue Form. Accepted as. Title: Sequential Application of Hand Antiseptic for Use in No-Water Situations

Conference for Food Protection 2010 Issue Form. Accepted as. Title: Sequential Application of Hand Antiseptic for Use in No-Water Situations Conference for Food Protection 2010 Issue Form Internal Number: 071 Issue: 2010 III-016 Council Recommendation: Accepted as Submitted Accepted as Amended No Action Delegate Action: Accepted Rejected All

More information

This protocol pertains to clinicians, interns and anyone with direct patient contact.

This protocol pertains to clinicians, interns and anyone with direct patient contact. Adopted 8/12 Hand Hygiene A significant body of evidence exists to show that pathogens can be transferred from patient to health care worker. Much of this evidence details the transfer of pathogens from

More information

Clinic Infectious Disease Control

Clinic Infectious Disease Control Chapter 2 - Lesson 4 Clinic Infectious Disease Control Introduction Infectious and parasitic disease control is important in veterinary clinics. The main objective is to prevent the spread of infections

More information

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents Burton's Microbiology for the Health Sciences Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents Chapter 9 Outline Introduction Characteristics of an Ideal Antimicrobial Agent How

More information

Antibacterial Agents & Conditions. Stijn van der Veen

Antibacterial Agents & Conditions. Stijn van der Veen Antibacterial Agents & Conditions Stijn van der Veen Antibacterial agents & conditions Antibacterial agents Disinfectants: Non-selective antimicrobial substances that kill a wide range of bacteria. Only

More information

Other Enterobacteriaceae

Other Enterobacteriaceae GUIDE TO INFECTION CONTROL IN THE HOSPITAL CHAPTER NUMBER 50: Other Enterobacteriaceae Author Kalisvar Marimuthu, MD Chapter Editor Michelle Doll, MD, MPH Topic Outline Topic outline - Key Issues Known

More information

COALINGA STATE HOSPITAL. NURSING POLICY AND PROCEDURE MANUAL SECTION Emergency Procedures POLICY NUMBER: 705. Effective Date: August 31, 2006

COALINGA STATE HOSPITAL. NURSING POLICY AND PROCEDURE MANUAL SECTION Emergency Procedures POLICY NUMBER: 705. Effective Date: August 31, 2006 COALINGA STATE HOSPITAL NURSING POLICY AND PROCEDURE MANUAL SECTION Emergency Procedures POLICY NUMBER: 705 Effective Date: August 31, 2006 SUBJECT: EMERGENCY CARE OF WOUNDS (FIRST AID) 1. PURPOSE: Proper

More information

3 Infection Prevention Solutions

3 Infection Prevention Solutions 3 Infection Prevention Solutions 3M DuraPrep Surgical Solution Nothing is faster, easier or more effective. We can all make a difference. Fast Not only did 3M design an applicator that is fast to activate

More information

The role of Infection Control Nurse in Prevention of Surgical Site Infection (SSI) April 2013

The role of Infection Control Nurse in Prevention of Surgical Site Infection (SSI) April 2013 The role of Infection Control Nurse in Prevention of Surgical Site Infection (SSI) April 2013 Impact of SSI 2 nd common health- care associated infection (HCAI) 14-16% of HCAI Post operation SSI prolong

More information

Author - Dr. Josie Traub-Dargatz

Author - Dr. Josie Traub-Dargatz Author - Dr. Josie Traub-Dargatz Dr. Josie Traub-Dargatz is a professor of equine medicine at Colorado State University (CSU) College of Veterinary Medicine and Biomedical Sciences. She began her veterinary

More information

The Science of Handwashing

The Science of Handwashing The Science of Handwashing Table of Contents Introduction...3 Glossary of Terms...3-4 History...4-5 Science of the Skin...5-7 Hands...7-9 Dermatitis of the Hands...9-10 Nosocomial Infection and Handwashing

More information

Safety Presentation Infection Control and Handwashing

Safety Presentation Infection Control and Handwashing Infection Control and Handwashing Presenter's Notes These notes are provided as a presenter's guide and can be used alone or with the PowerPoint presentation entitled "". Numbered headings in these notes

More information

03/09/2014. Infection Prevention and Control A Foundation Course. Talk outline

03/09/2014. Infection Prevention and Control A Foundation Course. Talk outline Infection Prevention and Control A Foundation Course 2014 What is healthcare-associated infection (HCAI), antimicrobial resistance (AMR) and multi-drug resistant organisms (MDROs)? Why we should be worried?

More information

Burn Infection & Laboratory Diagnosis

Burn Infection & Laboratory Diagnosis Burn Infection & Laboratory Diagnosis Introduction Burns are one the most common forms of trauma. 2 million fires each years 1.2 million people with burn injuries 100000 hospitalization 5000 patients die

More information

Horizontal vs Vertical Infection Control Strategies

Horizontal vs Vertical Infection Control Strategies GUIDE TO INFECTION CONTROL IN THE HOSPITAL Chapter 14 Horizontal vs Vertical Infection Control Strategies Author Salma Abbas, MBBS Michael Stevens, MD, MPH Chapter Editor Shaheen Mehtar, MBBS. FRC Path,

More information

No-leaching. No-resistance. No-toxicity. >99.999% Introducing BIOGUARD. Best-in-class dressings for your infection control program

No-leaching. No-resistance. No-toxicity. >99.999% Introducing BIOGUARD. Best-in-class dressings for your infection control program Introducing BIOGUARD No-leaching. >99.999% No-resistance. No-toxicity. Just cost-efficient, broad-spectrum, rapid effectiveness you can rely on. Best-in-class dressings for your infection control program

More information

TECHNICAL BULLETIN PURELL Advanced with Aloe Instant Hand Sanitizer

TECHNICAL BULLETIN PURELL Advanced with Aloe Instant Hand Sanitizer TECHNICAL BULLETIN PURELL Advanced with Aloe Instant Hand Sanitizer INDICATIONS: Hand sanitizer to help reduce bacteria on the skin that could cause disease. Recommended for repeated use. DIRECTIONS: Place

More information

General Rules Topicals for Skin Infections Topicals for Allergic Skin Disease Topicals for Seborrhea

General Rules Topicals for Skin Infections Topicals for Allergic Skin Disease Topicals for Seborrhea Douglas J. DeBoer, D.V.M., Diplomate A.C.V.D. School of Veterinary Medicine University of Wisconsin-Madison General Rules Topicals for Skin Infections Topicals for Allergic Skin Disease Topicals for Seborrhea

More information

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times Safe Patient Care Keeping our Residents Safe 2016 Use Standard Precautions for ALL Residents at ALL times #safepatientcare Do bugs need drugs? Dr Deirdre O Brien Consultant Microbiologist Mercy University

More information

Adventures in Handwashing

Adventures in Handwashing Adventures in Handwashing A review of studies on handwashing, foodborne illness, and the effectiveness of food worker training on handwashing behaviors Many Foodborne Pathogens are Associated with Personal

More information

Hand washing/hand hygiene reduces the number of microorganisms on the hands and is the most important practice to prevent the spread of infection.

Hand washing/hand hygiene reduces the number of microorganisms on the hands and is the most important practice to prevent the spread of infection. 1. Hand Hygiene Quick Reference Chart Hand washing/hand hygiene reduces the number of microorganisms on the hands and is the most important practice to prevent the spread of infection. WHEN Before: Direct

More information

Hand washing, Asepsis, Precautions and Infection Control

Hand washing, Asepsis, Precautions and Infection Control Hand washing, Asepsis, Precautions and Infection Control FN Ch 12, NICS Ch4 Week 2 Lesa McArdle, MSN, RN Objectives Hand washing, Asepsis, Precautions & Infection Control Explain the chain of infection

More information

The Spread of the Superbug

The Spread of the Superbug The Spread of the Superbug AST staff As technology continues to allow scientists to make medical advances that once were considered difficult, new threats to public health are rising. Superbugs are deadly

More information

METRIGUARD. Technical Bulletin

METRIGUARD. Technical Bulletin METRIGUARD Technical Bulletin Metriguard is a general purpose disinfectant intended for use in cleaning, decontaminating and disinfecting equipment surfaces and non-critical instruments in hospitals, laboratories,

More information

Redefining Infection Management. Proven Clinical Outcomes

Redefining Infection Management. Proven Clinical Outcomes Proven Clinical Outcomes Proof of Bacteria-Binding1 In the first 30 seconds, 1 square centimeter of Cutimed Sorbact binds wound bacteria - after 2 hours, the amount of bacteria bound are more than would

More information

28/08/2017. Infection Prevention and Control. Safe Patient Care Bugs and Drugs The ongoing challenge of MDROs and AMR

28/08/2017. Infection Prevention and Control. Safe Patient Care Bugs and Drugs The ongoing challenge of MDROs and AMR Safe Patient Care Bugs and Drugs The ongoing challenge of MDROs and AMR 2017 Safe Patient Care 2017: The Ongoing Challenge of MDROs and AMR Management of the Patient Environment in relation to Multidrug

More information

A Complete Range of Hand Hygiene and Skin Care Products

A Complete Range of Hand Hygiene and Skin Care Products A Complete Range of Hand Hygiene and Skin Care Products Developed specifically for healthcare workers hands ABOUT DEB GROUP Deb is a world leader in occupational skin care and hand hygiene We have been

More information

Antimicrobial Copper Touch Surfaces: A new tool for Infection Control and Prevention

Antimicrobial Copper Touch Surfaces: A new tool for Infection Control and Prevention Antimicrobial Copper Touch Surfaces: A new tool for Infection Control and Prevention Wilton Moran Project Engineer Copper Development Association The Science Behind the Technology Digital Summit Infection

More information

In-Service Training Program. Managing Drug-Resistant Organisms in Long-Term Care

In-Service Training Program. Managing Drug-Resistant Organisms in Long-Term Care In-Service Training Program Managing Drug-Resistant Organisms in Long-Term Care OBJECTIVES 1. Define the term antibiotic resistance. 2. Explain the difference between colonization and infection. 3. Identify

More information

Summary of the latest data on antibiotic resistance in the European Union

Summary of the latest data on antibiotic resistance in the European Union Summary of the latest data on antibiotic resistance in the European Union EARS-Net surveillance data November 2017 For most bacteria reported to the European Antimicrobial Resistance Surveillance Network

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 20 ANTIBIOTIC RESISTANCE WHY IS THIS IMPORTANT? The most important problem associated with infectious disease today is the rapid development of resistance to antibiotics It will force us to change

More information

1/30/ Division of Disease Control and Health Protection. Division of Disease Control and Health Protection

1/30/ Division of Disease Control and Health Protection. Division of Disease Control and Health Protection Surveillance, Outbreaks, and Reportable Diseases, Oh My! Assisted Living Facility, Nursing Home and Surveyor Infection Prevention Training February 2015 A.C. Burke, MA, CIC Health Care-Associated Infection

More information

About this presentation: Using this presen esen a t tion: This presentation includes information about:

About this presentation: Using this presen esen a t tion: This presentation includes information about: About this presentation: Handwashing in Schools was prepared by the Do Bugs Need Drugs? program in collaboration with Alberta Health and Alberta Education. The content has been reviewed by Alberta Education,

More information

Scientific, Regulatory and Behavioral Considerations of Hand Hygiene

Scientific, Regulatory and Behavioral Considerations of Hand Hygiene 1 Scientific, Regulatory and Behavioral Considerations of Hand Hygiene 2 3 4 5 Katherine M.J. Swanson* 1*, Mark Sampson 2, Donald W. Schaffner 3, Dale Grinstead 4, Michéle Samarya- Timm 5, Catherine Adams-Hutt

More information

Hospital Acquired Infections. Anucha Apisarnthanarak, MD Infectious Disease Division Thammasart University Hospital

Hospital Acquired Infections. Anucha Apisarnthanarak, MD Infectious Disease Division Thammasart University Hospital Hospital Acquired Infections Anucha Apisarnthanarak, MD Infectious Disease Division Thammasart University Hospital Nosocomial Infections (NI) Infections acquired in the hospital May become apparent in

More information

Importance of handwashing prior to wound dressings in prevention of nosocomial infection in surgical wards

Importance of handwashing prior to wound dressings in prevention of nosocomial infection in surgical wards International Surgery Journal Athavale VS et al. Int Surg J. 218 Apr;5(4):1422-1427 http://www.ijsurgery.com pissn 2349-335 eissn 2349-292 Original Research Article DOI: http://dx.doi.org/1.1823/2349-292.isj2181123

More information

Commonwealth of Kentucky Antibiotic Stewardship Practice Assessment For Long-Term Care Facilities

Commonwealth of Kentucky Antibiotic Stewardship Practice Assessment For Long-Term Care Facilities Commonwealth of Kentucky Antibiotic Stewardship Practice Assessment For Long-Term Care Facilities Introduction As the problem of antibiotic resistance continues to worsen in all healthcare setting, we

More information

CANINE PARVO VIRUS HEALTHY HINTS I S S U E 1 GET THE BEST FOR YOUR BEST FRIENDS!

CANINE PARVO VIRUS HEALTHY HINTS I S S U E 1 GET THE BEST FOR YOUR BEST FRIENDS! CANINE PARVO VIRUS I S S U E 1 HEALTHY HINTS GET THE BEST FOR YOUR BEST FRIENDS! WHAT IS CANINE PARVO VIRUS? Parvovirus is a HIGHLY CONTAGIOUS virus that attacks the intestines and causes sloughing of

More information

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat Hicham Ezzat Professor of Microbiology and Immunology Cairo University Introduction 1 Since the 1980s there have been dramatic

More information

8/17/2016 ABOUT US REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM

8/17/2016 ABOUT US REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM Mary Moore, MS CIC MT (ASCP) Infection Prevention Coordinator Great River Medical Center, West Burlington REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM ABOUT

More information

Nosocomial Antibiotic Resistant Organisms

Nosocomial Antibiotic Resistant Organisms Nosocomial Antibiotic Resistant Organisms Course Medical Microbiology Unit II Laboratory Safety and Infection Control Essential Question Does improved hand hygiene really reduce the spread of bacteria

More information

Staph and MRSA Skin Infections Fact Sheet for Schools

Staph and MRSA Skin Infections Fact Sheet for Schools Cape May County Department of Health 4 Moore Road, Cape May Court House, NJ 08210 Staph and MRSA Skin Infections Fact Sheet for Schools What is a staph/mrsa skin infection? Staphylococcus or staph bacteria

More information

Source: Portland State University Population Research Center (

Source: Portland State University Population Research Center ( Methicillin Resistant Staphylococcus aureus (MRSA) Surveillance Report 2010 Oregon Active Bacterial Core Surveillance (ABCs) Office of Disease Prevention & Epidemiology Oregon Health Authority Updated:

More information

Living with MRSA Learning how to control the spread of Methicillin-Resistant Staphylococcus Aureus (MRSA)

Living with MRSA Learning how to control the spread of Methicillin-Resistant Staphylococcus Aureus (MRSA) Living with MRSA Learning how to control the spread of Methicillin-Resistant Staphylococcus Aureus (MRSA) IMPORTANT MRSA is a serious infection that can become life-threatening if left untreated. If you

More information

Multi-Drug Resistant Gram Negative Organisms POLICY REVIEW DATE EXTENDED Printed copies must not be considered the definitive version

Multi-Drug Resistant Gram Negative Organisms POLICY REVIEW DATE EXTENDED Printed copies must not be considered the definitive version Multi-Drug Resistant Gram Negative Organisms POLICY REVIEW DATE EXTENDED 2018 Printed copies must not be considered the definitive version DOCUMENT CONTROL POLICY NO. IC-122 Policy Group Infection Control

More information

SURVIVABILITY OF HIGH RISK, MULTIRESISTANT BACTERIA ON COTTON TREATED WITH COMMERCIALLY AVAILABLE ANTIMICROBIAL AGENTS

SURVIVABILITY OF HIGH RISK, MULTIRESISTANT BACTERIA ON COTTON TREATED WITH COMMERCIALLY AVAILABLE ANTIMICROBIAL AGENTS SURVIVABILITY OF HIGH RISK, MULTIRESISTANT BACTERIA ON COTTON TREATED WITH COMMERCIALLY AVAILABLE ANTIMICROBIAL AGENTS Adrienn Hanczvikkel 1, András Vígh 2, Ákos Tóth 3,4 1 Óbuda University, Budapest,

More information

MRSA: How to Keep This Deadly Super Bug From Infecting You

MRSA: How to Keep This Deadly Super Bug From Infecting You MRSA: How to Keep This Deadly Super Bug From Infecting You DR. MERCOLA $9.97 Mercola.com is the world s #1-ranked natural health website, with over one million subscribers to its free newsletter. Millions

More information

Role of the nurse in diagnosing infection: The right sample, every time

Role of the nurse in diagnosing infection: The right sample, every time BROUGHT TO YOU BY Role of the nurse in diagnosing infection: The right sample, every time The module has been written by Shanika Anne-Marie Crusz and Amelia Joseph Authors affiliation: Department of Clinical

More information

< x 10 6 > % > 5.8

< x 10 6 > % > 5.8 16026 University Oak, San Antonio, TX 78249 geneontechnologies.com 866.217.020 **NOTE: This is a comprehensive report of GenEon s On-Site Generator Microbiological Kill Claims. Table 1 The mycobacteriocidal

More information

Effect of Hand Cleansing with Antimicrobial Soap or Alcohol-Based Gel on Microbial Colonization of Artificial Fingernails Worn by Health Care Workers

Effect of Hand Cleansing with Antimicrobial Soap or Alcohol-Based Gel on Microbial Colonization of Artificial Fingernails Worn by Health Care Workers MAJOR ARTICLE Effect of Hand Cleansing with Antimicrobial Soap or Alcohol-Based Gel on Microbial Colonization of Artificial Fingernails Worn by Health Care Workers Shelly A. McNeil, 1,2,a Catherine L.

More information

6.0 ANTIBACTERIAL ACTIVITY OF CAROTENOID FROM HALOMONAS SPECIES AGAINST CHOSEN HUMAN BACTERIAL PATHOGENS

6.0 ANTIBACTERIAL ACTIVITY OF CAROTENOID FROM HALOMONAS SPECIES AGAINST CHOSEN HUMAN BACTERIAL PATHOGENS 6.0 ANTIBACTERIAL ACTIVITY OF CAROTENOID FROM HALOMONAS SPECIES AGAINST CHOSEN HUMAN BACTERIAL PATHOGENS 6.1 INTRODUCTION Microorganisms that cause infectious disease are called pathogenic microbes. Although

More information

Interrupting The ECMO Circuit

Interrupting The ECMO Circuit Extracorporeal Membrane Oxygenation Program Interrupting The ECMO Circuit Mark Lucas, MPS, CCP, ECMO Coordinator Leo Carr, MS, CCP, Lead Perfusionist Objectives Discuss the need for interrupting the ECMO

More information

Preventing Clostridium difficile Infection (CDI)

Preventing Clostridium difficile Infection (CDI) 1 Preventing Clostridium difficile Infection (CDI) All Hands on Deck to Reduce CDI Skill Nursing Facility Conference July 28, 2017 Idamae Kennedy, MPH,BSN,RN,CIC Liaison Infection Preventionist Healthcare

More information

Taking Action to Prevent and Manage Multidrug-resistant Organisms and C. difficile in the Nursing Home: Part 2 Understanding the spread

Taking Action to Prevent and Manage Multidrug-resistant Organisms and C. difficile in the Nursing Home: Part 2 Understanding the spread Taking Action to Prevent and Manage Multidrug-resistant Organisms and C. difficile in the Nursing Home: Part 2 Understanding the spread Nimalie D. Stone, MD,MS Division of Healthcare Quality Promotion

More information

Summary of Product Characteristics

Summary of Product Characteristics Summary of Product Characteristics 1 NAME OF THE VETERINARY MEDICINAL PRODUCT Malaseb shampoo for dogs and cats 2 QUALITATIVE AND QUANTITATIVE COMPOSITION 1 ml contains: Active substances: Chlorhexidine

More information

Surveillance of Multi-Drug Resistant Organisms

Surveillance of Multi-Drug Resistant Organisms Surveillance of Multi-Drug Resistant Organisms Karen Hoffmann, RN, MS, CIC Associate Director Statewide Program for Infection Control and Epidemiology (SPICE) University of North Carolina School of Medicine

More information

HOSPITAL-ACQUIRED INFECTION/MRSA EYERUSALEM KIFLE AND GIFT IMUETINYAN OMOBOGBE PNURSS15

HOSPITAL-ACQUIRED INFECTION/MRSA EYERUSALEM KIFLE AND GIFT IMUETINYAN OMOBOGBE PNURSS15 HOSPITAL-ACQUIRED INFECTION/MRSA EYERUSALEM KIFLE AND GIFT IMUETINYAN OMOBOGBE PNURSS15 INTRODUCTION DEFINITIONS SIGNS AND SYMPTOMS RISK FACTORS DIAGNOSIS COMPLICATIONS PREVENTIONS TREATMENT PATIENT EDUCATION

More information

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered Antimicrobial Resistance Consequences of Antimicrobial Resistant Bacteria Change in the approach to the administration of empiric antimicrobial therapy Increased number of hospitalizations Increased length

More information

Objectives. Basic Microbiology. Patient related. Environment related. Organism related 10/12/2017

Objectives. Basic Microbiology. Patient related. Environment related. Organism related 10/12/2017 Basic Microbiology Vaneet Arora, MD MPH D(ABMM) FCCM Associate Director of Clinical Microbiology, UK HealthCare Assistant Professor, Department of Pathology and Laboratory Medicine University of Kentucky

More information

Antibiotic stewardship in long term care

Antibiotic stewardship in long term care Antibiotic stewardship in long term care Shira Doron, MD Associate Professor of Medicine Division of Geographic Medicine and Infectious Diseases Tufts Medical Center Boston, MA Consultant to Massachusetts

More information

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance Antimicrobial Resistance Molecular Genetics of Antimicrobial Resistance Micro evolutionary change - point mutations Beta-lactamase mutation extends spectrum of the enzyme rpob gene (RNA polymerase) mutation

More information

Antimicrobial Resistance

Antimicrobial Resistance Antimicrobial Resistance Consequences of Antimicrobial Resistant Bacteria Change in the approach to the administration of empiric antimicrobial therapy Increased number of hospitalizations Increased length

More information