KANSAS SCHOOL NATURALIST

Size: px
Start display at page:

Download "KANSAS SCHOOL NATURALIST"

Transcription

1

2 KANSAS SCHOOL NATURALIST ISSN: X Published by EMPORIA STATE UNIVERSITY Editor: JOHN RICHARD SCHROCK Editorial Committee: TOM EDDY, GAYLEN NEUFELD, DAVID SAUNDERS Editors Emeritus: ROBERT BOLES, ROBERT F CLARKE Circulation and Mailing: ROGER FERGUSON Circulation (this issue): 10,000 Press Run: 15,000 Press Composition: John Decker Printed by: ESU Printing Services The Kansas School Nafllralist is sent free of charge and upon request to teachers. school administrators, public and school librarians, youth leaders, conservationists. and others interested in natural history and nature education. In-print back issues are sent free as long as supply lasts. Out-of-print back issues are sent for one dollar photocopy and postage/handling charge per issue. A back issue list is sent free upon request. The Kansas School Naturalist is sent free upon request by media mail to all.s. zipcodes. first class to Mexico and Canada, and surface mail overseas. Overseas subscribers who wish to receive it by airmail should remit US $5.00 per four issues airmail and handling. The Kansas School Naturalist is published by Emporia State University, Emporia. Kansas. Postage paid at Emporia, Kansas. Address all correspondence to: Editor, Kansas School Naturalist, Department of Biological Sciences, Box 4050, Emporia State University. Emporia, KS Opinions and perspectives expressed are those of the authors and/or editor and do not reflect the official position or endorsement of ESU. Back issues are available online at: The Kansas School Naturalist is listed in Ulrich's International Periodicals Directory, indexed in Wildlife Review/Fisheries Review, and appropriate issues are indexed in the Zoological Record. librarians Note: The Kansas School Naturalist is an irregular publication issued from one to four times per year. Cover: A pair of Panorpa mirabilis mating on forest undergrowth, a common habitat for panorpid scorpionflies. Photo Credit: All photos in this issue were taken by Mr. Wes Bicha who began photographing scorpionflies 30 years ago after reading an article by Dr. Byers. Author: Dr. George Byers is Entomology Professor Emeritus at the Snow Entomological Division of the Museums of Natural History at the University of Kansas. He is the world authority on scorpionflies as well as a systematist of crane flies. The K.U. museum has by far the largest collection of scorpionflies. including type specimens, in the world.

3 SCORPIONFLIES, HANGINGFLIES, AND OTHER MECOPTERA by George W Byers Although there are parts of North America where these insects are fairly common and may attract the attention of general collectors, they appear never to be common in Kansas and are not often captured by students collecting for biology classes, 4-H clubs, Boy Scouts, and the like. This is because there are fewer than a dozen species known to occur in Kansas, and most of these are limited to the eastern part of the state, where their habitats are fragmented and the insects are rarely encountered. One may reasonably ask, therefore, why an issue of the Kansas School Naturalist is devoted to such an obscure group of insects. THE ORDER MECOPTERA How can members of this group of insects be recognized? How are Mecoptera different from somewhat similar insects in the orders Diptera (flies) or Neuroptera (lacewings)? Briefly, most Mecoptera have four membranous wings with several crossveins. The wings often have spots or transverse bands of darker color. Hind wings are slightly shorter than the fore wings and have similar markings. A few species, but none in or near Kansas, are wingless or have very small wings (see Kansas School Naturalist, Vol. 38, No 2, p. 15; May 1992). Mecoptera have chewing mouthparts at the end of a beak-like downward prolongation of the head. Scorpionflies (Family Panorpidae) and hangingflies (Family Bittacidae), together with some smaller families, make up the Order Mecoptera. This is now one of the minor orders of insects, with only about 550 species currently known worldwide. Why then are the Mecoptera of particular interest to entomologists and others concerned with animal evolution? On the basis of various characteristics, but mainly venation of the wings, Mecoptera are judged to be an ancient group of insects, ancestral to such modern and very much larger orders as Diptera (flies) and Lepidoptera (moths and butterflies). Much of the fossil record of insects, from the Carboniferous Mecoptera are... an ancient group of insects. period onward, is based on wing venation because wings are of a chemical composition that resists decomposition. [n sedimentary rocks of the lower Permian geological period (about 270 million years ago), in which insects with complete metamorphosis (having four developmental stages: egg, larva, pupa, and adult) first appear, the Mecoptera are well represented (see Kansas School Naturalist, Vol. 46, No 1, pp ; Feb. 2000). Fossil Mecoptera of various geological ages have been assigned to about 350 species in 87 genera and 34 families, diversity much greater than among living forms. Only 34 genera in nine families are recognized among mecopterans alive today. Living panorpids and bittacids may be thought of as survivors of an estimated 270 million years of mecopteran evolution. 3

4 Figure I. The tail of a male Panorpa helena Byers shows why some Mecoptera are called "scorpionflies." This species was named for Dr. Byers' mother, Helen Byers. FOSSILS Family Panorpidae first appears in the fossil record as two species of Panorpa in the Baltic amber of Oligocene age (about 35 million years ago). A beautifully preserved panorpid is the more recent Holcorpa maculosa Scudder, of Miocene age, from Florissant, Colorado (photo in Carpenter 1931 b, p. 406). The oldest known species of the Family Bittacidae is Probittacus ut.:itus Martynov, from Jurassic rocks of Turkestan, perhaps 160 million years old. In North America, an excellent example of fossil Bittacidae is Paleobittacus eocenicus Carpenter, of the Green River formation of Eocene age (see Carpenter 1928, plate 12). 4

5

6 MODERN SPECIES The nine families of extant Mecoptera have a variety of geographical distributions. Two of these families, Eomeropidae, with the single genus Notiothauma in southern South America, and Apteropanorpidae, including only Apteropanorpa in Tasmania, Australia, have limited ranges. They will not be considered further here. Two other families, the Choristidae, with three genera in Australia, and the Nannochoristidae (two genera), with the zoogeographically fascinating occurrence in Australia, New Zealand, and southern South America, will also not be dealt with further in this pamphlet. Family Panorpodidae occurs in the Appalachian region and in the Pacific Northwest in North America, as well as in eastern Asia. Boreidae are found in eastern North America and in the Rocky Mountains and Pacific States. Since species of neither of these families have been found anywhere near Kansas, they will be discussed only briefly, later. Three families remain. The Panorpidae (a single genus in North America, Europe and Asia, and two more genera in Asia), the Bittacidae (with 17 genera, widespread in North America, South America, Europe, Africa, Asia, and Australia), and the peculiar little family Meropeidae (one genus with one species in eastern North America and another genus with only a single species in southwestern Australia). Representatives of all these three families have been found in Kansas, to some extent. Since these families differ in various aspects of their biology, they will be discussed separately. FAMILY PANORPIDAE These are the scorpionflies, so called because in males the ninth abdominal segment (genital segment) is enlarged, and segments 7 and 8 are relatively slender (Figure 1). The ninth segment is usually carried upward and forward, above the back, a position somewhat resembling that of a scorpion's sting. (But the insect is quite harmless.) The abdomen of the female tapers backward to a slender tip bearing two small, finger-like cerci. ScorpionfIies are likely to be encountered in wooded habitats in which there are broad-leaved, herbaceous plants growing in rich, shaded soil. Rarely they occur in unshaded environments. The insects are usually found standing on the upper surface of leaves about 1-3 feet off the ground. When alarmed, they usually fly to another leaf a few feet away, but if threatened they often drop to the ground. The diet of adult scorpionflies includes dead or dying insects or, less often, other dead organisms, such as mice or frogs. They have been seen feeding on insects trapped in spider's webs, but occasionally they become ensnared themselves. There are published accounts of scorpionflies feeding on pollen and associated parts of flowers. Larval panorpids are also scavengers, having much the same diet as the adults. Mating behavior in Panorpidae usually involves the offering, by the male, of some kind of food. This may be a dead insect or, often, a short column of a brown salivary secretion that becomes gelatinous as it dries in the air. When a suitable dietary item is found, or provided, the male emits a pheromone (an air-borne chemical 6

7 signal) from vesicles within the enlarged ninth abdominal segment. A emale is attracted to the pheromone or the food, whereupon the male grasps the end of her abdomen with the claw-like appendages on his genital segment (dististyles). He also clamps the costal (front) edge of one of the female's fore-wings in a structure on the mid-dorsal part of his abdominal segments 3 and 4 (the notal organ). \Iating then takes place as the female ieeds. During mating, the pair forms approximating a V-shape (Figure 2). Lacking a well-developed ovipositor, the female probes in loose soil to find small openings in which to deposit her eggs. In Panorpa, the eggs are ovoid but about equally rounded at the ends. Larvae... are remarkable in having compound eyes... The chorion (egg shell) is smooth in some species; in others, it is covered by a mesh of polygonal cells. The egg stage has been recorded as 5-10 days in some American panorpids. Near the time of hatching, eggs increase noticeably in size (as much as 38%), and the dark mandibles and eyes of the developing larva become visible through the chorion. The first-stage larva has a sharp "egg-tooth" (or eggburster) on the frons (front of the head, between the eyes) by means of which it can rip the chorion, at hatching. Larvae of Panorpa (and some other \liecoptera) are remarkable in having compound eyes, that is, eyes of many (30 or more) ommatidia, or subdivisions. This condition is unknown among larvae of other insects having complete metamorphosis. Panorpid larvae are caterpillar-like in general appearance, the head scierotized (hardened) but most of the body nearly membranous, with setae (hairs) projecting from the dorsal and lateral surfaces of the segments. The three pairs of thoracic legs are nearly conical, as are the smaller prolegs (not true segmented legs) on the first eight abdominal segments. Duration of larval life is influenced by several factors, among which are temperature, availability of food, length of diapause before transformation to the pupal stage, and of course the species involved. In the laboratory, larvae of one species of Panorpa passed through three developmental states and began a fourth in about a month. In the fourth and final larval phase, growth and feeding continued for several days, after which the larva prepared a cavity in the soil and in it became quiescent and began pre-pupal diapause (inactivity). This diapause lasts only about five weeks in species of Panorpa that reach adulthood in late summer. In species that overwinter, it lasts 6.5 to 7 months. Following the final larval molt, the pupa may complete its development (Le., of the adult within) in days. The pupa has much the shape of the adult, except that the legs are folded loosely against its ventral surface, and the wings are tightly compressed within their sac-like sheaths. The prolongation of the head is much less in the pupa than in the adult. 7

8

9

10 FAMILY BITTACIDAE Hangingflies have a single, large claw at the end of each tarsus; they are unable to stand on a surface but suspend themselves from edges of leaves or from twigs. Their wings are elongate, slender toward the base, and usually held down alongside the abdomen except in flight. Some bittacids may be found in shaded habitats together with scorpionflies, but others occur at edges of woodlands or in unshaded places, such as in tall grasses. Adult hangingflies are predators, feeding on other insects, which are usually captured by the raptorial hind tarsi and held up to the mouth. Bittacids may fly upward along a plant stem and pluck off unwary prey. Only soft parts are eaten. Larvae of Bittacidae feed on dead insects. Hangingflies... are unable to stand on a surface but suspend themselves from edges of leaves or from twigs. Mating behavior of hangingflies has similarities to that of scorpionflies. A male first captures a suitable food item (and may feed on it briefly himself), then emits a pheromone from vesicles everted between sclerites 6-7 and 7-8 on the back of the abdomen. When a female is attracted to the pheromone and appears to judge the food offering adequate, mating ensues, with both partners hanging from overhead support and the female feeding (Figure 3). Female bittacids show no particular concern for the welfare of their young. When ready to oviposit, the female suspends herself above probably suitable habitat and drops her eggs, one by one. The eggs fall among dead leaves and other debris on the ground, there to lie until hatching. Eggs of most bittacids are unusual in being nearly cuboidal, with each surface slightly impressed. Near the time of hatching, the egg enlarges somewhat and becomes roughly spherical. Duration of the egg stage varies greatly according to the species (Setty 1940). Larvae of Bittocus (and other bittacids) have compound eyes but with only seven ommatidia each; they also have one ocellus at the top of the frons (front of the head). They are eruciform (that is, they resemble caterpillars), with the head sclerotized but most of the body except the dorsum of the first thoracic segment, virtually membranous, with a pair of branched, fleshy projections on the back of the hind two thoracic segments and abdominal segments 1-9, with smaller appendages at the sides. Bittacid larvae do not burrow into the soil but remain at the surface, concealed by vegetational debris; they may excrete fluid containing soil and deposit this on their dorsal projections, where it adheres and hardens. Setty (1940) has described and illustrated the morphology of adults, larvae of various instars, pupae and many other details, based on his many careful studies of Bittacidae. 10

11

12 FAMILY MEROPEIDAE Represented in North America by a single species, Merope tuber, this family also includes a species in Australia. The American species was known in the Atlantic states for many years but considered quite rare. Adults are nocturnal but phototactic (attracted to lights), and increased use of light traps-and also of fiightintercept and chemical traps-in recent years has led to finding that Merope is actually widespread, currently known from southeastern Canada to Georgia and westward to eastern Kansas and Minnesota. The habitat is much the same as for Panorpidae. These are yellowish brown insects, about 8-15 mm long; body length and wing length vary greatly in both males and females. Their grayish wings are divided into many cells by numerous cross-veins. Males are characterized Larvae of Merope have not yet been discovered. by elongate, slender clasping structures at the end of the abdomen; the shorter abdomen of females tapers to a narrow tip. Larvae of Merope have not yet been discovered. Virtually nothing is known about the behavior of meropeids other than their response to light. FAMILY PANORPODIDAE North American panorpodids, all in genus Brachypanorpa, have been found in the Appalachian Mountains and the mountainous Pacific Northwest. They differ from Panorpidae in having a conspicuously short rostrum and unmarked, yellowish brown wings (Figure 5), as well as some less obvious structural characteristics. Females of some species are brachypterous (very short-winged) and flightless; those of... Panorpodids... have been found in the Appa]achian Mountains and the mountainous Pacific Northwest. other species have somewhat reduced wings and are poor fliers. The diet of adults is not clear, but they have been observed scraping the surfaces of herbaceous leaves with their mouthparts. Larval Panorpodidae are eyeless. Lacking prolegs on the ventral side of the abdomen and thick setae (as in Panorpidae) or fleshy projections (as Bittacidae) on the back, the larvae are described as scarabaeiform (resembling larvae of scarab beetles). 12

13

14 FAMILY BOREIDAE These small Oength 2-5 mm), darkly colored mecopterans are most often and most easily seen on snow. They are boreal, the adult stage being attained in winter or at high elevations in mountains, or at high latitudes, such as in Alaska. As far as is known, the diet of both larvae and adults consists of leafy parts of bryophytes (mosses and liverworts). The mating behavior of Boreus, our only common genus, differs from that of other Mecoptera. The male grasps the female with his slender, hardened wings and moves her to a position above his back, with the lower part of her elongate ovipositor inserted into his ninth (genital) segment (Figure 7). Larval boreids, like those of Brachypanorpa, lack abdominal prolegs and conspicuous dorsal setae; they do, however, have lateral eyes, usually each with three ommatidia (visual units). Some systematists have placed Boreidae in a separate order from Mecoptera. Figure 6. An adult male Boreus on snow. KEY TO THE FAMILIFS OF NORTH AMERICAN MECOPTERA (ADULTS) l. Tarsi each with a single, large terminal claw; wings long, narrow, tapering toward base bittacidae Tarsi each with two small claws; wings not slender near base Wings sclerotized (hardened), without venation; those of male slender, tapering toward apex, with apical spine; those of female small, oval or rounded pads boreidae Wings membranous, with distinct veins Wings broadly rounded at apex, with 12 or more cross-veins along costal (anterior) edge and more than 50 elsewhere on fore wing meropeidae Wings narrowly rounded at apex, with fewer than three cross-veins along costal edge and fewer than 25 elsewhere on fore wing Ventral prolongation of head (rostrum) long and tapering toward tip...panorpidae Ventral prolongation of head short; conspicuous "tooth" on lower face at each side of rostrum panorpodidae 14

15 REFERENCES Beckemeyer, R. J The Permian Insect Fossils of Elmo, Kansas. Kansas School Naturalist 46: Byers, G. W The Life History of Panorpa nuptialis (Mecoptera: Panorpidae). Annals of the Entomological Society ofamerica 56: yers, G. W Zoogeography of the Meropeidae (Mecoptera). Journal of the Kansas Entomological Society 46: yers, G. W Biology of Brachypanorpa (Mecoptera: Panorpidae). Journal of the Kansas Entomological Soc iety 70: Byers, G. W. and R. Thornhill Annual Review ofentomology 28: ~ arpenter, F. M A Scorpion-fly from the Green River Eocene. Annals of the Carnegie Museum 18: , plate 12. ~ arpenter, F. M a. Revision of the Nearctic Mecoptera. Bulletin ofthe Museum of Comparative Zoology (Harvard University) 72: , plates 1-8. =arpenter, F. M. 1931b. The Affinities of Holcorpa maculosa Scudder and Other Tertiary Mecoptera, with Descriptions of New Genera. Journal of the New York Entomological Society 39: , plate 33. Schrock, J. R Snow Flies. Kansas School Naturalist 38: page 15. Setty, L. R Biology and Morphology of Some North American Bittacidae (Order Mecoptera). The American Midland Naturalist 23: :-hornhill, R Sexual Selection and Nuptial Feeding Behavior in Bittacus apicalis (Insecta: Mecoptera). The American Naturalist 110:

16

THE BALTIC AMBER MECOPTERA

THE BALTIC AMBER MECOPTERA THE BALTIC AMBER MECOPTERA BY F. M. CARPENTER Harvard University The scorpion-flies and their relatives have a long and varied geol,ogical record. They are well represented in Permian and Mesozoic strata,

More information

Scorpion Flies Swarm North Texas

Scorpion Flies Swarm North Texas Kimberly Schofield Program Specialist-Urban IPM k-schofield@tamu.edu Scorpion Flies Swarm North Texas As you stroll through the woods this fall, you might notice an interesting insect called a scorpion

More information

Florida Scorpionfly, Panorpa floridana Byers (Insecta: Mecoptera: Panorpidae) 1

Florida Scorpionfly, Panorpa floridana Byers (Insecta: Mecoptera: Panorpidae) 1 EENY-538 Florida Scorpionfly, Panorpa floridana Byers (Insecta: Mecoptera: Panorpidae) 1 Louis A. Somma and James C. Dunford 2 Introduction The order Mecoptera, often called the scorpionflies, is a relatively

More information

INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS

INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS Mantis/Arboreal Ant Species September 2 nd 2017 TABLE OF CONTENTS 1.0 INTRODUCTION... 3 2.0 COLLECTING... 4 3.0 MANTIS AND

More information

posterior part of the second segment may show a few white hairs

posterior part of the second segment may show a few white hairs April, 1911.] New Species of Diptera of the Genus Erax. 307 NEW SPECIES OF DIPTERA OF THE GENUS ERAX. JAMES S. HINE. The various species of Asilinae known by the generic name Erax have been considered

More information

By H. G. JOHNSTON, Ames, Iowa.

By H. G. JOHNSTON, Ames, Iowa. Dec., 19930 Bulletin of the Brooklyn Entomological Society 295 FOUR NEW SPECIES OF MIRIDAE FROM TEXAS (HEMIPTERA).* By H. G. JOHNSTON, Ames, Iowa. Phytocoris conspicuus n. sp. This species is readily distinguished

More information

Nature Club. Insect Guide. Make new friends while getting to know your human, plant and animal neighbours!

Nature Club. Insect Guide. Make new friends while getting to know your human, plant and animal neighbours! Nature Club Insect Guide Make new friends while getting to know your human, plant and animal neighbours! We share our world with so many cool critters! Can you identify them? Use this guide as you search

More information

Diplurans. Classification Life History & Ecology Distribution. Major Families Fact File Hot Links

Diplurans. Classification Life History & Ecology Distribution. Major Families Fact File Hot Links DIPLURA Diplurans The name Diplura, derived from the Greek words "diplo-" meaning two and "ura" meaning tails, refers to the large cerci at the rear of the abdomen. Classification Life History & Ecology

More information

Let s Learn About Insects!

Let s Learn About Insects! Let s Learn About Insects! All photos and text by Kris H. Light Copyright 2008 All rights reserved What is the difference between an insect and a spider? Insects: have 3 body parts have 6 legs can have

More information

Top Ten Grape Insect Pests in Nebraska Chelsey M. Wasem and Frederick P. Baxendale Department of Entomology, University of Nebraska-Lincoln

Top Ten Grape Insect Pests in Nebraska Chelsey M. Wasem and Frederick P. Baxendale Department of Entomology, University of Nebraska-Lincoln Apple Twig Borer Top Ten Grape Insect Pests in Nebraska Chelsey M. Wasem and Frederick P. Baxendale Department of Entomology, University of Nebraska-Lincoln Insect Identification: Adults (beetles) are

More information

Key 1 Key to Insects Orders

Key 1 Key to Insects Orders Key 1 Key to Insects Orders Notes: This key covers insect orders commonly and occasionally observed. However, it does not include all orders. Key #1 is similar, but easier, being limited to insect orders

More information

Vol. XIV, No. 1, March, The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S.

Vol. XIV, No. 1, March, The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S. Vol. XIV, No. 1, March, 1950 167 The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S. MAULIK BRITISH MUSEUM (NATURAL HISTORY) (Presented by Mr. Van Zwaluwenburg

More information

Science of Life Explorations

Science of Life Explorations Science of Life Explorations Biological Control and Beneficial Insects Let s Raise Lacewings 1 Beneficial insects are helpful to gardeners and farmers. As you know, insects have three or four stages of

More information

JOURNAL OF. RONALD W. HODGES Systematic Entomology Laboratory, USDA, % U.S. National Museum of Natural History, MRC 168, Washington, D.C.

JOURNAL OF. RONALD W. HODGES Systematic Entomology Laboratory, USDA, % U.S. National Museum of Natural History, MRC 168, Washington, D.C. JOURNAL OF THE LEPIDOPTERISTS' Volume 39 1985 SOCIETY Number 3 Journal of the Lepidopterists' Society 39(3), 1985, 151-155 A NEW SPECIES OF TlLDENIA FROM ILLINOIS (GELECHIIDAE) RONALD W. HODGES Systematic

More information

Classification Life History & Ecology Distribution. Major Families Fact File Hot Links

Classification Life History & Ecology Distribution. Major Families Fact File Hot Links EMBIOPTERA Webspinners / Embiids The name Embioptera, derived from the Greek "embio" meaning lively and "ptera" meaning wings refers to the fluttery movement of wings that was observed in the first male

More information

A Key to Identify Insect Orders in Michigan

A Key to Identify Insect Orders in Michigan I A Key to Identify Insect Orders in Michigan by Charlotte Dotson Mary- Jo Germain Amanda McCreless Renee Millard Sara Mitchell This is a dichotomous key developed to help you identify different insect

More information

Contents. Introduction 6. Chapter 1: Biological Control in the Garden 8. Chapter 2: Terms and Taxonomy 20. Chapter 3: Insect Life Stages 24

Contents. Introduction 6. Chapter 1: Biological Control in the Garden 8. Chapter 2: Terms and Taxonomy 20. Chapter 3: Insect Life Stages 24 Contents Introduction 6 Chapter 1: Biological Control in the Garden 8 Chapter 2: erms and axonomy 20 Chapter 3: Insect Life Stages 24 Chapter 4: Dragonflies and Damselflies 36 Chapter 5: Mantids 48 Chapter

More information

Laboratory 7 The Effect of Juvenile Hormone on Metamorphosis of the Fruit Fly (Drosophila melanogaster)

Laboratory 7 The Effect of Juvenile Hormone on Metamorphosis of the Fruit Fly (Drosophila melanogaster) Laboratory 7 The Effect of Juvenile Hormone on Metamorphosis of the Fruit Fly (Drosophila melanogaster) (portions of this manual were borrowed from Prof. Douglas Facey, Department of Biology, Saint Michael's

More information

NOTES ON ELACHISTA WITH DESCRIPTIONS OF NEW SPECIES (MICROLEPIDOPTERA.) species below are E. orestella, E. albicapitella, and E. argentosa.

NOTES ON ELACHISTA WITH DESCRIPTIONS OF NEW SPECIES (MICROLEPIDOPTERA.) species below are E. orestella, E. albicapitella, and E. argentosa. NOTES ON ELACHISTA WITH DESCRIPTIONS OF NEW SPECIES (MICROLEPIDOPTERA.) ANNETTE F. BRAUN. In the present paper, five new species of Elachista are described, four of which were reared from mines. The life

More information

THE LARVA OF ROTHIUM SONORENSIS MOORE & LEGNER. BY IAN MOORE Department of Entomology, University of California, Riverside, California 92521

THE LARVA OF ROTHIUM SONORENSIS MOORE & LEGNER. BY IAN MOORE Department of Entomology, University of California, Riverside, California 92521 THE LARVA OF ROTHIUM SONORENSIS MOORE & LEGNER WITH A KEY TO THE KNOWN LARVAE OF THE GENERA OF THE MARINE BOLITOCHARINI (COLEOPTERA STAPHYLINIDAE) BY IAN MOORE Department of Entomology, University of California,

More information

EGG STAGE. 1. How many eggs does a female Monarch usually lay on one milkweed plant? Given a choice, what age plant, or leaves, does she prefer?

EGG STAGE. 1. How many eggs does a female Monarch usually lay on one milkweed plant? Given a choice, what age plant, or leaves, does she prefer? EGG STAGE 1. How many eggs does a female Monarch usually lay on one milkweed plant? Given a choice, what age plant, or leaves, does she prefer? 2. The egg stage lasts 1-3 days. Look at the egg that you

More information

Types of Legs Scientific Background

Types of Legs Scientific Background Types of Scientific Background Arthropod means jointed foot. All arthropod legs are covered with a hard exoskeleton and are jointed to allow for motion. Over millions of years, arthropods legs have become

More information

Have you ever Met a Morphosis?

Have you ever Met a Morphosis? Have you ever Met a Morphosis? Concealed beneath a garden in a suburban back yard, a miracle is revealed. Experience the journey of a caterpillar as he undergoes nature s little miracle of complete metamorphosis

More information

Bittacidae from Burma, Collected by R. Malaise (Mecoptera)

Bittacidae from Burma, Collected by R. Malaise (Mecoptera) Bittacidae from Burma, Collected by R. Malaise (Mecoptera) By Bo TJEDER Zoologital Institute, S-223 62 Lund, Sweden Abstract TJEDER, Bo. Bittacidae from Burma, collected by R. Malaise (Mecoptera). Ent.

More information

4. List 3 characteristics of all arthropods. a. b. c. 5. Name 3 main arthropod groups.

4. List 3 characteristics of all arthropods. a. b. c. 5. Name 3 main arthropod groups. Arthropod Coloring Worksheet Arthropods (jointed appendages) are a group of invertebrate animals in the Kingdom Animalia. All arthropods have a hard exoskeleton made of chitin, a body divided into segments,

More information

CHAPTER 3. INSECTA (Aquatic Insects)

CHAPTER 3. INSECTA (Aquatic Insects) Guide to Aquatic Invertebrate Families of Mongolia 2009 CHAPTER 3 (Aquatic Insects) Draft June 17, 2009 34 Chapter 3 3 SUBCLASS Aquatic Insects Aquatic insects are a very abundant and diverse group that

More information

Great Science Adventures

Great Science Adventures Great Science Adventures What is complete metamorphosis? Lesson 10 Insect Concepts: Nearly all insects pass through changes in their body form and structure as they grow. The process of developing in stages

More information

MARINE INSECTS OF THE TOKARA ISLAND MARINE CRANEFLIES (DIPTERA, TIPULID.

MARINE INSECTS OF THE TOKARA ISLAND MARINE CRANEFLIES (DIPTERA, TIPULID. Title MARINE INSECTS OF THE TOKARA ISLAND MARINE CRANEFLIES (DIPTERA, TIPULID Author(s) Nobuchi, Akira Citation PUBLICATIONS OF THE SETO MARINE BIO LABORATORY (1955), 4(2-3): 359-362 Issue Date 1955-05-30

More information

The Armyworm in New Brunswick

The Armyworm in New Brunswick The Armyworm in New Brunswick Mythimna unipuncta (Haworth) Synonym: Pseudaletia unipuncta (Haworth) ISBN 978-1-4605-1679-9 Family: Noctuidae - Owlet moths and underwings Importance The armyworm attacks

More information

What is your minibeast?

What is your minibeast? 3. Minibeasts What is your minibeast? W9 Describe your minibeast by filling in the table below. no legs six legs more than six legs no wings two wings four wings shell no shell x x x Draw or name your

More information

10/24/2016 B Y E M I LY T I L L E Y

10/24/2016 B Y E M I LY T I L L E Y ALL ABOUT ANIMALS B Y E M I LY T I L L E Y 1 M A M M A LS: H A V E A B A C K B O N E, A R E W A R M - B L O O D E D, H A V E H A I R O N T H E I R B O D I E S, A N D P R O D U C E M I L K T O F E E D T

More information

D. F. HARDWICK. Entomology Research Institute, Canada Dept. Agric., Ottawa, Ontario, Canada

D. F. HARDWICK. Entomology Research Institute, Canada Dept. Agric., Ottawa, Ontario, Canada 22 HARDWICK: Noctuid life history Vol. 21, no. 1 THE LIFE HISTORY OF SCHINIA FELICIT AT A (NOCTUIDAE) D. F. HARDWICK Entomology Research Institute, Canada Dept. Agric., Ottawa, Ontario, Canada Schinia

More information

Class Insecta: Order Hemiptera True Bugs

Class Insecta: Order Hemiptera True Bugs Features Class Insecta: Order Hemiptera True Bugs Sucking mouthparts, simple metamorphosis Forewings of most species divided into leathery and membranous halves ( Hemi =half; -ptera =wing) Wings held flat

More information

Morphologic study of dog flea species by scanning electron microscopy

Morphologic study of dog flea species by scanning electron microscopy Scientia Parasitologica, 2006, 3-4, 77-81 Morphologic study of dog flea species by scanning electron microscopy NAGY Ágnes 1, L. BARBU TUDORAN 2, V. COZMA 1 1 University of Agricultural Sciences and Veterinary

More information

Quick Guide to Common Potato Pests & Beneficial Insects

Quick Guide to Common Potato Pests & Beneficial Insects Quick Guide to Common Potato Pests & Beneficial Insects 1 Leaf Feeding Pests Colorado Potato Beetle feeding damage Jeff Hahn Typical Caterpillar feeding damage Adult Flea Beetle feeding damage http://www.missouribotanicalgarden.org/

More information

Insects Associated with Alfalfa Seed Production

Insects Associated with Alfalfa Seed Production Agdex 121/620-1 Insects Associated with Alfalfa Seed Production This field guide was prepared to enable growers of seed alfalfa to quickly identify their pest and beneficial insects. The important distinguishing

More information

Phylum Arthropoda. Chapter 13 Part 2 of 3

Phylum Arthropoda. Chapter 13 Part 2 of 3 Phylum Arthropoda Chapter 13 Part 2 of 3 Phylum Arthropoda: Jointed feet General Characteristics: Exoskeleton made of chitin present and must be molted when out grown, segmented body, Jointed appendages

More information

Butterfly House Informational Booklet

Butterfly House Informational Booklet Southwest Butterfly House Informational Booklet AT Monarch Wings feature an easily recognizable black, orange and white pattern. Adults make massive migrations from Aug-Oct, flying 1000 s of miles south

More information

How Animals Live. Chapter 2 Review

How Animals Live. Chapter 2 Review How Animals Live Chapter 2 Review What do animals need to survive? Water Food Air (oxygen) Shelter Butterfly life cycle During the larva stage, the butterfly is called a caterpillar. During the pupa stage,

More information

Brown chrysalis cocoon identification

Brown chrysalis cocoon identification Brown chrysalis cocoon identification A photographic journey raising tiger swallowtails through the entire eastern tiger swallowtail butterfly life cycle egg to butterfly + home raising tips. Butterflies

More information

Emerging Adults BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.F The student describes how organisms change as they grow and mature.

Emerging Adults BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.F The student describes how organisms change as they grow and mature. activity 27 Emerging Adults BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade K Quarter 3 Activity 27 SC.F.1.1.3 The student describes how organisms change as they grow and mature. SC.H.1.1.1 The

More information

So Many Insects! Part 1 Worksheet

So Many Insects! Part 1 Worksheet Name Date So Many Insects! Part 1 Worksheet 1. Did you know that scientists predict there are anywhere from 6 to 10 million different species of insects around the world? Who knew there were so many insects?

More information

What do these strange words mean?

What do these strange words mean? Bugs What do I need to start? How to draw them Drawing bugs takes practice, so don t expect to draw a perfect picture the first time. Use a notebook and write the date each time you draw to see how your

More information

Females lay between 2 and 15 eggs 30 days after mating. These hatch after approximately 2 months. Deserts and scrublands in Southern Mexico

Females lay between 2 and 15 eggs 30 days after mating. These hatch after approximately 2 months. Deserts and scrublands in Southern Mexico Young snakes eat slugs, earthworms and crickets. Adults eat mainly mice but also occasionally small lizards, birds and their eggs, frogs. Up to 12 years Deserts and scrublands in Southern Mexico Females

More information

SPOTTED TUSSOCK MOTH or YELLOW WOOLLY BEAR. Insecta Lepidoptera Arctiidae Lophocampa maculata

SPOTTED TUSSOCK MOTH or YELLOW WOOLLY BEAR. Insecta Lepidoptera Arctiidae Lophocampa maculata SPOTTED TUSSOCK MOTH or YELLOW WOOLLY BEAR Insecta Lepidoptera Arctiidae Lophocampa maculata Alberta, NW Territories, from the maritime provinces west in B.C. and south into Mts of N Carolina and west

More information

the NARCISSUS BULB FLY

the NARCISSUS BULB FLY , the NARCISSUS BULB FLY. ' 1' id its damage in home gardens LEAFLET NO. 444 Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE paiedeedif poi... Low Tilt LAMM U.S. DI AITAIIPIT OF MICULTURE

More information

Plestiodon (=Eumeces) fasciatus Family Scincidae

Plestiodon (=Eumeces) fasciatus Family Scincidae Plestiodon (=Eumeces) fasciatus Family Scincidae Living specimens: - Five distinct longitudinal light lines on dorsum - Juveniles have bright blue tail - Head of male reddish during breeding season - Old

More information

Survey BULLETIN ILLINOIS. ^tura.1 History. The Mecoptera, or Scorpionflies, AUG of Illinois VOLUME 31, ARTICLE 7 AUGUST, 1975 IL I

Survey BULLETIN ILLINOIS. ^tura.1 History. The Mecoptera, or Scorpionflies, AUG of Illinois VOLUME 31, ARTICLE 7 AUGUST, 1975 IL I IL I ^tura.1 History I BULLETIN ILLINOIS Survey The Mecoptera, or Scorpionflies, of Illinois Id W. Webb lan D. Penny C. Marlin NATURAL HISTORY MHll AUG 2 7 1975 UBRARY >F ILLINOIS ITMENT OF REGISTRATION

More information

NEW SCENOPINIDAE (Diptera) FROM THE PACIFIC AREA 1

NEW SCENOPINIDAE (Diptera) FROM THE PACIFIC AREA 1 Pacific Insects 12 (1) : 39-48 20 May 1970 NEW SCENOPINIDAE (Diptera) FROM THE PACIFIC AREA 1 By Lewis P. Kelsey 2 I was privileged to examine material, housed in the collection of the Bishop Museum 3,

More information

Noivitates AMERICAN MUSEUM. (Hemiptera, Leptopodomorpha), PUBLISHED BY THE. the Sister Group of Leptosalda chiapensis OF NATURAL HISTORY

Noivitates AMERICAN MUSEUM. (Hemiptera, Leptopodomorpha), PUBLISHED BY THE. the Sister Group of Leptosalda chiapensis OF NATURAL HISTORY AMERICAN MUSEUM Noivitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK, N.Y. 10024 U.S.A. NUMBER 2698 JULY 11, 1980 RANDALL T. SCHUH AND JOHN T. POLHEMUS

More information

All You Ever Wanted to Know About Hornets and Yellowjackets

All You Ever Wanted to Know About Hornets and Yellowjackets Ages: 8 & up All You Ever Wanted to Know About Hornets and Yellowjackets Contributor: Carolyn Klass, Dept. of Entomology, Cornell University Main idea: The yellowjackets and hornets are social insects

More information

Identifying Plant and Animal Adaptations Answer Key

Identifying Plant and Animal Adaptations Answer Key Identifying Plant and Animal Adaptations Answer Key Instructions: Review the provided photos on the ipad. Try to identify as many adaptations for each plant or animal and determine how each adaptation

More information

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years!

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years! Although Most Red-Eared Sliders Can Live Up to 45-60 Years, Most WILL NOT Survive Two Years! Chris Johnson 2014 2 Red Eared Slider Secrets Although Most Red-Eared Sliders Can Live Up to 45-60 Years, Most

More information

Animal Biodiversity. Teacher Resources - High School (Cycle 1) Biology Redpath Museum

Animal Biodiversity. Teacher Resources - High School (Cycle 1) Biology Redpath Museum Animal Biodiversity Teacher Resources - High School (Cycle 1) Biology Redpath Museum Ecology What defines a habitat? 1. Geographic Location The location of a habitat is determined by its latitude and its

More information

Biodiversity Trail Birds and Insects

Biodiversity Trail Birds and Insects Biodiversity Trail Birds and Insects Self guided program Birds & Insects exhibition Student Activities Illustration: Sara Estrada-Arevalo, Australian Museum. Produced by Learning Services, Australian Museum,

More information

AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS

AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Riek, E. F., 1964. Merostomoidea (Arthropoda, Trilobitomorpha) from the Australian Middle Triassic. Records of the Australian Museum 26(13): 327 332, plate 35.

More information

DIPTERA - CECIDOMYIIDAE, TRYPETIDAE, TACHINIDAE, AGROMYZIIDAE. Head is often hemispherical and attached to the thorax by a slender neck.

DIPTERA - CECIDOMYIIDAE, TRYPETIDAE, TACHINIDAE, AGROMYZIIDAE. Head is often hemispherical and attached to the thorax by a slender neck. DIPTERA DIPTERA - CECIDOMYIIDAE, TRYPETIDAE, TACHINIDAE, AGROMYZIIDAE. Etymology Common names : Di-two; ptera-wing : True flies, Mosquitoes, Gnats, Midges, Characters They are small to medium sized, soft

More information

THF EGG. OUTLINE LIFE-HISTORY OF THE CHRY$OMELID GAS TROIDEA CYANEA MELSHEIMER.

THF EGG. OUTLINE LIFE-HISTORY OF THE CHRY$OMELID GAS TROIDEA CYANEA MELSHEIMER. 6 PSYCHE [February OUTLINE LIFE-HISTORY OF THE CHRY$OMELID GAS TROIDEA CYANEA MELSHEIMER. BY A. A. GIR_&ULT, WASHINGTON, D. C. DURING late June, 1907, adults of this species were observed feeding on the

More information

MARINE INSECTS OF THE TOKARA ISLAND MARINE MIDGES (DIPTERA, CHIRONOMIDA. Author(s) Tokunaga, Masaaki; Komyo, Etsuko.

MARINE INSECTS OF THE TOKARA ISLAND MARINE MIDGES (DIPTERA, CHIRONOMIDA. Author(s) Tokunaga, Masaaki; Komyo, Etsuko. Title MARINE INSECTS OF THE TOKARA ISLAND MARINE MIDGES (DIPTERA, CHIRONOMIDA Author(s) Tokunaga, Masaaki; Komyo, Etsuko Citation PUBLICATIONS OF THE SETO MARINE BIO LABORATORY (1955), 4(2-3): 363-366

More information

Texas Assessment of Knowledge and Skills

Texas Assessment of Knowledge and Skills READING Texas Assessment of Knowledge and Skills 3 Form C Practice and Mastery Name To the Student TAKS Practice and Mastery in Reading is a review program for the TAKS Reading test. This book has five

More information

African Killer Bee. Bald Faced Hornet. Bumble Bee

African Killer Bee. Bald Faced Hornet. Bumble Bee African Killer Bee Look the same as the European honeybee, though unnoticeable smaller in size, African honeybees are very aggressive, territorial, and may nest in awkward places. They defend their hive

More information

A new species of Antinia PASCOE from Burma (Coleoptera: Curculionidae: Entiminae)

A new species of Antinia PASCOE from Burma (Coleoptera: Curculionidae: Entiminae) Genus Vol. 14 (3): 413-418 Wroc³aw, 15 X 2003 A new species of Antinia PASCOE from Burma (Coleoptera: Curculionidae: Entiminae) JAROS AW KANIA Zoological Institute, University of Wroc³aw, Sienkiewicza

More information

A NEW AUSTROSQUILLA (STOMATOPODA) FROM THE

A NEW AUSTROSQUILLA (STOMATOPODA) FROM THE A NEW AUSTROSQUILLA (STOMATOPODA) FROM THE MARQUESAS ISLANDS BY ALAIN MICHEL Centre O.R.S.T.O.M., Noumea, New Caledonia and RAYMOND B. MANNING Smithsonian Institution, Washington, U.S.A. The At s,tstrosqzlilla

More information

Forest and Timber Insects in New Zealand No. 44. Large Cicadas. Amphipsalta cingulata (Fabricius) Amphipsalta strepitans (Kirkaldy)

Forest and Timber Insects in New Zealand No. 44. Large Cicadas. Amphipsalta cingulata (Fabricius) Amphipsalta strepitans (Kirkaldy) Forest and Timber Insects in New Zealand No. 44 Large Cicadas Insect: Amphipsalta zelandica (Boisduval) Amphipsalta cingulata (Fabricius) Amphipsalta strepitans (Kirkaldy) (Hemiptera: Cicadidae) Based

More information

A NEW SALTICID SPIDER FROM VICTORIA By R. A. Dunn

A NEW SALTICID SPIDER FROM VICTORIA By R. A. Dunn Dunn, R. A. 1947. A new salticid spider from Victoria. Memoirs of the National Museum of Victoria 15: 82 85. All text not included in the original document is highlighted in red. Mem. Nat. Mus. Vict.,

More information

An Interactive PowerPoint presentation about the life cycle of a mealworm!

An Interactive PowerPoint presentation about the life cycle of a mealworm! An Interactive PowerPoint presentation about the life cycle of a mealworm! What is a Mealworm? Life Cycle of a Mealworm Diagram Life Cycle Information The Egg The Larva (the mealworm) The Pupa The Adult

More information

Insect Parasites of Sirex (This leaflet should be read in conjunction with No. 20 Sirex and No. 48 Nematode parasite of Sirex)

Insect Parasites of Sirex (This leaflet should be read in conjunction with No. 20 Sirex and No. 48 Nematode parasite of Sirex) Forest and Timber Insects in New Zealand No. 47 Insect Parasites of Sirex (This leaflet should be read in conjunction with No. 20 Sirex and No. 48 Nematode parasite of Sirex) Based on M.J. Nuttall (1980)

More information

FFA CONTEST INSECT DESCRIPTIONS

FFA CONTEST INSECT DESCRIPTIONS FFA CONTEST INSECT DESCRIPTIONS NOTE: Notice that the words "usually, typically, often", etc. are used in many of the descriptions. That means with any insect (or group of insects), there will be specimens

More information

insects Parasitoids versus parasites: What s the difference?

insects Parasitoids versus parasites: What s the difference? Queensland the Smart State insects Parasitoids: Natural enemies of helicoverpa Introduction Helicoverpa caterpillars (often called heliothis) are serious pests of many crops in Australia. A range of parasitoid

More information

TWO NEW PINE-FEEDING SPECIES OF COLEOTECHNITES ( GELECHIIDAE )

TWO NEW PINE-FEEDING SPECIES OF COLEOTECHNITES ( GELECHIIDAE ) Journal of the Lepidopterists' Society 32(2), 1978, 118-122 TWO NEW PINE-FEEDING SPECIES OF COLEOTECHNITES ( GELECHIIDAE ) RONALD W. HODGES l AND ROBERT E. STEVENS2 ABSTRACT. Two new species of moths,

More information

New continental record and new species of Austromerope (Mecoptera, Meropeidae) from Brazil

New continental record and new species of Austromerope (Mecoptera, Meropeidae) from Brazil ZooKeys 269: 51 65 (2013) doi: 10.3897/zookeys.269.4255 www.zookeys.org New continental record and new species of Austromerope... 51 Research article A peer-reviewed open-access journal Launched to accelerate

More information

Chapter 2 The Insects. McShaffrey Draft 1 Last printed 1/12/2007 9:14 PM

Chapter 2 The Insects. McShaffrey Draft 1 Last printed 1/12/2007 9:14 PM Chapter 2 The Insects McShaffrey Draft 1 Last printed 1/12/2007 9:14 PM Chapter 2 The Insects Page 2 of 20 What is an insect? Insects, despite their diversity of forms, are considered to be a single group

More information

Insect Life Cycle. Visit for thousands of books and materials.

Insect Life Cycle.  Visit  for thousands of books and materials. Insect Life Cycle A Reading A Z Level L Leveled Book Word Count: 607 Written by Chuck Garofano Visit www.readinga-z.com for thousands of books and materials. www.readinga-z.com Photo Credits: Front cover,

More information

Engaging Parents in STEAM through the Monarch butterfly. Jacquelyn Ledezma Maricela Martinez El Valor

Engaging Parents in STEAM through the Monarch butterfly. Jacquelyn Ledezma Maricela Martinez El Valor Engaging Parents in STEAM through the Monarch butterfly Jacquelyn Ledezma Maricela Martinez El Valor Outcomes Learn about STEAM Learn about the Monarch Butterfly Learn about parental engagement activities

More information

Effects of Natural Selection

Effects of Natural Selection Effects of Natural Selection Lesson Plan for Secondary Science Teachers Created by Christine Taylor And Mark Urban University of Connecticut Department of Ecology and Evolutionary Biology Funded by the

More information

( ) w w w. l o y a l t y l a w n c a r e. c o m

( ) w w w. l o y a l t y l a w n c a r e. c o m w w w. l o y a l t y l a w n c a r e. c o m A n t s Ants SYMPTOMS: Most ants do not pose a problem as pests. The Carpenter ant however, is a different story. Carpenter ants may move from decaying portions

More information

Biology Slide 1 of 50

Biology Slide 1 of 50 Biology 1 of 50 2 of 50 What Is a Reptile? What are the characteristics of reptiles? 3 of 50 What Is a Reptile? What Is a Reptile? A reptile is a vertebrate that has dry, scaly skin, lungs, and terrestrial

More information

Mosquito Reference Document

Mosquito Reference Document INTRODUCTION Insects (class Insecta) are highly diverse and one of the most successful groups of animals. They live in almost every region of the world: at high elevation, in freshwater, in oceans, and

More information

ROACHES (แมลงสาบ) # Active and nocturnal insects. # Produce a characteristic offensive adour (scent gland) # Discharge feces & vomit along the way

ROACHES (แมลงสาบ) # Active and nocturnal insects. # Produce a characteristic offensive adour (scent gland) # Discharge feces & vomit along the way ROACHES (แมลงสาบ) # Active and nocturnal insects # Produce a characteristic offensive adour (scent gland) # Discharge feces & vomit along the way # Potential mechanical vectors of pathogens 1 Class Insecta

More information

A Science 21 Reader. A Science 21 Reader. Written by Dr. Helen Pashley With photographs by Lori Adams

A Science 21 Reader. A Science 21 Reader. Written by Dr. Helen Pashley With photographs by Lori Adams The Third Grade Book of Questions and Answers about Butterflies A Science 21 Reader Written by Dr. Helen Pashley With photographs by Lori Adams For Putnam/Northern Westchester BOCES 2007 The Third Grade

More information

Unit 19.3: Amphibians

Unit 19.3: Amphibians Unit 19.3: Amphibians Lesson Objectives Describe structure and function in amphibians. Outline the reproduction and development of amphibians. Identify the three living amphibian orders. Describe how amphibians

More information

An Example of Classification

An Example of Classification Classification of Insects - Insects Orders (Older Students - 7th and up) Kingdom Animals Phylum Arthropoda Class Insecta Orders: Looking at 9 Orders of Insects: 1) Order Coleoptera Family Beetles 2) Order

More information

Reprinted from: CRUSTACEANA, Vol. 32, Part 2, 1977 LEIDEN E. J. BRILL

Reprinted from: CRUSTACEANA, Vol. 32, Part 2, 1977 LEIDEN E. J. BRILL Reprinted from: CRUSTACEANA, Vol. 32, Part 2, 1977 LEIDEN E. J. BRILL NOTES AND NEWS 207 ALPHE0PS1S SHEARMII (ALCOCK & ANDERSON): A NEW COMBINATION WITH A REDESCRIPTION OF THE HOLOTYPE (DECAPODA, ALPHEIDAE)

More information

ENY 4161/6166 Insect Classification. Florida Hemiptera

ENY 4161/6166 Insect Classification. Florida Hemiptera ENY 4161/6166 Insect Classification Florida Hemiptera (Recognizing suborders; with diagnostic keys to some families of the suborders Auchenorrhyncha and Sternorrhyncha) - Note: identification of families

More information

A NEW GENUS OF PREDACEOUS MIDGES OF THE TRIBE SPHAEROMIINI FROM THAILAND (DIPTERA: CERATOPOGONIDAE) 1

A NEW GENUS OF PREDACEOUS MIDGES OF THE TRIBE SPHAEROMIINI FROM THAILAND (DIPTERA: CERATOPOGONIDAE) 1 Pacific Insects Vol. 23, no. 1-2: 201-206 23 June 1981 A NEW GENUS OF PREDACEOUS MIDGES OF THE TRIBE SPHAEROMIINI FROM THAILAND (DIPTERA: CERATOPOGONIDAE) 1 By William L. Grogan, Jr 2 and Willis W. Wirth

More information

TOPIC: INSECTS CLASS: SENIOR TWO, TERM 1 Aim: To study about the common insects LEARNING OUTCOMES

TOPIC: INSECTS CLASS: SENIOR TWO, TERM 1 Aim: To study about the common insects LEARNING OUTCOMES TOPIC: INSECTS CLASS: SENIOR TWO, TERM 1 Aim: To study about the common insects LEARNING OUTCOMES In this unit, you will learn about, the general characteristics of insects main characteristics common

More information

Bugs, Brook Trout, and Water Quality: How Are They Connected?

Bugs, Brook Trout, and Water Quality: How Are They Connected? Watershed Connections Lesson 5 Bugs, Brook Trout, and Water Quality: How Are They Connected? What is a Macroinvertebrate? Large enough to be seen with the unaided eye. Without a backbone: In = no vertebrate

More information

Periplaneta americana (American Cockroach)

Periplaneta americana (American Cockroach) Periplaneta americana (American Cockroach) Order: Blattodea (Cockroaches) Class: Insecta (Insects) Phylum: Arthropoda (Arthropods) Fig. 1. American cockroach, Periplaneta americana. [http://nathistoc.bio.uci.edu/orthopt/periplaneta.htm,

More information

Activity 4 Building Bird Nests

Activity 4 Building Bird Nests Activity 4 Building Bird Nests Created By Point Reyes Bird Observatory Education Program Building Bird Nests Activity 4 Objective: To teach students about songbird nests, the different types, placement

More information

Most amphibians begin life as aquatic organisms and then live on land as adults.

Most amphibians begin life as aquatic organisms and then live on land as adults. Section 3: Most amphibians begin life as aquatic organisms and then live on land as adults. K What I Know W What I Want to Find Out L What I Learned Essential Questions What were the kinds of adaptations

More information

Teacher Workbooks. Language Arts Series Alphabet Skills Insects Theme, Vol. 1

Teacher Workbooks. Language Arts Series Alphabet Skills Insects Theme, Vol. 1 Teacher Workbooks Language Arts Series Alphabet Skills Insects Theme, Vol. 1 Copyright 2003 Teachnology Publishing Company A Division of Teachnology, Inc. For additional information, visit us at www.teach-nology.com/publishing

More information

Screening Aid. Avocado Seed Moth Stenoma catenifer Walsingham LEPIDOPTERA. Hanna R. Royals 1, Todd M. Gilligan 1 and Steven C.

Screening Aid. Avocado Seed Moth Stenoma catenifer Walsingham LEPIDOPTERA. Hanna R. Royals 1, Todd M. Gilligan 1 and Steven C. Screening Aid Hanna R. Royals 1, Todd M. Gilligan 1 and Steven C. Passoa 2 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research

More information

Forest Characters T E AC H ER PAG E. Directions: Print out the cards double-sided, so that the picture is on one side and the text on the other.

Forest Characters T E AC H ER PAG E. Directions: Print out the cards double-sided, so that the picture is on one side and the text on the other. T E AC H ER PAG E Directions: Print out the cards double-sided, so that the picture is on one side and the text on the other. S.T. The Short-tailed Shrew Short-tailed shrews live throughout the eastern

More information

ì<(sk$m)=bdibci< +^-Ä-U-Ä-U

ì<(sk$m)=bdibci< +^-Ä-U-Ä-U Genre Comprehension Skill Text Features Science Content Nonfiction Sequence Labels Diagram Glossary Animals Scott Foresman Science 3.2 ì

More information

CHAPTER 7. HEMIPTERA (Aquatic & Semiaquatic True Bugs) Draft June 17, Guide to Aquatic Invertebrate Families of Mongolia 2009

CHAPTER 7. HEMIPTERA (Aquatic & Semiaquatic True Bugs) Draft June 17, Guide to Aquatic Invertebrate Families of Mongolia 2009 CHAPTER 7 (Aquatic & Semiaquatic True Bugs) Draft June 17, 2009 Chapter 7 87 7 ORDER Aquatic & Semiaquatic True Bugs The majority of Hemiptera are not associated with aquatic habitats. Aquatic hemipterans

More information

Doug Scull s SCIENCE & NATURE

Doug Scull s SCIENCE & NATURE Doug Scull s SCIENCE & NATURE THE ARACHNIDS The Arachnids are a large group of Arthropods, along with the Insects, Centipedes, Millipedes and Crustaceans. Like all Arthropods, Arachnids have a hard exoskeleton,

More information

Grasshopper Dissection

Grasshopper Dissection Grasshopper Dissection External Observation Locate the head, thorax, and abdomen. Observe the head. Locate the two compound eyes and the three simple eyes. 1. Why do you think grasshoppers have two types

More information

Nematoda. Round worms Feeding and Parasitism

Nematoda. Round worms Feeding and Parasitism Nematoda Round worms Feeding and Parasitism Nematoda Have pseudocoelom Live in many environments Parasitic Important decomposers Covered with cuticle Trichinella spiralis see fig 18.8B Nematode Diets and

More information

NOTE XXXVIII. Three new species of the genus Helota DESCRIBED BY. C. Ritsema+Cz. is very. friend René Oberthür who received. Biet.

NOTE XXXVIII. Three new species of the genus Helota DESCRIBED BY. C. Ritsema+Cz. is very. friend René Oberthür who received. Biet. Subshining; HELOTA MARIAE. 249 NOTE XXXVIII. Three new species of the genus Helota DESCRIBED BY C. Ritsema+Cz. The first of these species is very interesting as it belongs to the same section as the recently

More information

The platypus lives in streams, ponds, and rivers in Australia. It closes its eyes under water and uses its bill to dig in the mud to find its food.

The platypus lives in streams, ponds, and rivers in Australia. It closes its eyes under water and uses its bill to dig in the mud to find its food. The platypus lives in streams, ponds, and rivers in Australia. It closes its eyes under water and uses its bill to dig in the mud to find its food. The hyena, found in Africa and parts of Asia, weighs

More information