Heteroresistance to Meropenem in Carbapenem-Susceptible Acinetobacter baumannii

Similar documents
Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Multi-drug resistant Acinetobacter (MDRA) Surveillance and Control. Alison Holmes

Georgios Meletis, Efstathios Oustas, Christina Botziori, Eleni Kakasi, Asimoula Koteli

DR. MICHAEL A. BORG DIRECTOR OF INFECTION PREVENTION & CONTROL MATER DEI HOSPITAL - MALTA

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

Tel: Fax:

Appropriate antimicrobial therapy in HAP: What does this mean?

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

classification of Acinetobacter baumannii clinical isolates to international clones

Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City

Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU

Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China

Received 10 November 2006/Returned for modification 9 January 2007/Accepted 17 July 2007

Analysis of drug-resistant gene detection of blaoxa-like genes from Acinetobacter baumannii

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

Testing for antimicrobial activity against multi-resistant Acinetobacter baumannii. For. Forbo Flooring B.V. Final Report. Work Carried Out By

MDR Acinetobacter baumannii. Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta

Witchcraft for Gram negatives

Detection of Methicillin Resistant Strains of Staphylococcus aureus Using Phenotypic and Genotypic Methods in a Tertiary Care Hospital

Acinetobacter Resistance in Turkish Tertiary Care Hospitals. Zeliha KOCAK TUFAN, MD, Assoc. Prof.

against Clinical Isolates of Gram-Positive Bacteria

Overnight identification of imipenem-resistant Acinetobacter baumannii carriage in hospitalized patients

Comparative Assessment of b-lactamases Produced by Multidrug Resistant Bacteria

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

Diversity in Acinetobacter baumannii isolates from paediatric cancer patients in Egypt

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

International Journal of Health Sciences and Research ISSN:

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Mechanism of antibiotic resistance

Intrinsic, implied and default resistance

Nosocomial Infections: What Are the Unmet Needs

RESEARCH NOTE. Molecular epidemiology of carbapenemresistant Acinetobacter baumannii in New Caledonia

PrevalenceofAntimicrobialResistanceamongGramNegativeIsolatesinanAdultIntensiveCareUnitataTertiaryCareCenterinSaudiArabia

Clinical and microbiological characterization of carbapenem-resistant Acinetobacter baumannii bloodstream infections

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

Anaerobe bakterier og resistens. Ulrik Stenz Justesen Klinisk Mikrobiologisk Afdeling Odense Universitetshospital Odense, Denmark

Characterization of the Multidrug-Resistant Acinetobacter

ORIGINAL ARTICLE /j x. Mallorca, Spain

Educating Clinical and Public Health Laboratories About Antimicrobial Resistance Challenges

Prevalence of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in an Italian hospital

In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates

Fighting MDR Pathogens in the ICU

European Committee on Antimicrobial Susceptibility Testing

Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Queen s Medical Centre, Nottingham, UK

Antimicrobial Cycling. Donald E Low University of Toronto

Mono- versus Bitherapy for Management of HAP/VAP in the ICU

Concise Antibiogram Toolkit Background

2 0 hr. 2 hr. 4 hr. 8 hr. 10 hr. 12 hr.14 hr. 16 hr. 18 hr. 20 hr. 22 hr. 24 hr. (time)

ETX2514: Responding to the global threat of nosocomial multidrug and extremely drug resistant Gram-negative pathogens

THE NAC CHALLENGE PANEL OF ISOLATES FOR VERIFICATION OF ANTIBIOTIC SUSCEPTIBILITY TESTING METHODS

Int.J.Curr.Microbiol.App.Sci (2018) 7(8):

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002

Detecting / Reporting Resistance in Nonfastidious GNR Part #2. Janet A. Hindler, MCLS MT(ASCP)

APPENDIX III - DOUBLE DISK TEST FOR ESBL

Available online at ISSN No:

Identification of Multidrug-Resistant Genes in Acinetobacter baumannii in Sulaimani City-Kurdistan Regional Government of Iraq

2015 Antimicrobial Susceptibility Report

Understanding the Hospital Antibiogram

Antimicrobial Resistance Strains

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

Acinetobacter baumannii

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

ETX2514SUL (sulbactam/etx2514) for the treatment of Acinetobacter baumannii infections

New Opportunities for Microbiology Labs to Add Value to Antimicrobial Stewardship Programs

A review on multidrug - resistant Acinetobacter baumannii

Acinetobacter Outbreaks: Experience from a Neurosurgery Critical Care Unit. Jumoke Sule Consultant Microbiologist 19 May 2010

Failure of Cloxacillin in a Patient with BORSA Endocarditis ACCEPTED

Doripenem: A new carbapenem antibiotic a review of comparative antimicrobial and bactericidal activities

Comparison of Antibiotic Resistance and Sensitivity with Reference to Ages of Elders

Acinetobacter sp. isolates from emergency departments in two hospitals of South Korea

European Committee on Antimicrobial Susceptibility Testing

OPTIMIZATION OF PK/PD OF ANTIBIOTICS FOR RESISTANT GRAM-NEGATIVE ORGANISMS

EARS Net Report, Quarter

Detection of Inducible AmpC β-lactamase-producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India

Antimicrobial Resistance Surveillance from sentinel public hospitals, South Africa, 2013

Background and Plan of Analysis

GENERAL NOTES: 2016 site of infection type of organism location of the patient

Challenges Emerging resistance Fewer new drugs MRSA and other resistant pathogens are major problems

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

Microbiology. Multi-Drug-Resistant bacteria / MDR: laboratory diagnostics and prevention. Antimicrobial resistance / MDR:

G. Valenza, S. Müller, C. Schmitt, D. Turnwald, T-T. Lam, M. Frosch, M. Abele-Horn, Y. Pfeifer

ANTIMICROBIAL RESISTANCE SURVEILLANCE FROM SENTINEL PUBLIC HOSPITALS, SOUTH AFRICA, 2014

Other β-lactamase Inhibitor (BLI) Combinations: Focus on VNRX-5133, WCK 5222 and ETX2514SUL

A hospital based surveillance of metallo beta lactamase producing gram negative bacteria in Nepal by imipenem EDTA disk method

Decrease of vancomycin resistance in Enterococcus faecium from bloodstream infections in

Chemotherapy of bacterial infections. Part II. Mechanisms of Resistance. evolution of antimicrobial resistance

Performance Information. Vet use only

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

ESCMID Online Lecture Library. by author

Summary of unmet need guidance and statistical challenges

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

EDUCATIONAL COMMENTARY CURRENT METHODS IN ANTIMICROBIAL SUSCEPTIBILITY TESTING

Available online at

DRUG-RESISTANT ACINETOBACTER BAUMANNII A GROWING SUPERBUG POPULATION. Cara Wilder Ph.D. Technical Writer March 13 th 2014

Transcription:

JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 2009, p. 4055 4059 Vol. 47, No. 12 0095-1137/09/$12.00 doi:10.1128/jcm.00959-09 Copyright 2009, American Society for Microbiology. All Rights Reserved. Heteroresistance to Meropenem in Carbapenem-Susceptible Acinetobacter baumannii Alexandros Ikonomidis, 1 * Evangelia Neou, 1 Vassiliki Gogou, 1 Georgia Vrioni, 2 Athanassios Tsakris, 2 and Spyros Pournaras 1 University of Thessaly, Mezourlo, Larissa, Greece, 1 and University of Athens, Athens 11527, Greece 2 Received 13 May 2009/Returned for modification 29 June 2009/Accepted 26 September 2009 The characteristics of carbapenem heteroresistance were studied in 14 apparently carbapenem-susceptible Acinetobacter baumannii isolates. The MICs for carbapenems were determined, and the isolates were genotyped by pulsed-field gel electrophoresis (PFGE) and sequence typing (ST). Population analysis, testing of the stability of the heteroresistant subpopulations, and time-killing assays were performed. The agar dilution MICs of both imipenem and meropenem for the native isolates ranged from 0.25 to 4 mg/liter. The isolates belonged to nine PFGE types and exhibited seven ST allelic profiles. Population analysis revealed subpopulations that grew in the presence of imipenem at concentrations of up to 8 mg/liter and meropenem at concentrations of up to 32 mg/liter. The meropenem-heteroresistant subpopulations of 11 isolates exhibited stable resistance with MICs that ranged from 16 to >32 mg/liter; their PFGE profiles were identical to those of the native isolates. Time-kill assays with meropenem revealed less pronounced killing for 10 isolates. These findings indicate that meropenem pressure can produce meropenem-heteroresistant subpopulations that might subsequently select for highly resistant strains. Acinetobacter baumannii is an opportunistic pathogen associated with severe hospital infections (1, 16), which often need the use of carbapenems as the treatment of last resort. However, reduced susceptibility or resistance to carbapenems is increasingly being observed among A. baumannii clinical isolates (2, 5, 25). In a preliminary work, we reported on the growth of distinct colonies within the inhibition halo around carbapenem disks or Etest strips and assessed these colonies as having the phenotypic manifestation of carbapenem heteroresistance (17). Likewise, a recent study (12) has described colistin-heteroresistant subpopulations among apparently colistin-susceptible A. baumannii clinical isolates, implying an intrinsic potential of the species to overcome drug pressure. These observations suggest that the use of carbapenems or colistin to treat severe multidrug-resistant A. baumannii infections may lead to the development of resistance. The present study aimed to evaluate in vitro the incidence of carbapenem heteroresistance, to characterize the traits of the heteroresistant subpopulations, and to assess the efficacies of carbapenems against heteroresistant A. baumannii isolates. The study included carbapenem-susceptible A. baumannii clinical isolates that cause infections; such infections are commonly treated with carbapenems, although it is recognized that the heterogeneity of resistance might affect the outcome. The study also determined how the heterogeneity of resistance might affect the treatment outcome. * Corresponding author. Mailing address: University Hospital of Larissa, Mezourlo Area 41110, Larissa, Greece. Phone: 0030 2410 682537. Fax: 0030 2410 681570. E-mail: ado@med.uth.gr. Published ahead of print on 14 October 2009. MATERIALS AND METHODS Study population and susceptibility testing. All single A. baumannii clinical isolates that were recovered in the University Hospital of Larissa (Larissa, Greece), a tertiary-care hospital with 700 beds, over a 6-month period from September 2007 to March 2008 were recorded. The study included all isolates that were initially identified as carbapenem susceptible by use of the Vitek 2 system (biomérieux, Marcy l Étoile, France) to investigate their putative heteroresistant phenotype. Imipenem and meropenem MICs were also tested by agar dilution (4). The susceptibilities of the native isolates and their meropenemheteroresistant subpopulations to other -lactams, aminoglycosides, quinolones, and colistin were determined by disk diffusion. Pseudomonas aeruginosa ATCC 27853 was used as a control. PFGE and ST. The clinical isolates as well as their meropenem-heteroresistant subpopulations were tested by pulsed-field gel electrophoresis (PFGE) of ApaIdigested genomic DNA. The banding patterns were compared by using the criteria proposed by Tenover et al. (23). Sequence typing (ST) was performed by use of a previously described scheme (27). The sequences of both strands were determined at Lark Technologies, Inc. (Takeley, United Kingdom), and were analyzed by using DNAStar software (version 5.07; Lasergene, Madison, WI). STs were assigned by using the scheme that has recently been developed by J. F. Turton and R. Meyers (http://www.hpa-bioinformatics.org.uk/ab/home.php). PCR assays. PCR assays for genes coding for known class B and D carbapenemases (bla IMP, bla VIM, bla SPM, bla SIM, bla GIM, bla OXA-23-like, bla OXA-24-like, bla OXA-58-like ) were performed as described previously (3, 11, 14, 18). Amplification of the intrinsic bla OXA-51 allele (28) was also done to confirm the phenotypic identification of the isolates as A. baumannii. Insertion sequences ISAbA1 and ISAbA3 were amplified, and screening for their possible location upstream of the class D carbapenemase genes bla OXA-51 and bla OXA-58 was performed by PCR mapping with primers ISAbA1 forward and OXA-51-like reverse and primers ISAbA3 forward and OXA-58 reverse, respectively (24). The nucleotide sequences of both strands of the PCR products were determined at Lark Technologies, Inc., and sequence analysis was carried out with DNAStar software (version 5.07; Lasergene, Madison, WI). Population analysis and investigation of the stability of the heterogeneous phenotype. Population analyses with imipenem and meropenem were performed by a previously described protocol for P. aeruginosa (19), with some modifications. Briefly, subpopulations were yielded by spreading approximately 10 8 bacterial CFU (100 l of a starting inoculum containing approximately 10 9 CFU/ml) on Mueller-Hinton agar plates with imipenem or meropenem in serial dilutions at concentrations ranging from 0.5 to 32 mg/liter and incubating the plates for 48 h. The analysis was performed three times for all isolates, and the mean numbers of viable CFU were estimated and plotted on a semilogarithmic graph. 4055

4056 IKONOMIDIS ET AL. J. CLIN. MICROBIOL. Isolate TABLE 1. Antimicrobial susceptibility profile of native and meropenem-heteroresistant colonies Antimicrobial(s) to which isolate was susceptible a Native colonies During the study period, 142 nonrepetitive A. baumannii isolates were recovered from various wards and clinical samples. Among them, 14 (9.9%) were classified as carbapenem susceptible by use of the Vitek 2 automated system and were further investigated. The isolates were also susceptible to colistin and exhibited various profiles of susceptibility to other antimicrobials used to treat A. baumannii infections (Table 1). PFGE analysis discriminated nine distinct genotypes among the 14 study isolates. For each clinical isolate, the native and the meropenem-heteroresistant populations exhibited identical PFGE profiles. By ST, six isolates belonged to ST1, three belonged to ST2, and five exhibited various allelic profiles that were not assigned a separate ST because they have not yet been found among outbreak strains (Table 2). PCR for genes encoding known carbapenemases (except the intrinsic bla OXA-51-like carbapenemase) was negative. Nucleotide sequencing showed that the bla OXA-66 and bla OXA-69 alleles were more common, as anticipated, according to a previous nationwide study (8). No ISAba1 elements were detected upstream of the gene bla OXA-51-like carbapenemase. Time-kill studies. In time-kill studies with meropenem, four isolates (isolates AB5, AB13, AB79, and AB135) were killed in a time-dependent manner. For the remaining isolates, the ini- Meropenemheteroresistant colonies AB5 SAM - AB13 AMK, PTZ, SAM AMK, PTZ, SAM AB27 PTZ, CIP, SAM PTZ, CIP, SAM AB32 PTZ, SAM PTZ, SAM AB49 SAM SAM AB68 AMK, SAM AMK, SAM AB71 PTZ, SAM PTZ, SAM AB72 SAM SAM AB78 AMK, SAM AMK AB79 AMK AMK AB119 AMK, CIP, PTZ, SAM AMK, CIP, PTZ, SAM AB129 AB133 AMK, PTZ, SAM AMK AB135 SAM SAM a AMK, amikacin; CIP, ciprofloxacin; PTZ, piperacillin-tazobactam; SAM, ampicillin-sulbactam. All clinical isolates were susceptible to imipenem, meropenem, and colistin. Isolate Date of isolation (day/mo/yr) Ward Specimen TABLE 2. Characteristics of the tested isolates bla OXA-51-like allele P. aeruginosa ATCC 27853 was used as a control for the population analysis experiments. The frequency of appearance of heteroresistant subpopulations in the presence of the highest drug concentration was calculated by dividing the number of colonies that grew on the antibiotic-containing plate by the colony counts from the same bacterial inoculum that grew on antibiotic-free plates. For each strain, three distinct colonies grown in the presence of the highest drug concentration were subcultured daily in antibiotic-free medium for 1 week, and the carbapenem MICs were tested by agar dilution on Mueller-Hinton agar plates to check the stability of the heteroresistant phenotypes. Meropenem time-killing assays. Killing curve assays with meropenem were performed with all isolates, as well as P. aeruginosa ATCC 27853, by previously described protocols for A. baumannii (12) and gram-positive bacteria (21, 22). Briefly, from a starting bacterial inoculum containing approximately 1.5 10 8 CFU/ml, 100 l was inoculated into 3 ml of Mueller-Hinton broth (final inoculum, approximately 5 10 6 CFU/ml) containing meropenem at a concentration of 4 mg/liter. This meropenem concentration was selected, as it was the mean steady-state antibiotic level achieved in sera when the usual doses of meropenem were administered to healthy volunteers (10). Viable cells were counted by spreading 50- l aliquots of 10 2 and 10 4 dilutions of the broth cultures in antibiotic-free Muller Hinton agar plates at 1, 3, 6, 9, 12, 24, 36, and 48 h after antibiotic addition. The analysis was performed three times for all isolates, and the mean numbers of viable CFU were estimated and plotted on a semilogarithmic graph. RESULTS Allelic profile a ST type b PFGE type Agar dilution MIC (mg/ liter) Highest concn of growth in population analyses (mg/liter) Agar MIC (mg/liter) of heterogenous subpopulations in c : IPM MEM IPM d MEM e IPM MEM IPM MEM IPM MEM AB5 09/10/07 Cardiology Sputum 66 1-1-1 1 I 2 4 4 8 4 2 2 32 AB13 28/09/07 Medical Decubitus ulcer 66 1-1-1 1 VI 2 0.5 2 2 2 0.5 4 4 AB27 15/09/07 ICU f Bronchial 91 1d-4-1c* NA VII 0.25 1 1 8 0.5 1 0.5 32 AB32 31/10/07 ICU Bronchial 66 7-4-1a* NA V 1 2 1 8 2 1 1 16 AB49 26/11/07 Oncology Blood 66 1a-1-1 1 I 4 4 8 16 4 2 1 32 AB68 19/12/07 Oncology Sputum 66 1a-1-1 1 I 2 2 8 32 2 8 2 32 AB71 28/11/07 Medical Blood 66 1a-1-1 1 I 0.25 0.25 4 8 1 1 1 32 AB72 02/12/07 Orthopedic Pus 94 7-2-7* NA II 1 2 2 8 0.5 1 1 32 AB78 07/01/08 Medical Blood 94 7-2-10* NA II 1 2 2 8 2 1 2 32 AB79 16/01/08 Medical Decubitus ulcer 69 2-2-2 2 III 0.5 1 2 8 0.5 1 1 8 AB119 07/02/08 Neurosurgery Sputum 66 4-2-7* NA VIII 0.25 1 1 8 0.5 1 0.5 8 AB129 28/02/08 Neurosurgery Blood 69 2-2-2 2 III 2 1 8 16 1 1 2 32 AB133 27/03/08 Orthopedic Pus 66 1-1-1 1 IX 2 2 4 32 2 1 1 32 AB135 31/03/08 Oncology Sputum 69 2-2-2 2 IV 1 1 4 16 1 1 1 16 a Alleles ompa, csue, and bla oxa-51-like, respectively. b NA, not assigned, as it did not correspond to outbreak strains. Asterisks, all three alleles correspond to the closest matches. c These MICs were estimated after 1 week of daily subculture in antibiotic-free medium. d IPM, imipenem. e MEM, meropenem. f ICU, intensive care unit.

VOL. 47, 2009 CARBAPENEM-HETERORESISTANT A. BAUMANNII 4057 Downloaded from http://jcm.asm.org/ FIG. 1. Time-killing assays for meropenem. The results for isolate AB13 are kept in each graph for comparison. tial bactericidal effect was followed by substantial regrowth, which was observed after 9 h to 12 h of incubation for three isolates (isolates AB27, AB49, and AB68) and after 24 h for seven isolates (isolates AB32, AB71, AB72, AB78, AB119, AB129, and AB133). The survival curves obtained from timekill studies are shown in Fig. 1. In vitro characterization of the heteroresistant subpopulations. The agar dilution MICs of imipenem for the clinical isolates ranged from 0.25 to 4 mg/liter. Population analysis assays with imipenem showed that colonies grew in the presence of 8 mg/liter for 3 isolates, whereas the 11 isolates that remained were within the susceptibility range. However, the heterogeneous growth in the presence of imipenem was not stable; after seven daily subcultures in drug-free medium, the imipenem MICs for the colonies grown in the presence of the highest imipenem concentration were similar to those for the native isolates (Table 2). The agar dilution MICs of meropenem for the clinical isolates ranged from 0.25 to 4 mg/liter. Population analysis assays with meropenem revealed colonies that grew in the presence of 8 to 32 mg/liter for 13 isolates and in the presence of up to 2 mg/liter for isolate AB13 (Table 2; Fig. 2). The heteroresistant colonies showed stable meropenem resistance when they were retested by agar dilution after seven daily subcultures in drugfree medium but showed susceptibility to imipenem (Table 2). The frequency of meropenem-heteroresistant subpopulations, as calculated by the population analysis assays, ranged from 3 10 7 to 5 10 5. The antibiotic resistance profiles of most of the heteroresistant colonies did not exhibit considerable differences from the profiles of the native isolates for aminoglycosides, fluoroquinolones, and beta-lactam antibiotics; three isolates, however, acquired resistance to ampicillin-sulbactam, and one isolate also acquired resistance to piperacillin-tazobactam (Table 1). DISCUSSION During the last few years, A. baumannii isolates that exhibit carbapenem resistance have increasingly been isolated and pose substantial therapeutic problems in many regions, including the United States (6, 20). A further worrisome observation is heteroresistance to carbapenems, which may have implications for the treatment of multiresistant A. baumannii infections. Heteroresistance to meropenem was first detected in on April 27, 2018 by guest

4058 IKONOMIDIS ET AL. J. CLIN. MICROBIOL. FIG. 2. Population analysis assays for meropenem. The results for isolate AB13 are kept in each graph for comparison. Downloaded from http://jcm.asm.org/ methicillin (meticillin)-resistant staphylococci (9). The existence of heteroresistant phenotypes in A. baumannii was observed previously (15) but was not substantiated in subsequent studies. We reported previously on clinical A. baumannii isolates that exhibited subpopulations that grew within the inhibition halos around carbapenem disks and Etest strips (17). However, that study mainly included isolates with reduced carbapenem susceptibility or resistance. In the present study, 14 apparently carbapenem-susceptible isolates have been investigated for heteroresistance by population analysis and time-killing assays. The isolates belonged to several PFGE types; to ST1 and ST2, which are associated with European clones II and I, respectively (27) and which were also previously detected among Greek A. baumannii (7); and to other unassigned types. By standard agar dilution MIC testing, all native isolates were susceptible to both imipenem and meropenem (MICs 4 mg/liter). Population analyses revealed carbapenem-heteroresistant subpopulations that grew in the presence of concentrations that were 2- to 16-fold higher than the MICs for the respective native populations and, in most cases, that exceeded the CLSI susceptibility breakpoints. However, after seven daily subcultures in antibiotic-free medium, the colonies that grew in the presence of the highest imipenem concentration exhibited carbapenem MICs that were similar to those of the native isolates. It could be postulated that growth in the presence of higher imipenem concentrations might be attributed to the heavy bacterial inocula used in the population analyses and/or to imipenem instability (26). On the contrary, when colonies grown in the presence of the highest meropenem concentration were retested, the meropenem MICs were considerably higher than those of the native isolates. This observation implies that meropenem pressure in A. baumannii may induce resistance mechanisms that allow growth in the presence of higher concentrations. Meropenem bactericidal assays revealed a less pronounced killing that was followed by a substantial regrowth for 10 isolates. This regrowth could be due to the fact that a proportion of the meropenem-heteroresistant subpopulations survived the meropenem exposure. Nevertheless, three isolates that exhibited heteroresistant subpopulations (isolates AB5, AB79, and AB135) and the nonheteroresistant AB13 isolate did not show regrowth and were killed in a time-dependent manner. It should be noted that the meropenem heteroresistance of the study isolates observed involves many unrelated A. baumannii genotypes and is not due to the spread of one or a few A. baumannii lineages. The aminoglycoside and fluoroquinolone resistance profiles of the heteroresistant colonies were similar to those of the native isolates, indicating that efflux pump overexpression might not contribute to the observed meropenem heteroresistance, while three isolates became resistant to beta-lactam beta-lactamase inhibitor combinations, and this possibly may be attributed to AmpC overproduction. However, in most cases the possible mechanism responsible for meropenem heteroresistance could not be hypothesized from the antibiotic on April 27, 2018 by guest

VOL. 47, 2009 CARBAPENEM-HETERORESISTANT A. BAUMANNII 4059 resistance profiles; the underlying mechanisms are currently under investigation. The medical records of patients treated with meropenem showed that six patients were given meropenem for at least 1 week and that three of them died from an A. baumannii bloodstream infection while they were receiving meropenem (data not shown). A relevant publication by Nunez et al. described a case of fatal Acinetobacter meningitis (13). In that case, nine clonally related strains were isolated from cerebrospinal fluid; the first eight strains were carbapenem susceptible, but the ninth one was meropenem resistant (MIC 32 mg/liter) and still imipenem susceptible. The meropenem-resistant strain was isolated after two courses of meropenem treatment. This observation is in accordance with our findings, suggesting a resistance mechanism that affects meropenem but not imipenem and that might result from meropenem pressure. Conclusion. The observations of the present study suggest that A. baumannii isolates that are apparently meropenem susceptible by standard susceptibility testing may contain a certain amount of meropenem-resistant subpopulations, and those subpopulations could be selected for by the use of suboptimal therapeutic drug dosages. In this context, the implementation of screening techniques for the identification of heteroresistant isolates and the elucidation of the underlying molecular mechanisms would be of significant importance. REFERENCES 1. Bergogne-Berezin, E., and K. J. Towner. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9:148 165. 2. Bogaerts, P., T. Naas, I. Wybo, et al. 2006. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. J. Clin. Microbiol. 44:4189 4192. 3. Castanheira, M., M. A. Toleman, R. N. Jones, F. J. Schmidt, and T. R. Walsh. 2004. Molecular characterization of a ß-lactamase gene, bla GIM-1, encoding a new subclass of metallo-ß-lactamase. Antimicrob. Agents Chemother. 48:4654 4661. 4. Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial susceptibility testing, 16th informational supplement. M100-S16. Clinical and Laboratory Standards Institute, Wayne, PA. 5. Coelho, J. M., J. F. Turton, M. E. Kaufmann, J. Glover, N. Woodford, M. Warner, M. F. Palepou, R. Pike, T. L. Pitt, B. C. Patel, and D. M. Livermore. 2006. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J. Clin. Microbiol. 44:3623 3627. 6. Gaynes, R., J. R. Edwards, and the National Nosocomial Infections Surveillance System. 2005. Overview of nosocomial infections caused by gramnegative bacilli. Clin. Infect. Dis. 41:848 854. 7. Giannouli, M., F. Tomasone, A. Agodi, H. Vahaboglu, Z. Daoud, M. Triassi, A. Tsakris, and R. Zarrilli. 2009. Molecular epidemiology of carbapenemresistant Acinetobacter baumannii strains in intensive care units of multiple Mediterranean hospitals. J. Antimicrob. Chemother. 63:828 830. 8. Ikonomidis, A., S. Pournaras, A. Markogiannakis, A. N. Maniatis, E. N. Manolis, and A. Tsakris. 2007. Low genetic diversity of the intrinsic OXA- 51-like class D carbapenemases among Acinetobacter baumannii clinical isolates in Greece. Epidemiol. Infect. 135:877 881. 9. Kayser, F. H., G. Morenzoni, A. Strassle, and K. Hadorn. 1989. Activity of meropenem, against gram-positive bacteria. J. Antimicrob. Chemother. 24(Suppl. A):101 112. 10. Lee, C. H., L. H. Su, Y. F. Tang, and J. W. Liu. 2006. Treatment of ESBLproducing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: a retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemother. 58:1074 1077. 11. Lee, K., J. H. Yum, D. Yong, H. M. Lee, H. D. Kim, J.-D. Docquier, G. M. Rossolini, and Y. Chong. 2005. Novel acquired metallo-ß-lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 49:4485 4491. 12. Li, J., C. R. Rayner, R. L. Nation, R. J. Owen, D. Spelman, K. E. Tan, and L. Liolios. 2006. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 50:2946 2950. 13. Nunez, M. L., M. C. Martinez-Toldos, M. Bru, E. Simarro, M. Segovia, and J. Ruiz. 1998. Appearance of resistance to meropenem during the treatment of a patient with meningitis by Acinetobacter. Scand. J. Infect. Dis. 30:421 423. 14. Oh, E. J., S. Lee, Y. J. Park, J. J. Park, K. Park, S. I. Kim, M. W. Kang, and B. K. Kim. 2003. Prevalence of metallo- -lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo- -lactamase. J. Microbiol. Methods 54:411 418. 15. Pascual, A., L. Martinez-Martinez, M. J. Clavijo, M. D. García-Perea, and E. J. Perea. 1997. Comparison of three methods of determining the in-vitro susceptibilities of Acinetobacter baumannii isolates to imipenem. J. Antimicrob. Chemother. 40:742 743. 16. Peleg, A. Y., H. Seifert, and D. L. Paterson. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21:538 582. 17. Pournaras, S., A. Ikonomidis, A. Markogiannakis, A. N. Maniatis, and A. Tsakris. 2005. Heteroresistance to carbapenems in Acinetobacter baumannii. J. Antimicrob. Chemother. 55:1055 1056. 18. Pournaras, S., A. Markogiannakis, A. Ikonomidis, L. Kondyli, K. Bethimouti, A. N. Maniatis, N. J. Legakis, and A. Tsakris. 2006. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother. 57:557 561. 19. Pournaras, S., A. Ikonomidis, A. Markogiannakis, N. Spanakis, A. N. Maniatis, and A. Tsakris. 2007. Characterization of clinical isolates of Pseudomonas aeruginosa heterogeneously resistant to carbapenems. J. Med. Microbiol. 56:66 70. 20. Quale, J., S. Bratu, D. Landman, and R. Heddurshetti. 2003. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin. Infect. Dis. 37:214 220. 21. Sakoulas, G., J. Alder, C. Thauvin-Eliopoulos, R. C. Moellering, Jr., and G. M. Eliopoulos. 2006. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob. Agents Chemother. 50:1581 1585. 22. Swenson, J. M., J. F. Hindler, and J. H. Jorgensen. 2003. Special phenotypic methods for detecting antimicrobial resistance, p. 1178 1195. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller, and R. H. Yolken (ed.), Manual of clinical microbiology, 8th ed. American Society for Microbiology, Washington, DC. 23. Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233 2239. 24. Tsakris, A., A. Ikonomidis, S. Pournaras, N. Spanakis, and A. Markogiannakis. 2006. Carriage of OXA-58 but not of OXA-51 -lactamase gene correlates with carbapenem resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 58:1097 1099. 25. Tsakris, A., C. Tsioni, S. Pournaras, S. Polyzos, and A. N. Maniatis. 2003. Spread of low-level carbapenem-resistant Acinetobacter baumannii in a tertiary care Greek hospital. J. Antimicrob. Chemother. 52:1046 1047. 26. Turgeon, P. L., and C. Desrochers. 1985. Stability of imipenem in Mueller- Hinton agar stored at 4 C. Antimicrob. Agents Chemother. 28:711 712. 27. Turton, J. F., S. N. Gabriel, C. Valderrey, M. E. Kaufmann, and T. L. Pitt. 2007. Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin. Microbiol. Infect. 13:807 815. 28. Turton, J. F., N. Woodford, J. Glover, S. Yarde, M. E. Kaufmann, and T. L. Pitt. 2006. Identification of Acinetobacter baumannii by detection of the bla OXA-51 -like carbapenemase gene intrinsic to this species. J. Clin. Microbiol. 44:2974 2976.