Allen Press is collaborating with JSTOR to digitize, preserve and extend access to Wildlife Society Bulletin.

Size: px
Start display at page:

Download "Allen Press is collaborating with JSTOR to digitize, preserve and extend access to Wildlife Society Bulletin."

Transcription

1 Seasonality and Reoccurrence of Depredation and Wolf Control in Western North America Author(s): Marco Musiani, Tyler Muhly, C. Cormack Gates, Carolyn Callaghan, Martin E. Smith, Elisabetta Tosoni Reviewed work(s): Source: Wildlife Society Bulletin, Vol. 33, No. 3 (Autumn, 2005), pp Published by: Allen Press Stable URL: Accessed: 05/03/ :38 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Allen Press is collaborating with JSTOR to digitize, preserve and extend access to Wildlife Society Bulletin.

2 Carnivores 876 SEASONALITY OF WOLF DEPREDATION Seasonality and reoccurrence of depredation and wolf control in western North America Marco Musiani, Tyler Mluhly, C. Cormack Gates, Carolyn Callaghan, Martin E. Smith, and Elisabetta Tosoni Abstract Due primarily to wolf (Canis lupus) predation on livestock (depredation), some livestock producers and other interest groups oppose wolf conservation, which is an important objective for large sectors of the public. Predicting depredation occurrence is difficult, yet necessary to prevent it. Better prediction of wolf depredation also would facilitate application of sound depredation management actions. In this paper we analyze temporal trends in wolf depredation occurrence and wolf control, which is employed as a depredation management action. We gathered data from wolf depredation investigations for Alberta, Canada, from and for Idaho, Montana, and Wyoming, USA, from We showed that wolf attacks occurred with a seasonal pattern, reflecting the seasonality of livestock calving, grazing practices, and seasonal variation in energetic requirements of wolf packs. Seasonal wolf attacks were auto-correlated with lags of one year, indicating annual reoccurrence. Cross-correlation analyses indicated that limited wolf control was rapidly employed as a short-term response to depredation, and was not designed to decrease wolf depredation at a regional scale or in the long-term. We therefore discovered a reoccurring seasonal-annual pattern for wolf depredation and wolf control in western North America. Ranchers and managers could use our data for focusing investment of resources to prevent wolf depredation increases during high-depredation seasons. Key words Canada, Canis lupus, conservation, control, depredation, livestock, seasonality, temporal trends, USA, wolf The potential for conflicts between wolves (Canis lupus) and humans exists, especially in rural areas where livestock production is a major economic activity because wolves prey on all ungulate species available including livestock (Fritts et al. 2003). Such conflicts have been described throughout the wolf range, which includes most of the Northern hemisphere (Young and Goldman 1944, Bibikov 1982, Musiani and Paquet 2004). Wolves are typical examples of carnivores that interfere with human interests and, therefore, pose major management problems (Linnell et al. 1999, Treves and Karanth 2003). Historically, the wolf was extirpated from vast regions of North America, largely as a response to conflicts with livestock and as a consequence of habitat loss (Mech 1970). Although many livestock producers and other interest groups still oppose wolf conservation, currently this is considered an important objective for large sectors of the public. Address for Marco Musiani: Department of Animal and Human Biology, University of Rome, Viale dell'universita' 32, Roma, Italy; mmusiani@ucalgary.ca. Address for Tyler Muhly, C. Cormack Gates, and Elisabetta Tosoni: Faculty of Environmental Design, The University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1 N4, Canada. Address for Carolyn Callaghan: The Central Rockies Wolf Project, 502 Bow Valley Trail, Suite 203, Canmore, AB T1W 1 N9, Canada. Address for Martin E. Smith: Defenders of Wildlife, th St. NW, Washington, D.C., USA; present address: Nord-Trondelag University College, P.O. Box 2501, 7729 Steinkjer, Norway. Wildlife Society Bulletin 2005, 33(3): Peer refereed

3 Seasonality of wolf depredation * Musiani et al. 877 In 1995 and 1996, Canadian wolves were successfully reintroduced to the Northwestern United States (Fritts et al. 1997). As a result, in Idaho, Montana, and Wyoming USA wolf populations are increasing (Bangs et al. 2004). Recent wolf recovery in western North America has resulted in wolf expansion into rural areas, thus increasing conflicts and associated costs of livestock protection and lethal control of wolves (Bangs et al. 2004). During recent decades, wolf numbers fluctuated in the western Canadian province of Alberta (Hayes and Gunson 1995). In Canada the Committee on the Status of Endangered Wildlife in Canada does not list the wolf under any conservation status (Committee on the Status of Endangered Wildlife in Canada 2003). In the lower 48 states of the United States, wolves are still considered a "threatened" species (United States Fish andwildlife Service 2003). Regardless of official status, government authorities and livestock producers kill wolves in both countries with the stated objective to mitigate conflicts. Predicting the occurrence of wolf predation on livestock (depredation) is difficult (Fritts et al. 2003), yet necessary to manage it. Effective wolf conservation might be favored by timely application of prevention techniques that reduce depredation (Ciucci and Boitani 1998, Fourli 1999, Bangs and Shivik 2001). In addition, enhanced understanding of periodic trends, if present, would allow for improved planning, management, and mitigation of conflicts due to wolf depredation. Without suggesting simple cause-and-effect mechanisms, there are ecological and environmental factors that could trigger seasonal depredation patterns, thus making wolf depredation more easily predictable. In particular, availability and accessibility to wolves of adult livestock and of calves during calving often follows a seasonal pattern with annual reoccurrence. In fact, some previous studies portrayed increases in wolf depredation during different spring or summer months corresponding to intensive grazing months for various livestock species (Dorrance 1982, Gunson 1983, Fritts et al. 1992, Mack et al. 1992). In addition, wolf pups are born every year around April-May, and subsequent increases in energy requirements for successfully reproducing packs occur following the same pattern every year (Mech 1970). Snow accumulation in winter also might influence predation on livestock. However, whereas some authors suggest increased availability of vulnerable wild prey for wolves during snowy winters decreases depredation on domestics (Mech et al. 1988), other authors maintain that snow accumulation might displace wild prey toward ranches, eventually resulting in depredation increases (Bangs et al. 1998). In this paper we analyze temporal trends in wolf depredation occurrence in Alberta, Canada ( ) and in Idaho, Montana, and Wyoming ( ). We examined losses of domestic animals, seasonality and periodical patterns in wolf attacks, and application of wolf control as an immediate, delayed or periodical measure. We tested the hypothesis that depredation occurrences were not seasonal or annual. Study area The study area consisted of the Canadian province of Alberta and the northwestern states of Idaho, Montana, and Wyoming in the United States (Figure 1). This area included boreal forest, which was prevalent in northern Alberta. Central and southern portions of the study area were occupied by temperate steppe, characterized by agricultural lands and grasslands interspersed with stands of aspen, cottonwood, and poplar (Populus spp.), with occasional patches of willow (Salix spp.). These regions were used for sometimes-intensive livestock production. Higher elevations of the study area encompassed the Rocky Mountains with typical closed to open forests of white and black spruce (Picea spp.), subalpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta), trembling aspen (Populus tremuloides), balsam poplar (P balsanmifera) and white birch (Betula platyphylla). Livestock at large, particularly cattle, often frequented these high-elevation regions. Several natural prey species for wolves were abundant in parts of the study area including bison (Bison bison), moose (Alces alces), elk (Cervus elaphus), whitetailed deer (Odocoileus virginianus), mule deer (O. hemionus), and bighorn sheep (Ovis canadensis). Domestic animals, particularly cattle, sheep, and horses, also were abundant. Livestock production was an important economic activity on private and public grazing lands. In Alberta, during late winter and early spring when temperatures were still below zero and snow accumulation was at its maximum, cattle typically were provided supplemental feeding in pastures close to ranch buildings. Cattle calving typically occurred during this period of the year (B. Adams, Government of Alberta Range

4 878 Wildlife Society Bulletin 2005, 33(3): yn * rflf IIN /L~~~~~ ~~~~A ~\ ~animals \tainable ^^ \~ ~ 1982-April 1996 (14 years). Livestock producers reported suspected wolf attacks on domestic to Alberta Sus- Resource Devel- > A/ilberta~~ /lf~ Alberta 1 opment and Community tr \ Development (ASRD ]i~^ iu~~ CD), Government of W^Pt,?~ \~ ~Alberta. In Alberta ASRD CD personnel conducted investigations of suspect- ^^.~"E~~~~ ^^Ik ~~~~~~ Ied \ x?^^js^^ *J~ v ^^ D I~~n "* 5nada_ - ' livestock depredation events by wolves. Damage "confirmed" to be caused by wolves was r I S\ J SWrefunded by the govern- \ ^^ t^~~ ^ment in the form of reim ~ --- Montana < \bursement for the market value of the animal.,,.,?,?.,??.\~,investigation ) records we Studied Wolfi Population Ranaiges I r analyzed included information on confirmed National Parks cidah o a e \ depredation occurrences l 1 *4t \\ 'o \ (date for wolf attack, live- Wyoming stock species) and num- Kilometres ber of wolves killed by 0 ) 5((0 ASRD CD or authorized Figure 1. Wolf range and National Parks in the study area, which included the province of trappers in response to Alberta, Canada, and the northwestern USA states of Idaho, Montana, and Wyoming. depredation events. Numbers of wolves killed represented mini- Management Specialist, personal communication). mum estimates, which were helpful for under- Supplemental feeding of cattle was not needed in standing trends rather than total figures. In fact, many areas of the Northwestern United States, wolves could be legally killed by hunters (reporting because harsh winter conditions lasted for a short- in Alberta not required prior to 2000) and comer period than in Alberta. In the northwestern mercial trappers. Additionally, land owners could United States, cattle calving often occurred during kill wolves without restriction on their deeded or mid-spring, when many pastures were already freed leased public land and within 8 km of their deeded from snow and available for grazing at large (Cole or leased land, and were not required to report the 1966). The region contained both developed areas number killed (Gunson 1992, Alberta Conservation (towns, agricultural lands and managed forests) that Association 2002). were connected by road networks and undevel- We also analyzed investigations of wolf attacks in oped areas (i.e., National Forests, Wilderness Areas Idaho, Montana, and Wyoming from January and National Parks including Wood Buffalo, 1987-January 2003 (16 years). The United States Banff-Jasper, Waterton-Glacier, and Yellowstone). Fish and Wildlife Service (USFWS) and the United States Department of Agriculture-Wildlife Services Methods (USDA) investigated all depredation complaints. Comparable to Alberta, "confirmed" damage caused Wolf depredation data by wolf depredation was fully refunded. In contrast We analyzed investigations of wolf depredation to Alberta, the nongovernmental organization on domestic animals in Alberta, Canada from April Defenders of Wildlife collaborated with the govern-

5 Seasonality of wolf depredation * Musiani et al. 879 ment by funding and administering compensation funds in the western United States (Mech 1995). We gathered and compiled data from Defenders of Wildlife, USFWS, and USDA. Depredation data for the United States included the following information: date for wolf attack, livestock species, number of domestic animals killed or injured, and number of wolves killed as anti-depredation measure. As for the Canadian data, we limited our analysis to instances of confirmed wolf attacks and related control actions. Analysis of temporal trends The number of domestic animals killed by wolves was an inappropriate indicator of temporal trends in wolf depredation because of the number of individuals sometimes killed in single attacks (Table 1). In general, peaks in domestic animals killed could be the result of a few attacks characterized by mass slaughter (Ciucci and Boitani 1998). Our dataset comprised wolf attacks that resulted in numbers of domestic animals killed ranging from 1-98, the highest numbers being for sheep (M. Musiani, University of Rome, unpublished data). On the other hand, mass slaughter attacks did not imply increased prey consumption by wolves (M. Musiani, University of Rome, unpublished data). This suggested that occurrence of attacks was influenced by need for food, as generally assumed in other predation studies (Holling 1965, Sjoberg 1980), whereas numbers killed could be the result of peculiar wolf and prey behaviors. Therefore, for analyses of temporal patterns, which are the focus of this paper, we treated each investigation as a single incident, regardless of number of animals affected, similar to other wolf depredation studies (Ciucci and Boitani 1998,Treves et al. 2002). To investigate whether depredation occurrences varied by month across years, we used a Friedman test (which provides x2 and associated P-values). We used a Wilcoxon test to evaluate significant increases or decreases from month to month (which provides Z and associated P-values). The latter approach allowed us to identify depredation seasons (i.e., periods in which depredation occurrences did not change significantly). We used Mann-Whitney U-test (which provides Z and associated P-values) and Kruskal-Wallis test (which provides x2 and associated P-values) to compare seasonal depredation occurrences pairwise and among more than 2 seasons, respectively (Sokal and Rohlf 2000). Depredation occurrences were grouped in depredation seasons of the year, which were identified using methods described above. Such seasons were not necessarily of equal length as different seasons could consist of dissimilar numbers of months. The total for seasonal depredation occurrences was then divided by number of months in the given season, thus obtaining an average figure for monthly occurrences during that particular season. We computed temporal auto-correlations (Box et al. 1994) for seasonal depredation occurrences. In general, a given variable (in this case, depredation occurrences) was called temporally auto-correlated if its value in a specific time (in this case, in a given depredation season) was correlated with its values at another time (in this case, in another depredation season). Correlation was tested between the values of a time-series and the same values lagged by 1 or more cases (in this case, 1 or more depredation seasons). Such correlations were tested for lags of 1, 2,..., up to a specific number. We tested temporal auto-correlation for all seasonal intervals from 1 season to 3 years (separated by varying seasonal lags). With similar methods, we also used cross-correlation analysis (Box et al. 1994) to evaluate the relationship between a) seasonal occurrences of wolf depredation, and b) seasonal numbers of wolves killed in response to depredation. We tested temporal cross-correlation at all seasonal intervals from 0 seasons (a and b concurrent, equivalent to standard correlation) to 3 years (a and b separated by varying seasonal lags). W'e calculated auto-correlation and cross-correlation functions, which provided r-values that ranged between -1 and +1. We also calculated 95% confidence bands. Confidence bands indicated the level of correlation considered significant at the 95% significance level. If data were distributed randomly, auto-correlation or cross-correlation values should be near zero for most seasonal lags. We ran statistical analyses using Kolmogorov-Smirnov test with reference to Lilliefors' probabilities (Sokal and Rohlf 2000) to determine that monthly or seasonal depredation occurrences were not normally distributed. Results In Alberta, Canada, from January 1987-January 2003, wolves depredated domestic animals during 1,021 attacks (Table 1). In Idaho, Montana, and Wyoming from January 1987-January 2003, wolves

6 Table 1. Monthly occurrences of deadly wolf attacks and numbers of wolves killed as a management action in Alberta, Canada (April 198 USA (anuary 1987 to January 2003), and numbers of domestic animals killed by wolves in the Northwestern USA during the study period. Attacks or Location Species individuals killed Jan Feb Mar Apr May Jun Jul Alberta, Canada Cattle Attacks Sheep Attacks Dog Attacks Other domestic animals Attacks Total domestic animals Attacks Wolf Individuals killeda Idaho, Montana, and Wyoming, USA Cattle Attacks Individuals killed Sheep Attacks Individuals killed Dog Attacks Individuals killed Other domestic animals Attacks Individuals killed Total domestic animals Attacks Individuals killed Wolf Individuals killed a Minimum estimates because Canada does not require reporting of wolves killed.

7 Seasonality of wolf depredation * Musiani et al. 881 killed 861 domestic animals during 253 attacks. In both countries cattle and sheep were the species of domestic animals most frequently targeted by wolves. In Canada depredation occurrences varied by month (Friedman's X2 = 59.96, P < 0.001; Table 1). Our data revealed an augmentation in attacks across years from April to May (Z=2.31,P=0.021), a decline from September to October (Z= 2.13, P= 0.033), and again a decline from January to February (Z=2.20,P=0.028). Monthly depredation occurrences did not change significantly across years in each of 3 seasons lasting from a) May-September, b) October-January, and c) February-April, respectively. Depredation occurrences were different among these 3 periods (a, b and c above; Kruskal-Wallis' 2 = 38.45, P < 0.001). More attacks occurred between May to September than between February to April (Z=5.84, P< 0.001), whereas the intermediate period from October to January had fewer attacks than May to September (Z=3.37, P<0.001), but more than February to April (Z=3.17, P<0.001). Thus, we identified a 3-season pattern in depredation occurrence in Canada. In the United States portion of the study area, occurrence of depredation also varied by month (Friedman's x2 =33.96, P0.001;Table 1). Our data revealed increases in number of attacks across years from February to March (Z= 2.35, P=0.019) and decreases from October to November (Z=2.03, P = 0.042). Depredation occurrences did not change significantly in each of 2 seasons lasting from March to October and from November to February, respectively. Thus, we identified a 2-season pattern in depredations occurrence in the United States where more attacks occurred between March and October than between November and February (Z= 2.87,P=0.004). This 2- season pattern contrasted with the 3-season pattern of wolf depredation in Canada. However, the greatest number of cattle, sheep, and total domestic animals killed in the United States, or of depredation attacks in both the United States and Canada, occurred in August (Table 1). In Canada seasonally grouped depredation occurrences were positively auto-correlated at seasonal lags 3 and 6 (0.379<r<0.668,P<0.001; Figure 2a). The auto-correlation plot indicated significant autocorrelation at seasonal lags that were 3 seasons apart (i.e., 1 year), providing evidence of annual reoccurrence. In the United States, seasonal depredation events were positively auto-correlated at seasonal lags 2, 4, and 6 (0.455 <r<0.750, P<0.001; Figure 2b). The auto-correlation plot indicated significant auto-correlation at seasonal lags that were 2 seasons apart (i.e., 1 year, same as observed for the Canadian data), also providing evidence of annual reoccurrence. For Canada depredation occurrences and wolves killed in anti-depredation actions were positively cross-correlated at seasonal lags 0 and 1 (0.352<r< 0.434, P< 0.001; Figure 3a). The cross-correlation plot indicated significant correlation for concurrent or immediately adjacent events of depredation and culling of wolves (attack and wolf-killing concurrent or belonging to the subsequent season). In the United States, depredation occurrences and wolves killed in anti-depredation actions were positively cross-correlated at seasonal lags 0, 2, and 4 (0.502 < r<0.914,p<0.001; Figure 3b). The cross-correlation plot indicated significant correlation for concurrent events or events at seasonal lags that were 2 seasons apart (i.e., 1 year), providing evidence of annual reoccurrence for depredation and wolf culling, corresponding to reoccurrence of seasonal attacks. Discussion Seasonality and reoccurrence of wolf depredation Length of grazing season likely explains the seasonal pattern of wolf depredation in Alberta, Canada. In Alberta the grazing period varied among years and areas in relation to weather conditions. Profitable grazing typically began around May (Lodge 1970). In most areas grazing operations were terminated in mid-october. In a few areas, grazing was conducted up to December-January. Finally, the months between February and April provided the least opportunities for grazing (Lodge 1970). Although it is not known which proportion of the stock grazed at large, these trends support the existence that we found of high-, medium-, and low-depredation seasons lasting from May-September, October-January, and February-April, respectively. Grazing practices and seasonality of calving might explain the 2-season pattern of wolf depredation we documented for the United States, with more attacks occurring from March-October than from November-February. In the northwestern

8 882 Wildlife Society Bulletin 2005, 33(3): Ct ;:R (A) t n- g l' (A) 1711, - 7 m 1,Imil i,mm Seasol 4 L a m M )"<'<'' M, 1\ ' ",-'>5- M-1 :.' i: ' -.J Seasonal Lag Seasonal Lag (B) (B) C?; Seasonal Lag Figure 2. Autocorrelation for wolf attacks on domestic animals (gray bars) for intervals lagged (A) from 0-9 seasons (up to 3 years) in Alberta, Canada from and (B) from 0-6 seasons (up to 3 years) in Idaho, Montana, and Wyoming, USA from Attacks were grouped into seasons, three seasons per year for Canada and two for the USA. Correlations were significantly different from zero when they crossed the 95% confidence bands (black lines). Seasonal Lag Figure 3. Cross-correlation for wolf attacks on domestic animals versus wolves killed (gray bars) for intervals lagged (A) from 0-9 seasons (up to 3 years) in Alberta, Canada from and (B) from 0-6 seasons (up to 3 years) in Idaho, Montana, and Wyoming, USA from Attacks and wolves killed were grouped into seasons, three seasons per year for Canada and two for the USA. Correlations were significantly different from zero when they crossed the 95% confidence bands (black lines). United States, the grazing period typically lasts from May-October (Oakleaf et al. 2003). Although this could explain increased depredation during May-October, the approach falls short of explaining the initiation of the depredation season in March. However, calving often occurred in early spring, starting in March (Cole 1966). Therefore, the beginning of calving season could explain increased depredation from February-March in our study. Prey maximize fitness by choosing habitats where the ratio of mortality to growth is minimized (Gilliam and Fraser 1987,Johnson et al. 2002). In our system livestock (prey) do not choose the grazing areas based on fitness optimization. Livestock producers largely determine habitats used by livestock. Unlike indigenous wild ungulates, domestic prey species are not allowed to move to new areas or to select suboptimal habitat to reduce depredation risk (Brown 1999). This further explains adherence of temporal patterns in wolf depredation to patterns in grazing practices. Canadian wolves that recolonized the northwestern United States or were reintroduced there retained a behavioral pattern previously described for their conspecifics in western Canada (depredation peaks in August-September; Dorrance 1982, Gunson 1983, Tompa 1983, Mack et al. 1992). Compared to late spring and early summer, in late summer protein demands for wolf packs are high due to nurturing of larger pups that did not yet undergo typical numerical reductions due to autumn and winter mortality. This could result in

9 Seasonality of wolf depredation * Musiani et al, 883 higher depredation (Fritts et al. 2003). In this period of the year, it is also likely that wolf packs that are raising pups could endure without food for shorter periods, ultimately resulting in higher occurrence of attacks. In Alberta and in the northwestern United States, there was a clear relationship between number of depredation occurrences in a particular season (see above; 3 seasons for Canada or 2 seasons for the United States) and occurrences during the same season in following years. These findings indicated annual reoccurrence of depredation events. The latter result reinforced the appropriateness of our depredation seasons, because equivalent seasons in following years were more correlated to each other than different seasons during the same or following years. Wolf control as immediate or periodic measure In Alberta, Canada number of attacks on domestic animals was positively correlated with number of wolves killed during the same season and the immediately subsequent season. Our findings suggest that in Canada wolf removal was opted for opportunistically, as an immediate or briefly delayed reaction to depredation increases. Our data should be interpreted taking into account the practices for killing depredating wolves in Canada. In Alberta, government authorities may resort to wolf control campaigns in response to depredation complaints. However, Canadian livestock producers also have the option of killing wolves without any obligation to report kills (Gunson 1992, Alberta Conservation Association 2002). Government involvement in wolf control might therefore be significant only when the depredation problem exacerbates to a level for which individual actions by locals are not considered sufficient. Thus, existing data, which only included reported killings, might represent opportunistic and case-specific wolf control responses to depredation events. In the United States the number of attacks on domestic animals was positively correlated with the number of wolves killed by authorities during the same season of the current as well as subsequent years. Annual reoccurrence of these relationships suggested that wolf removal occurred during high-depredation seasons, likely as a planned (i.e., not opportunistic and case-specific as in Canada) and prompt anti-predator response. In Canada and the United States, there was a strong relationship between wolf depredation and wolf removal, which was consistent with other studies that employed regression analysis (Musiani et al , Shivik et al. 2003). In either country, the absence of negative correlations indicated that wolf removal was corrective, not preventive. Conner et al. (1998) evaluated coyote (Canis latrans) depredation of sheep with an equivalent analytical approach and arrived at similar conclusions. Our analysis, which was conducted at a regional scale, does not support the notion that removal of wolves at current intensity reduces depredation, immediately or in following years. In general, conducting wolf control in local areas or at higher intensities of removal (Fritts 1982, Bjorge and Gunson 1985) may result in decreased depredation there. For example, a study conducted on lynx (Lynx lynx) suggested that carnivore removal from local areas was effective in reducing attacks to livestock in the short-term (1 year), but did not prevent reoccurrence of attacks (Stahl et al. 2001). In our study area, even if entire wolf packs are extirpated through control actions, neighboring or dispersing individuals may readily fill homerange vacancies (Haight et al. 1998, Hayes et al. 2000). Immigrants could then opportunistically engage in depredation, also explaining depredation reoccurrence that we documented. WMolf removal programs in Alberta and the United States were not designed to decrease wolf populations (Alberta Conservation Association 2002, United States Fish and Wildlife Service 2003). Wolf control was designed as a corrective action with the stated objective to maximize chances of eliminating "problem individuals" (sensu Linnell et al. 1999). The "problem individuals" approach employed in Canada and the United States could help reduce acute instances of wolf depredation from individuals or packs that learn to depredate repeatedly (Fritts et al. 1992, Mech 1995). In general, animal removal by people can result in rapid evolution of wild species (Coltman et al. 2003). In addition, wolves might be able to modify their behavior in response to decreased tolerance by humans (McNay 2002). Thus, wolf removal might play a management role by facilitating elimination of genetic or behavioral traits conducive to depredation. In any case, this approach is not expected to decrease reoccurrence of attacks due to local environmental conditions or husbandry methods (Ciucci and Boitani 1998, Linnell et al. 1999, Mech et al. 2000).

10 884 Wildlife Society Bulletin 2005, 33(3): Our study suggested that in western North America, limited wolf control was employed as a short-term response to depredation (in the photo two wolves feed on a sheep carcass) but control actions were not aimed, or effective, at decreasing depredation at a regional scale or in the long-term. Management implications Problems occur worldwide involving carnivore species that depredate regularly on livestock, such as coyotes (Canis latrans; Knowlton et al. 1999), black bears (Ursus americanus; Jorgensen et al. 1978), cougars (Puma concolor; Mazzolli et al. 2002), and various African, Asian, and Australian native or introduced carnivores (Short et al. 2002, Mishra et al. 2003, Ogada et al. 2003). Similarly, problems and conflicts also have been described for other wildlife species that can depredate significantly on crops, such as elephants (Loxodonta africana; Naughton-Treves et al. 2000, Sitati et al. 2003). However, concomitant to wolves returning to various rural agricultural areas in North America (Parsons 1998,Treves et al. 2002, Bangs et al. 2004), there is a particularly urgent need for understand- ing and effectively managing wolf depredation. Our findings and compared analyses indicate wolf depredation follows a reoccurring seasonal-annual pattern in Alberta, Canada as well as in the northwestern United States. Our explanation is centered on animal husbandry, in particular on seasonal livestock grazing practices, and the natural history of wolves. Currently, in the United States portion of the study area, the wolf population continues to increase under legal protection following reintroduction, and wolf depredation continues to increase with time (Bangs et al. 2004). In the future the level of socio-economic intolerance likely will -limit the size of the wolf population in the United States, relative to ecological carrying capacity for wolves. In the Canadian portion of the study area, intolerance already may be exerting a limiting effect on persistent wolf populations in or near agricultural areas (Gunson 1983,1992). The dynamic interplay of wolf control and other habitat and demographic parameters such as reproduction, immigration and emigration are poorly understood, also representing a promising area for further research. Our data on seasonality of wolf depredation and on reoccurrence of seasonal patterns across years suggest wolf attacks on livestock are temporally predictable. Ranchers and managers can use our data for predicting wolf depredation risk and for planning in advance investment of resources to prevent depredation increases. In practice some approaches are available including lethal (see below) and nonlethal anti-depredation measures. Surveillance by livestock producers is known to decrease depredation risk (Bibikov 1982, Ciucci and Boitani 1998; but see Mech et al. [2000]). Other nonlethal methods include use of guard dogs (Smith et al. 2000a, Coppinger and Coppinger

11 Seasonality of wolf depredation * Musiani et al ), fencing (Gipson and Paul 1994, Musiani et al. 2003), translocation of wolves to wilder areas and wolf repellents (Fritts 1982, Smith et al. 2000b, Bangs and Shivik 2001, Bangs et al. 2004). We suggest all these methods, which ideally could help diminishing livestock damage without conflicts with any wolf conservation objectives, could be employed intensively during depredation seasons. However, the outcome of depredation events also might be due to predator and prey behaviors that lead to mass slaughter of livestock by wolves (sensu Ciucci and Boitani 1998). In fact, single attacks by wolves may result in various domestic animals killed. Under these circumstances, financial losses for livestock producers and the need for compensation of such losses are amplified. Further research should be conducted on the circumstances that lead to mass slaughter by wolves of various species of domestic animals. Wolf eradication is no longer practiced as a management objective in either Canada or the United States. In fact, we found that limited wolf control was rapidly employed as a short-term response to depredation, and was not designed to decrease wolf depredation at a regional scale or in the longterm. Further research is needed to evaluate the cost-effectiveness and socio-economic benefits of wolf control. For example, it would be helpful to gather information on specific properties receiving lethal control and the fate of these properties' livestock in future years. In addition, Bangs et al. (2004) suggested that wolf control might help assuaging negative attitudes by local livestock producers. In the meanwhile we see the greatest promise for reducing wolf depredation by improving animal husbandry, especially in high-risk seasons. However, this could increase labor and operational cost inputs for livestock production. The alternative is to continue to rely on compensation to refund all damages by wolves and other carnivores (Wagner et al. 1997), although such programs also are controversial and costly (Naughton-Treves et al. 2003). It is not known whether establishment of compensation programs for losses of livestock generates increased tolerance for wolves on the landscape. In addition, various governmental and nongovernmental organizations typically fund and administer compensation programs that are ultimately paid by taxpayers and donors; however, managers and livestock producers need to know the threshold above which societies may refuse to bear costs. Acknowledgments. We thank the individuals and organizations that contributed crucial information or support: the ranching communities of Alberta, Idaho, Montana, and Wyoming, E. Bangs, L. Bradley, N. Fascione, S. Fritts,T. Kaminski, C. Mack, C. Mamo, C. Niemeyer, D. Pletcher, C. Rondinini, G. Sargent, S. Stone, the Alberta Beef Producers, Alberta Conservation Association, Alberta Ecotrust, Alberta Sustainable Resource Development and Community Development, Bailey Wildlife Foundation Compensation Trust, Calgary Foundation, Calgary Zoological Society, Defenders of Wildlife, Humane Society United States, Kendall Foundation,TD Friends of the Environment, United States Fish and Wildlife Service, United States Department of Agriculture-Wildlife Services, Wilburforce Foundation, and YtoY mini grants. M. Musiani and E. Tosoni were supported by Honourary Killam, Natural Sciences and Engineering Research Council of Canada, Canada, and Consiglio Nazionale delle Ricerche and University of Rome, Italy. We wish to thank M. Crete, C. Maffei and 2 anonymous reviewers for their helpful comments on the manuscript. Literature cited ALBERTA CONSERVATION ASSOCIATION Annual Report. Alberta Conservation Association, Edmonton, Alberta, Canada. BANGS, E. E.,J.A. FONTAINE, M. D.JIMENEZ,T.J. MEIER, E. H. BRADLEY, C. C. NIEMEYER, D.W. SMITH, C. M. MACK,V.ASHER, AND J. K. OAKLEAF Managing wolf-human conflict in the northwestern United States. Pages in R. Woodroffe, S. Thirgood, and A. Rabinowitz, editors. People and wildlife: coexistence or conflict? Cambridge University Press, Cambridge, United Kingdom: in press. BANGS, E. E.,J.A. FONTAINE, D. W SMITH, K. M. MURPHEY, C. M. MACK, AND C. C. NIEMEYER Status of gray wolf restoration in Montana, Idaho, and Wyoming. Wildlife Society Bulletin 26: BANGS, E. E.,AND J. SHIVIK Managing wolf conflict with livestock in the Northwestern United States. Carnivore Damage Prevention News 3: 2-5. BIBIKOV, D. I Wolf ecology and management in the USSR. Pages in E H. Harrington and P C. Paquet, editors. Wolves of the world: perspectives of behaviour, ecology, and conservation. Noyes Publications, Park Ridge, New Jersey, USA. BJORGE, R. R., AND J. R. GUNSON Evaluation of wolf control to reduce cattle predation in Alberta. Journal of Range Management 38: Box, G. E. P., G. M. JENKINS, AND G. C. REINSEL Time series analysis, forecasting and control. Prentice Hall, Englewood Cliffs, New Jersey, USA. BROWN,J. S Vigilance, patch use, and habitat selection: foraging under predation risk. Evolutionary Ecology Research 1:49-71.

12 886 Wildlife Society Bulletin 2005,33(3): CIUCCI, P.,AND L. BOITANI Wolf and dog depredation on livestock in central Italy. Wildlife Society Bulletin 26: COI.E, H. H Introduction to livestock production. Freeman and Company, San Francisco, California, USA. COITMAN, D. W, P. O'DONOGHUE, J. T. JORGENSON, J. T. HOGG, C. STROBECK, AND M. FESTA-BIANCHET Undesirable evolutionary consequences of trophy hunting. Nature 426: COMMITTEE ON THE STATUS OF ENDANGERED WILDLIFE IN CANADA Canadian Species at Risk, May Government of Canada, Ottawa, Ontario, Canada. CONNER, M. M., M. M. JAEGER, J.T.WELLER, AND D. R. MCULILOU(GH Effect of coyote removal on sheep depredation in northern California. Journal of Wildlife Management 62: COPPINGER, R.,AND L. COPPINGER Dogs: a new understanding of canine origin, behaviour and evolution. University of Chicago Press, Chicago, Illinois, USA. DORRANCE, M. J Predation losses of cattle in Alberta. Journal of Range Management 35: FOURLI, M Compensation for damage caused by bears and wolves in the European Union. DG XI. European Commission, Bruxelles, Belgium. FRITTS, S. H Wolf predation on livestock in Minnesota. United States Fish and Wildlife Service Resource Publication 145:1-11. FRITTS, S. H., E. E. BANGS,J.A. FONTAINE, M. R.JOHNSON, M. K. PHILLIPS, E. D. KOCH, AND J. R. GUNSON Planning and implementing a reintroduction of wolves to Yellowstone National Park and central Idaho. Restoration Ecology 5:7-27. FRITTS, S. H.,W.J. PAUL, L. D. MECH,AND. P. SCOTT Trends and management of wolf-livestock conflicts in Minnesota. United States Fish and Wildlife Service Resource Publication 181:1-27. FRITTS, S. H., R. 0. STEPHENSON, R. D. HAYES, ANI) L. BOITANI Pages in L. D. Mech and L. Boitani, editors. Wolves: behavior, ecology and conservation. University of Chicago Press, Chicago, Illinois, USA. GILLIAM, J. E,ANI D. F FRASER Habitat selection under predation hazard: test of a model with stream-dwelling minnows. Ecology 68: GIPSON, P. S.,AND W.J. PAUL Wolves: prevention and control of wildlife damage. University of Nebraska Press, Lincoln, USA. GU NSON,J. R Status and management of wolves in Alberta. Pages in L. N. Carbyn, editor. Wolves in Canada and Alaska. Canadian Wildlife Service Report 45, Canadian Wildlife Service, Ottawa, Ontario, Canada. GUTNSON, J. R Historical and present management of wolves in Alberta. Wildlife Society Bulletin 20: HAIGHT, R. G., D. J. MLADENOFF, AND A.P. WYDEVEN Modeling disjunct gray wolf populations in semi-wild landscapes. Conservation Biology 12: HAYES, R. D., A. M. BAER, U. WOTSCHIKOWSKY, AND A. S. HARESTAD Kill rate by wolves on moose in the Yukon. Canadian Journal of Zoology 78: HAYES, R. D.,AND J. R. GUNSON Status and management of wolves in Canada. Pages in L. N. Carbyn, S. H. Fritts, and D. R. Seip, editors. Ecology and conservation of wolves in a changing world. Canadian Circumpolar Institute Occasional Publication 35, University of Alberta, Edmonton, Canada. HOLLING, C. S The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada 45:3-60. JOHNSON, C.J., K. L. PARKER, D. C. HEARD,AND M. P GILLINGHAM Movement parameters of ungulates and scale-specific responses to the environment. Journal of Animal Ecology 71: JORGENSEN, C. J., R. H. CONLEY, R. J. HAMILTON, AND. T. SANDERS Management of black bear depredation problems. Proceedings of the Eastern Workshop on Black Bear Management and Research 4: KNOWLTON, E E, E. M. GESE,AND M. M.JAEGER Coyote depredation control: an interface between biology and management. Journal of Range Management 52: LINNELL, J. D. C., R. AANES, J. E. SWENSON, J. ODDEN, AND M. E. SMITH Large carnivores that kill livestock: do "problem individuals" really exist? Wildlife Society Bulletin 27: LODGE, R. W Complementary grazing system for the Northern Great Plains. Journal of Range Management 23: MACK,J.A.,W G. BREWSTER,AND S. H. FRITTS A review of wolf depredation on livestock and implications for the Yellowstone area. Pages 3-20 in J. D. Varley and W G. Brewster, editors. Wolves for Yellowstone? A report to the United State Congress. Volume IV Research and Analysis. National Park Service, Yellowstone National Park, Mammoth Hot Springs,Wyoming, USA. MAZZOLLI, M., M. E. GRAIPEL,AND N. DUNSTONE Mountain lion depredation in southern Brazil. Biological Conservation 105: MCNAY, M. E Wolf-human interactions in Alaska and Canada : a review of the case history. Wildlife Society Bulletin 30: MECH, L. D The wolf: the ecology and behavior of an endangered species. University of Minnesota Press, Minneapolis, USA. MECH, L. D The challenge and opportunity of recovering wolf populations. Conservation Biology 9: MECH, L. D., S. H. FRITTS, AND W J. PAUL Relationship between winter severity and wolf depredations on domestic animals in Minnesota. Wildlife Society Bulletin 16: MECH L. D., E. K. HARPER,T.J. MEIER, AND WJ. PAUL Assessing factors that may predispose Minnesota farms to wolf depredations on cattle. Wildlife Society Bulletin 28: MISHRA, C., PALLEN,T. MCCARTHY, M. D. MADHUSUDAN,A. BAYARJARGAL, AND H. H.T. PRINS The role of incentive programs in conserving the snow leopard. Conservation Biology 17: M[USIANI, M., C. MAMO, L. BOITANI, C. CALLAGHAN, C. C. GATES, L. MATTEI, E.VISALBERGHI, S. BRECK,AND G.VOLPI Wolf depredation trends and the use of fladry barriers to protect livestock in western North America. Conservation Biology 17: M[USIANI, M.,AND P. C. PAQUET The practices of wolf persecution, protection and restoration in Canada and the USA. BioScience 54: NAUGHTON-TREVES, L., R. GROSSBERG,AND A.TREVES Paying for tolerance: the impact of depredation and compensation payments on rural citizens' attitudes toward wolves. Conservation Biology 17: NAUGHTON-TREVES, L., R. A. ROSE, AND A. TREVES Social and spatial dimensions of human-elephant conflict in Africa: a lit-

13 Seasonality of wolf depredation * Musiani et al. 887 erature review and two case studies from Uganda and Cameroon. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland. OAKLEAF,J. K., C. MACK,AND D. L. MURRAY Effects of wolves on livestock calf survival and movements in Central Idaho. Journal of Wildlife Management 67: OGADA, M. O., R.WOODROFFE, N. O. OGUGE, AND L. G. FRANK Limiting depredation by African carnivores: the role of livestock husbandry. Conservation Biology 17: PARSONS, D. R "Green fire" returns to the southwest: reintroduction of the Mexican wolf. Wildlife Society Bulletin 26: SHIVIK,J.A.,A.TREvES,AND P CALLAHAN Nonlethal techniques for managing predation: primary and secondary repellents. Conservation Biology 17: SHORT, J., J. E. KINNEAR, AND A. ROBLEY Surplus killing by introduced predators in Australia evidence for ineffective anti-predator adaptations in native prey species? Biological Conservation 103: SITATI, N.W, M.J.WALPOLE, R.J. SMITH,AND N. LEADER-WILLIAMS Predicting spatial aspects of human-elephant conflict. Journal of Applied Ecology 40: SJOBERG, S Zooplankton feeding and queuing theory. Ecological Modelling 10: SMITH, M. E., J. D. C. LINNELL, J. ODDEN, AND J. E. SWENSON. 2000a. Review of methods to reduce livestock depredation: I. Guardian animals. Acta Agriculturae Scandinavica Section A Animal Science 50: SMITH, M. E., J. D. C. LINNELL, J. ODDEN, AND J. E. SWENSON. 2000b. Review of methods to reduce livestock depredation: II. Aversive conditioning, deterrents, and repellents. Acta Agriculturae Scandinavica Section A Animal Science 50: SOKAL, R. S., AND J. R. ROHLF Biometry. W. H. Freeman and Company, New York, New York, USA. STAHL, P.,J. M. VANDEL, V HERRENSCHMIDT, AND P. MIGOT The effect of removing lynx in reducing attacks on sheep in the French Jura Mountains. Biological Conservation 101: TOMPA, E S Problem wolf management in British Columbia: conflict and program evaluation. Pages in L. N. Carbyn, editor. Wolves in Canada and Alaska. Canadian Wildlife Service Report 45, Canadian Wildlife Service, Ottawa, Ontario, Canada. Treves, A., R. R. Jurewicz, L. Naughton-Treves, R. A. Rose, R. C. Willging, and A. P Wydeven Wolf depredation on domestic animals in Wisconsin, Wildlife Society Bulletin 30: TREVES, A., AND K. U. KARANTH Human-carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology 17: UNITED STATES FISH AND WILDLIFE SERVICE Endangered and threatened wildlife and plants: final rule to reclassify and remove the gray wolf from the list of endangered and threatened wildlife in portions of the conterminous United States. Federal Register 68: (9 April 2003). WAGNER, K. K., R. H. SCHMIDT, AND M. R. CONOVER Compensation programs for wildlife damage in North America. Wildlife Society Bulletin 25: YOUNG, S. P., AND E. A. GOLDMAN The wolves of North America. Dover, New York, New York, USA. Marco Musiani (photo) is an adjunct professor at Prescott College, Prescott, Arizona, and is currently based at the University of Rome, Italy. There, the National Sciences and Engineering Research Council of Canada is supporting his project on the relationships between wolves, dogs, and humans in the context of high levels of depredation on livestock. Tyler Muhly has a Masters from the Faculty of Environmental Design at the University of Calgary. His research is focused on site depredation analysis. C. Cormack Gates is a professor and Program Coordinator of Environmental Science in the Faculty of Environmental Design at the University of Calgary. Carolyn Callaghan is the executive director and director of research with the Central Rockies Wolf Project. She is conducting research on depredation with the Government of Canada. Martin E. Smith is the former carnivore biologist at Defenders of Wildlife, Washington, D.C. Currently, he is leading the program on Nature Conservation and Management at Nord-Trondelag University College, Norway. Elisabetta Tosoni is a graduate student at the University of Rome, La Sapienza. She is conducting a project on carnivore ecology and management in central Italy. Associate editor: Crete

SPECIAL ISSUE: PREDATION

SPECIAL ISSUE: PREDATION Contents: SPECIAL ISSUE: PREDATION Volume 19, 2004 2 Predation and Livestock Production-Perspective and Overview Maurice Shelton 6 Economic Impact of Sheep Predation in the United States Keithly Jones

More information

Wolf Recovery in Yellowstone: Park Visitor Attitudes, Expenditures, and Economic Impacts

Wolf Recovery in Yellowstone: Park Visitor Attitudes, Expenditures, and Economic Impacts Wolf Recovery in Yellowstone: Park Visitor Attitudes, Expenditures, and Economic Impacts John W. Duffield, Chris J. Neher, and David A. Patterson Introduction IN 1995, THE U.S. FISH AND WILDLIFE SERVICE

More information

Original Draft: 11/4/97 Revised Draft: 6/21/12

Original Draft: 11/4/97 Revised Draft: 6/21/12 Original Draft: 11/4/97 Revised Draft: 6/21/12 Dear Interested Person or Party: The following is a scientific opinion letter requested by Brooks Fahy, Executive Director of Predator Defense. This letter

More information

Rocky Mountain Wolf Recovery 2010 Interagency Annual Report

Rocky Mountain Wolf Recovery 2010 Interagency Annual Report Rocky Mountain Wolf Recovery 2010 Interagency Annual Report A cooperative effort by the U.S. Fish and Wildlife Service, Montana Fish, Wildlife & Parks, Nez Perce Tribe, National Park Service, Blackfeet

More information

Apart from humans, wolves are the terrestrial mammals

Apart from humans, wolves are the terrestrial mammals The Practices of Wolf Persecution, Protection, and Restoration in Canada and the United States MARCO MUSIANI AND PAUL C. PAQUET Wolf management can be controversial, reflecting a wide range of public attitudes.

More information

Behavioral interactions between coyotes, Canis latrans, and wolves, Canis lupus, at ungulate carcasses in southwestern Montana

Behavioral interactions between coyotes, Canis latrans, and wolves, Canis lupus, at ungulate carcasses in southwestern Montana Western North American Naturalist Volume 66 Number 3 Article 12 8-10-2006 Behavioral interactions between coyotes, Canis latrans, and wolves, Canis lupus, at ungulate carcasses in southwestern Montana

More information

Effects of Wolf Mortality on Livestock Depredations

Effects of Wolf Mortality on Livestock Depredations Effects of Wolf Mortality on Livestock Depredations Robert B. Wielgus, Kaylie A. Peebles Published: December 3, 2014 DOI: 10.1371/journal.pone.0113505 Abstract Predator control and sport hunting are often

More information

Lynx Update May 25, 2009 INTRODUCTION

Lynx Update May 25, 2009 INTRODUCTION Lynx Update May 25, 2009 INTRODUCTION In an effort to establish a viable population of Canada lynx (Lynx canadensis) in Colorado, the Colorado Division of Wildlife (CDOW) initiated a reintroduction effort

More information

Loss of wildlands could increase wolf-human conflicts, PA G E 4 A conversation about red wolf recovery, PA G E 8

Loss of wildlands could increase wolf-human conflicts, PA G E 4 A conversation about red wolf recovery, PA G E 8 Loss of wildlands could increase wolf-human conflicts, PA G E 4 A conversation about red wolf recovery, PA G E 8 A Closer Look at Red Wolf Recovery A Conversation with Dr. David R. Rabon PHOTOS BY BECKY

More information

A California Education Project of Felidae Conservation Fund by Jeanne Wetzel Chinn 12/3/2012

A California Education Project of Felidae Conservation Fund by Jeanne Wetzel Chinn 12/3/2012 A California Education Project of Felidae Conservation Fund by Jeanne Wetzel Chinn 12/3/2012 Presentation Outline Fragmentation & Connectivity Wolf Distribution Wolves in California The Ecology of Wolves

More information

Mexican Gray Wolf Endangered Population Modeling in the Blue Range Wolf Recovery Area

Mexican Gray Wolf Endangered Population Modeling in the Blue Range Wolf Recovery Area Mexican Gray Wolf Endangered Population Modeling in the Blue Range Wolf Recovery Area New Mexico Super Computing Challenge Final Report April 3, 2012 Team 61 Little Earth School Team Members: Busayo Bird

More information

A Dispute Resolution Case: The Reintroduction of the Gray Wolf

A Dispute Resolution Case: The Reintroduction of the Gray Wolf Nova Southeastern University NSUWorks Fischler College of Education: Faculty Articles Abraham S. Fischler College of Education 1996 A Dispute Resolution Case: The Reintroduction of the Gray Wolf David

More information

Limits to Plasticity in Gray Wolf, Canis lupus, Pack Structure: Conservation Implications for Recovering Populations

Limits to Plasticity in Gray Wolf, Canis lupus, Pack Structure: Conservation Implications for Recovering Populations Limits to Plasticity in Gray Wolf, Canis lupus, Pack Structure: Conservation Implications for Recovering Populations THOMAS M. GEHRING 1,BRUCE E. KOHN 2,JOELLE L. GEHRING 1, and ERIC M. ANDERSON 3 1 Department

More information

ECOSYSTEMS Wolves in Yellowstone

ECOSYSTEMS Wolves in Yellowstone ECOSYSTEMS Wolves in Yellowstone Adapted from Background Two hundred years ago, around 1800, Yellowstone looked much like it does today; forest covered mountain areas and plateaus, large grassy valleys,

More information

Oregon Wolf Conservation and Management 2014 Annual Report

Oregon Wolf Conservation and Management 2014 Annual Report Oregon Wolf Conservation and Management 2014 Annual Report This report to the Oregon Fish and Wildlife Commission presents information on the status, distribution, and management of wolves in the State

More information

8 Fall 2014

8 Fall 2014 Do Wolves Cause National Park Service J Schmidt Garrey Faller R G Johnsson John Good 8 Fall 2014 www.wolf.org Trophic Cascades? Ever since wolves were reintroduced into Yellowstone National Park, scientific

More information

Lab 8 Order Carnivora: Families Canidae, Felidae, and Ursidae Need to know Terms: carnassials, digitigrade, reproductive suppression, Jacobson s organ

Lab 8 Order Carnivora: Families Canidae, Felidae, and Ursidae Need to know Terms: carnassials, digitigrade, reproductive suppression, Jacobson s organ Lab 8 Order Carnivora: Families Canidae, Felidae, and Ursidae Need to know Terms: carnassials, digitigrade, reproductive suppression, Jacobson s organ Family Canidae Canis latrans ID based on skull, photos,

More information

Mexican Gray Wolf Reintroduction

Mexican Gray Wolf Reintroduction Mexican Gray Wolf Reintroduction New Mexico Supercomputing Challenge Final Report April 2, 2014 Team Number 24 Centennial High School Team Members: Andrew Phillips Teacher: Ms. Hagaman Project Mentor:

More information

Structured Decision Making: A Vehicle for Political Manipulation of Science May 2013

Structured Decision Making: A Vehicle for Political Manipulation of Science May 2013 Structured Decision Making: A Vehicle for Political Manipulation of Science May 2013 In North America, gray wolves (Canis lupus) formerly occurred from the northern reaches of Alaska to the central mountains

More information

Y Use of adaptive management to mitigate risk of predation for woodland caribou in north-central British Columbia

Y Use of adaptive management to mitigate risk of predation for woodland caribou in north-central British Columbia Y093065 - Use of adaptive management to mitigate risk of predation for woodland caribou in north-central British Columbia Purpose and Management Implications Our goal was to implement a 3-year, adaptive

More information

High Risk Behavior for Wild Sheep: Contact with Domestic Sheep and Goats

High Risk Behavior for Wild Sheep: Contact with Domestic Sheep and Goats High Risk Behavior for Wild Sheep: Contact with Domestic Sheep and Goats Introduction The impact of disease on wild sheep populations was brought to the forefront in the winter of 2009-10 due to all age

More information

WOLF- LIVESTOCK NONLETHAL CONFLICT AVOIDANCE: A REVIEW OF THE LITERATURE

WOLF- LIVESTOCK NONLETHAL CONFLICT AVOIDANCE: A REVIEW OF THE LITERATURE WOLF- LIVESTOCK NONLETHAL CONFLICT AVOIDANCE: A REVIEW OF THE LITERATURE With Recommendations for Application to Livestock Producers in Washington State A Project of Western Wildlife Outreach With funding

More information

Log in / Create Account NEWS & OPINION» FEATURE JULY 23, 2015 Tweet Email Print Favorite Share By Cathy Rosenberg click to enlarge David Ellis/Flickr Of Men and Wolves: & Tolerance on the Range F521 wandered

More information

Brent Patterson & Lucy Brown Ontario Ministry of Natural Resources Wildlife Research & Development Section

Brent Patterson & Lucy Brown Ontario Ministry of Natural Resources Wildlife Research & Development Section Coyote & Wolf Biology 101: helping understand depredation on livestock Brent Patterson & Lucy Brown Ontario Ministry of Natural Resources Wildlife Research & Development Section 1 Outline 1. Description

More information

Big Dogs, Hot Fences and Fast Sheep

Big Dogs, Hot Fences and Fast Sheep Big Dogs, Hot Fences and Fast Sheep A Rancher s Perspective on Predator Protection Presented by Dan Macon Flying Mule Farm and UC Davis California Rangeland Watershed Laboratory March 26, 2016 Overview

More information

Wolf Reintroduction in the Adirondacks. Erin Cyr WRT 333 Sue Fischer Vaughn. 10 December 2009

Wolf Reintroduction in the Adirondacks. Erin Cyr WRT 333 Sue Fischer Vaughn. 10 December 2009 Wolf Reintroduction in the Adirondacks Erin Cyr WRT 333 Sue Fischer Vaughn 10 December 2009 Abstract Descendants of the European settlers eliminated gray wolves from Adirondack Park over one hundred years

More information

Third Annual Conference on Animals and the Law

Third Annual Conference on Animals and the Law Pace Environmental Law Review Volume 15 Issue 2 Summer 1998 Article 1 June 1998 Third Annual Conference on Animals and the Law Ed Bangs Follow this and additional works at: http://digitalcommons.pace.edu/pelr

More information

Living with LIVESTOCK& Wolf-Livestock Nonlethal Conflict Avoidance: A Review of the Literature

Living with LIVESTOCK& Wolf-Livestock Nonlethal Conflict Avoidance: A Review of the Literature Living with LIVESTOCK& Wolf-Livestock Nonlethal Conflict Avoidance: A Review of the Literature WOLF- LIVESTOCK NONLETHAL CONFLICT AVOIDANCE: A REVIEW OF THE LITERATURE With Recommendations for Application

More information

July 5, Via Federal erulemaking Portal. Docket No. FWS-R3-ES

July 5, Via Federal erulemaking Portal. Docket No. FWS-R3-ES July 5, 2011 Via Federal erulemaking Portal Docket No. FWS-R3-ES-2011-0029 Public Comments Processing Attn: FWS-R3-ES-2011-0029 Division of Policy and Directives Management U.S. Fish and Wildlife Service

More information

May 22, Secretary Sally Jewell Department of Interior 1849 C Street NW Washington, DC 20240

May 22, Secretary Sally Jewell Department of Interior 1849 C Street NW Washington, DC 20240 May 22, 2013 Secretary Sally Jewell Department of Interior 1849 C Street NW Washington, DC 20240 cc: Dan Ashe, Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, DC 20240 Dear Secretary

More information

A Conversation with Mike Phillips

A Conversation with Mike Phillips A Conversation with Mike Phillips Clockwise from top: Lynn Rogers, Evelyn Mercer, Kevin Loader, Jackie Fallon 4 Fall 2011 www.wolf.org Editor s Note: Tom Myrick, communications director for the International

More information

Ecological Studies of Wolves on Isle Royale

Ecological Studies of Wolves on Isle Royale Ecological Studies of Wolves on Isle Royale 2017-2018 I can explain how and why communities of living organisms change over time. Summary Between January 2017 and January 2018, the wolf population continued

More information

Wolf Recovery Survey New Mexico. June 2008 Research & Polling, Inc.

Wolf Recovery Survey New Mexico. June 2008 Research & Polling, Inc. Wolf Recovery Survey New Mexico June 2008 Research & Polling, Inc. Methodology Research Objectives: This research study was commissioned by conservation and wildlife organizations, including the New Mexico

More information

THE WOLF WATCHERS. Endangered gray wolves return to the American West

THE WOLF WATCHERS. Endangered gray wolves return to the American West CHAPTER 7 POPULATION ECOLOGY THE WOLF WATCHERS Endangered gray wolves return to the American West THE WOLF WATCHERS Endangered gray wolves return to the American West Main concept Population size and makeup

More information

Re: Proposed Revision To the Nonessential Experimental Population of the Mexican Wolf

Re: Proposed Revision To the Nonessential Experimental Population of the Mexican Wolf December 16, 2013 Public Comments Processing Attn: FWS HQ ES 2013 0073 and FWS R2 ES 2013 0056 Division of Policy and Directive Management United States Fish and Wildlife Service 4401 N. Fairfax Drive

More information

Bailey, Vernon The mammals and life zones of Oregon. North American Fauna pp.

Bailey, Vernon The mammals and life zones of Oregon. North American Fauna pp. E. Literature Cited Bailey, Vernon. 1936. The mammals and life zones of Oregon. North American Fauna 55. 416 pp. Boitani, L. 2003. Wolf Conservation and Recovery. In: Wolves, Behavior, Ecology, and Conservation.

More information

Third Annual Conference on Animals and the Law

Third Annual Conference on Animals and the Law Pace Environmental Law Review Volume 15 Issue 2 Summer 1998 Article 4 June 1998 Third Annual Conference on Animals and the Law Nina Fascione Follow this and additional works at: http://digitalcommons.pace.edu/pelr

More information

Executive Summary. DNR will conduct or facilitate the following management activities and programs:

Executive Summary. DNR will conduct or facilitate the following management activities and programs: Minnesota Wolf Management Plan - 2001 2 Executive Summary The goal of this management plan is to ensure the long-term survival of wolves in Minnesota while addressing wolf-human conflicts that inevitably

More information

Participant Perceptions of Range Rider Programs Used to Mitigate Wolf-Livestock Conflicts in the Western United States

Participant Perceptions of Range Rider Programs Used to Mitigate Wolf-Livestock Conflicts in the Western United States Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2015 Participant Perceptions of Range Rider Programs Used to Mitigate Wolf-Livestock Conflicts in the Western

More information

110th CONGRESS 1st Session H. R. 1464

110th CONGRESS 1st Session H. R. 1464 HR 1464 IH 110th CONGRESS 1st Session H. R. 1464 To assist in the conservation of rare felids and rare canids by supporting and providing financial resources for the conservation programs of nations within

More information

Biological, technical, and social aspects of applying electrified fladry for livestock protection from wolves (Canis lupus)

Biological, technical, and social aspects of applying electrified fladry for livestock protection from wolves (Canis lupus) University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff Publications U.S. Department of Agriculture: Animal and Plant Health Inspection

More information

Wolf Reintroduction Scenarios Pro and Con Chart

Wolf Reintroduction Scenarios Pro and Con Chart Wolf Reintroduction Scenarios Pro and Con Chart Scenarios Pro Con Scenario 1: Reintroduction of experimental populations of wolves The designation experimental wolves gives the people who manage wolf populations

More information

Allen Press is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Wildlife Management.

Allen Press is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Wildlife Management. Bighorn Lamb Production, Survival, and Mortality in South-Central Colorado Author(s): Thomas N. Woodard, R. J. Gutiérrez, William H. Rutherford Reviewed work(s): Source: The Journal of Wildlife Management,

More information

GREATER SAGE-GROUSE BROOD-REARING HABITAT MANIPULATION IN MOUNTAIN BIG SAGEBRUSH, USE OF TREATMENTS, AND REPRODUCTIVE ECOLOGY ON PARKER MOUNTAIN, UTAH

GREATER SAGE-GROUSE BROOD-REARING HABITAT MANIPULATION IN MOUNTAIN BIG SAGEBRUSH, USE OF TREATMENTS, AND REPRODUCTIVE ECOLOGY ON PARKER MOUNTAIN, UTAH GREATER SAGE-GROUSE BROOD-REARING HABITAT MANIPULATION IN MOUNTAIN BIG SAGEBRUSH, USE OF TREATMENTS, AND REPRODUCTIVE ECOLOGY ON PARKER MOUNTAIN, UTAH Abstract We used an experimental design to treat greater

More information

Stakeholder Activity

Stakeholder Activity Stakeholder Activity Stakeholder Group: Wolf Watching Ecotourism For the stakeholder meeting, your group will represent Wolf Watching Ecotourism. Your job is to put yourself in the Wolf Watching Ecotourism

More information

Biological aspects of wolf recolonization in Utah

Biological aspects of wolf recolonization in Utah Natural Resources and Environmental Issues Volume 10 Wolves in Utah Article 5 1-1-2002 Biological aspects of wolf recolonization in Utah T. Adam Switalski Department of Fisheries and Wildlife, Utah State

More information

Pack Size of Wolves, Canis lupus, on Caribou, Rangifer tarandus, Winter Ranges in Westcentral Alberta

Pack Size of Wolves, Canis lupus, on Caribou, Rangifer tarandus, Winter Ranges in Westcentral Alberta Pack Size of Wolves, Canis lupus, on Caribou, Rangifer tarandus, Winter Ranges in Westcentral Alberta GERALD W. KUZYK 1,3,JEFF KNETEMAN 2, AND FIONA K. A. SCHMIEGELOW 1 1 Department of Renewable Resources,

More information

Wildlife Services: Helping Producers Manage Predation

Wildlife Services: Helping Producers Manage Predation United States Department of Agriculture Animal and Plant Health Inspection Service Program Aid No. 1722 Wildlife Services: Helping Producers Manage Predation Photo credits: The images of the Akbash dog

More information

"Nature Conservation Beyond 2010" May 27-29, Tallinn, Parallel Session "Ecosystem Goods and Services" Presentation No. 5

Nature Conservation Beyond 2010 May 27-29, Tallinn, Parallel Session Ecosystem Goods and Services Presentation No. 5 Large Carnivore Damage Prevention and Conservation: Livestock Guarding Dogs in Finland and Estonia Teet Otstavel, University of Helsinki 1 BACKGROUND In recent decades the populations of wolves (Canis

More information

Wolves. Wolf conservation is at a crossroads. The U.S. Fish and. A Blueprint for Continued Wolf Restoration And Recovery in the Lower 48 States

Wolves. Wolf conservation is at a crossroads. The U.S. Fish and. A Blueprint for Continued Wolf Restoration And Recovery in the Lower 48 States Wolves Places for A Blueprint for Continued Wolf Restoration And Recovery in the Lower 48 States Lamar Valley, Yellowstone National Park Mike Cavaroc/Free Roaming Photography Wolf conservation is at a

More information

FW: Gray Wolf Petition (California Endangered Species Act) - Status Review for California CFW.doc; ATT00001.htm

FW: Gray Wolf Petition (California Endangered Species Act) - Status Review for California CFW.doc; ATT00001.htm Lee, Rhianna@Wildlife Subject: Attachments: FW: Gray Wolf Petition (California Endangered Species Act) - Status Review for California CFW.doc; ATT00001.htm From: Bob Date: November 20,

More information

Vadim Sidorovich and Irina Rotenko. Reproduction biology in grey wolves Canis lupus in Belarus: Common beliefs versus reality

Vadim Sidorovich and Irina Rotenko. Reproduction biology in grey wolves Canis lupus in Belarus: Common beliefs versus reality Vadim Sidorovich and Irina Rotenko Reproduction biology in grey wolves Canis lupus in Belarus: Common beliefs versus reality MINSK CHATYRY CHVERСI 2018 UDC 599.742.11:591.16(476) The monograph was reviewed

More information

IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF MONTANA MISSOULA DIVISION

IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF MONTANA MISSOULA DIVISION Case 9:08-cv-00014-DWM Document 106 Filed 01/28/11 Page 1 of 8 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF MONTANA MISSOULA DIVISION DEFENDERS OF WILDLIFE, et al., No. CV-08-14-M-DWM Plaintiffs,

More information

California Bighorn Sheep Population Inventory Management Units 3-17, 3-31 and March 20 & 27, 2006

California Bighorn Sheep Population Inventory Management Units 3-17, 3-31 and March 20 & 27, 2006 California Bighorn Sheep Population Inventory Management Units 3-17, 3-31 and 3-32 March 20 & 27, 2006 Prepared for: Environmental Stewardship Division Fish and Wildlife Science and Allocation Section

More information

AN ANALYSIS OF WOLF-LIVESTOCK CONFLICT HOTSPOTS AND CONFLICT REDUCTION STRATEGIES IN NORTHERN CALIFORNIA

AN ANALYSIS OF WOLF-LIVESTOCK CONFLICT HOTSPOTS AND CONFLICT REDUCTION STRATEGIES IN NORTHERN CALIFORNIA AN ANALYSIS OF WOLF-LIVESTOCK CONFLICT HOTSPOTS AND CONFLICT REDUCTION STRATEGIES IN NORTHERN CALIFORNIA Prepared by: Sarah Antonelli, Kristen Boysen, Charlie Piechowski, Michael Smith, & Geoff Willard

More information

ODFW LIVESTOCK DEPREDATION INVESTIGATION REPORTS January - March 2019

ODFW LIVESTOCK DEPREDATION INVESTIGATION REPORTS January - March 2019 ODFW LIVESTOCK DEPREDATION INVESTIGATION REPORTS January - March 2019 This document lists livestock depredation investigations completed by the Oregon Department of Fish and Wildlife since January 1, 2019.

More information

ASSESSING THE EFFECTS OF A HARVESTING BAN ON THE DYNAMICS OF WOLVES IN ALGONQUIN PARK, ONTARIO AN UPDATE

ASSESSING THE EFFECTS OF A HARVESTING BAN ON THE DYNAMICS OF WOLVES IN ALGONQUIN PARK, ONTARIO AN UPDATE ASSESSING THE EFFECTS OF A HARVESTING BAN ON THE DYNAMICS OF WOLVES IN ALGONQUIN PARK, ONTARIO AN UPDATE Brent Patterson, Ken Mills, Karen Loveless and Dennis Murray Ontario Ministry of Natural Resources

More information

Shoot, shovel and shut up: cryptic poaching slows restoration of a large

Shoot, shovel and shut up: cryptic poaching slows restoration of a large Electronic Supplementary Material Shoot, shovel and shut up: cryptic poaching slows restoration of a large carnivore in Europe doi:10.1098/rspb.2011.1275 Time series data Field personnel specifically trained

More information

Coyote (Canis latrans)

Coyote (Canis latrans) Coyote (Canis latrans) Coyotes are among the most adaptable mammals in North America. They have an enormous geographical distribution and can live in very diverse ecological settings, even successfully

More information

Mexican Wolf Reintroduction Project Monthly Update May 1-31, 2016

Mexican Wolf Reintroduction Project Monthly Update May 1-31, 2016 Mexican Wolf Reintroduction Project Monthly Update May 1-31, 2016 The following is a summary of Mexican Wolf Reintroduction Project (Project) activities in the Mexican Wolf Experimental Population Area

More information

Research Subsidized Fencing of Livestock as a Means of Increasing Tolerance for Wolves

Research Subsidized Fencing of Livestock as a Means of Increasing Tolerance for Wolves Copyright 2011 by the author(s). Published here under license by the Resilience Alliance. Karlsson, J., and M. Sjöström. 2011. Subsidized fencing of livestock as a means of increasing tolerance for wolves.

More information

The Canadian Field-Naturalist

The Canadian Field-Naturalist The Canadian Field-Naturalist Volume 123, Number 3 July September 2009 Coywolf, Canis latrans lycaon, Pack Density Doubles Following the Death of a Resident Territorial Male JONATHAN G. WAY 1, 4, BRAD

More information

2017 ANIMAL SHELTER STATISTICS

2017 ANIMAL SHELTER STATISTICS 2017 ANIMAL SHELTER STATISTICS INTRODUCTION Dogs and cats are by far Canada s most popular companion animals. In 2017, there were an estimated 7.4 million owned dogs and 9.3 million owned cats living in

More information

Mexican Wolf Reintroduction Project Monthly Update March 1-31, 2015

Mexican Wolf Reintroduction Project Monthly Update March 1-31, 2015 Mexican Wolf Reintroduction Project Monthly Update March 1-31, 2015 The following is a summary of Mexican Wolf Reintroduction Project (Project) activities in the Mexican Wolf Experimental Population Area

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Population Dynamics of a Recolonizing Wolf Population Author(s): Daniel H. Pletscher, Robert R. Ream, Diane K. Boyd, Michael W. Fairchild, Kyran E. Kunkel Source: The Journal of Wildlife Management, Vol.

More information

Wolves and ranchers have a long history of conflict. Ranchers need to protect their animals and wolves need to eat.

Wolves and ranchers have a long history of conflict. Ranchers need to protect their animals and wolves need to eat. Sometimes wolves will break off from their pack, traveling many miles on their own. Wolf OR-7 became a notable example of this phenomenon when he left the Imnaha pack in northeastern Oregon, traveling

More information

Role of Temperature and Shade Coverage on Behavior and Habitat Use of Captive African Lions, Snow Leopards, and Cougars

Role of Temperature and Shade Coverage on Behavior and Habitat Use of Captive African Lions, Snow Leopards, and Cougars Xavier Journal of Undergraduate Research Volume 4 Article 7 2016 Role of Temperature and Shade Coverage on Behavior and Habitat Use of Captive African Lions, Snow Leopards, and Cougars Caitlin Mack Follow

More information

Nonlethal tools and methods for depredation management of large carnivores

Nonlethal tools and methods for depredation management of large carnivores Nonlethal tools and methods for depredation management of large carnivores Eric Gese, USDA/APHIS/WS/National Wildlife Research Center Logan Field Station, Utah Recovery of large carnivores often corresponds

More information

Mexican Wolf Experimental Population Area Initial Release and Translocation Proposal for 2018

Mexican Wolf Experimental Population Area Initial Release and Translocation Proposal for 2018 Mexican Wolf Reintroduction Project Page 1 of 13 Mexican Wolf Experimental Population Area Initial Release and Translocation Proposal for 2018 This document was developed by the Mexican Wolf Interagency

More information

Oregon Wolf Conservation and Management 2012 Annual Report

Oregon Wolf Conservation and Management 2012 Annual Report Oregon Wolf Conservation and Management 2012 Annual Report This report to the Oregon Fish and Wildlife Commission presents information on the status, distribution, and management of wolves in the State

More information

ODFW Non-Lethal Measures to Minimize Wolf-Livestock Conflict 10/14/2016

ODFW Non-Lethal Measures to Minimize Wolf-Livestock Conflict 10/14/2016 ODFW Non-Lethal Measures to Minimize Wolf-Livestock Conflict 10/14/2016 The following is a list of non-lethal or preventative measures which are intended to help landowners or livestock producers minimize

More information

TRYPANOSOMIASIS IN TANZANIA

TRYPANOSOMIASIS IN TANZANIA TDR-IDRC RESEARCH INITIATIVE ON VECTOR BORNE DISEASES IN THE CONTEXT OF CLIMATE CHANGE FINDINGS FOR POLICY MAKERS TRYPANOSOMIASIS IN TANZANIA THE DISEASE: Trypanosomiasis Predicting vulnerability and improving

More information

OREGON WOLF CONSERVATION AND MANAGEMENT PLAN (DRAFT)

OREGON WOLF CONSERVATION AND MANAGEMENT PLAN (DRAFT) Working Copy of April 0 Draft Wolf Plan Update (//0) OREGON WOLF CONSERVATION AND MANAGEMENT PLAN (DRAFT) OREGON DEPARTMENT OF FISH AND WILDLIFE DRAFT, APRIL 0 Working Copy (//0) Working Copy of April

More information

SPECIAL ISSUE: PREDATION

SPECIAL ISSUE: PREDATION Contents: SPECIAL ISSUE: PREDATION Volume 19, 2004 2 Predation and Livestock Production-Perspective and Overview Maurice Shelton 6 Economic Impact of Sheep Predation in the United States Keithly Jones

More information

Food Item Use by Coyote Pups at Crab Orchard National Wildlife Refuge, Illinois

Food Item Use by Coyote Pups at Crab Orchard National Wildlife Refuge, Illinois Transactions of the Illinois State Academy of Science (1993), Volume 86, 3 and 4, pp. 133-137 Food Item Use by Coyote Pups at Crab Orchard National Wildlife Refuge, Illinois Brian L. Cypher 1 Cooperative

More information

Protecting People Protecting Agriculture Protecting Wildlife

Protecting People Protecting Agriculture Protecting Wildlife Livestock protection dogs: Protecting the resource Enhancing Montana s Wildlife & Habitat Tools For Coexistence Between Livestock & Large Carnivores: Guard Dogs & Rangeland Stewardship October 29, 2013

More information

Oregon Wolf Management Oregon Department of Fish and Wildlife, January 2016

Oregon Wolf Management Oregon Department of Fish and Wildlife, January 2016 Oregon Wolf Management Oregon Department of Fish and Wildlife, January 2016 Oregon Wolf Conservation and Management Plan Wolves in Oregon are managed under the Oregon Wolf Conservation and Management Plan

More information

American Bison (Bison bison)

American Bison (Bison bison) American Bison (Bison bison) The American Bison's recovery from near extinction parallels what happened to the European Bison, Bison bonasus. Once abundant and widespread in northern latitudes, their decline

More information

California Department of Fish and Wildlife. California Part 1. December 2015

California Department of Fish and Wildlife. California Part 1. December 2015 California Department of Fish and Wildlife Draft Conservation Plan for Gray Wolves in California Part 1 Charlton H. Bonham, Director Cover photograph by Gary Kramer California Department of Fish and Wildlife,

More information

TEXAS WILDLIFE JULY 2016 STUDYING THE LIONS OF WEST TEXAS. Photo by Jeff Parker/Explore in Focus.com

TEXAS WILDLIFE JULY 2016 STUDYING THE LIONS OF WEST TEXAS. Photo by Jeff Parker/Explore in Focus.com Photo by Jeff Parker/Explore in Focus.com Studies show that apex predators, such as mountain lions, play a role in preserving biodiversity through top-down regulation of other species. 8 STUDYING THE LIONS

More information

RE: Elk and Vegetation Management Plan Draft EIS

RE: Elk and Vegetation Management Plan Draft EIS June 30, 2006 Vaughn Baker, Superintendent Rocky Mountain National Park 1000 Highway 36 Estes Park, CO 80517-8397 RE: Elk and Vegetation Management Plan Draft EIS Dear Superintendent Baker, Thank you for

More information

IDAHO WOLF RECOVERY PROGRAM

IDAHO WOLF RECOVERY PROGRAM IDAHO WOLF RECOVERY PROGRAM Restoration and Management of Gray Wolves in Central Idaho PROGRESS REPORT 2002 Progress Report 2002 IDAHO WOLF RECOVERY PROGRAM Restoration and Management of Gray Wolves in

More information

VANCOUVER ISLAND MARMOT

VANCOUVER ISLAND MARMOT VANCOUVER ISLAND MARMOT STATUS: CRITICALLY ENDANGERED The Vancouver Island marmot is one of the rarest mammals in the world and can be found only in the alpine meadows on Vancouver Island. By 2003, there

More information

Oregon Department of Fish and Wildlife Area-Specific Wolf Conflict Deterrence Plan Silver Lake Wolves Area 10/24/2016

Oregon Department of Fish and Wildlife Area-Specific Wolf Conflict Deterrence Plan Silver Lake Wolves Area 10/24/2016 Oregon Department of Fish and Wildlife Area-Specific Wolf Conflict Deterrence Plan Silver Lake Wolves Area 10/24/2016 General Situation OR3 is a male wolf that dispersed from the Imnaha Pack in northeast

More information

Rocky Mountain Wolf Recovery 1996 Annual Report

Rocky Mountain Wolf Recovery 1996 Annual Report Rocky Mountain Wolf Recovery 1996 Annual Report A cooperative effort by the U.S. Fish and Wildlife Service, the Nez Perce Tribe, the National Park Service, and USDA Wildlife Services Wolf #R10 This cooperative

More information

VANCOUVER ISLAND MARMOT

VANCOUVER ISLAND MARMOT VANCOUVER ISLAND MARMOT STATUS: CRITICALLY ENDANGERED The Vancouver Island marmot is one of the rarest mammals in the world and can be found only in the alpine meadows on Vancouver Island. By 2003, there

More information

REPORT TO THE FISH AND GAME COMMISSION. A STATUS REVIEW OF THE GRAY WOLF (Canis lupus) IN CALIFORNIA

REPORT TO THE FISH AND GAME COMMISSION. A STATUS REVIEW OF THE GRAY WOLF (Canis lupus) IN CALIFORNIA STATE OF CALIFORNIA NATURAL RESOURCES AGENCY DEPARTMENT OF FISH AND WILDLIFE REPORT TO THE FISH AND GAME COMMISSION A STATUS REVIEW OF THE GRAY WOLF (Canis lupus) IN CALIFORNIA Photo courtesy of ODFW CHARLTON

More information

MODULE 3. What is conflict?

MODULE 3. What is conflict? This module incorporates the Human Wildlife Conflict Toolkit developed by BioHub with sponsorship from the FAO SADC Subregional office. The module focuses on conflict between humans and cheetah and wild

More information

Survival of Colonizing Wolves in the Northern Rocky Mountains of the United States,

Survival of Colonizing Wolves in the Northern Rocky Mountains of the United States, Journal of Wildlife Management 74(4):620 634; 2010; DOI: 10.2193/2008-584 Management and Conservation Article Survival of Colonizing Wolves in the Northern Rocky Mountains of the United States, 1982 2004

More information

Alberta Conservation Association 2009/10 Project Summary Report

Alberta Conservation Association 2009/10 Project Summary Report Alberta Conservation Association 2009/10 Project Summary Report Project Name: Habitat Selection by Pronghorn in Alberta Wildlife Program Manager: Doug Manzer Project Leader: Paul Jones Primary ACA staff

More information

Pred-X Field Test Results

Pred-X Field Test Results University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Wildlife Damage Control Workshop Proceedings Wildlife Damage Management, Internet Center for December 1993

More information

Mexican Wolf Blue Range Reintroduction Project Interagency Field Team Annual Report Reporting Period: January 1 December 31, 2005

Mexican Wolf Blue Range Reintroduction Project Interagency Field Team Annual Report Reporting Period: January 1 December 31, 2005 Interagency Field Team Annual Report Reporting Period: January 1 December 31, 2005 Prepared by: Arizona Game and Fish Department, New Mexico Department of Game and Fish, U.S. Fish and Wildlife Service,

More information

NORTHWEST TERRITORIES

NORTHWEST TERRITORIES NORTHWEST TERRITORIES No. by: Dean Cluff, Biologist, North Slave Region Fall/Winter 2006/07 A Newsletter on Wolf Studies in the Central Arctic, NWT, Canada Detecting change in a wolf population is difficult

More information

Coexisting with Carnivores:

Coexisting with Carnivores: Coexisting with Carnivores: A cost-benefit analysis of non-lethal wolf-depredation management in central Idaho By Ashley L. Abernethy May 2011 Dr. Randall Kramer, Advisor Masters project submitted in partial

More information

Application of Electrified Fladry to Decrease Risk of Livestock Depredations by Wolves (Canis lupus)

Application of Electrified Fladry to Decrease Risk of Livestock Depredations by Wolves (Canis lupus) Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2009 Application of Electrified Fladry to Decrease Risk of Livestock Depredations by Wolves (Canis lupus)

More information

Mexican Wolves and Infectious Diseases

Mexican Wolves and Infectious Diseases Mexican Wolves and Infectious Diseases Mexican wolves are susceptible to many of the same diseases that can affect domestic dogs, coyotes, foxes and other wildlife. In general, very little infectious disease

More information

Global Wildlife Resources, Inc. Wildlife Veterinary Resources, Inc. Glacier ational Park Yosemite ational Park Isle Royale ational Park

Global Wildlife Resources, Inc. Wildlife Veterinary Resources, Inc. Glacier ational Park Yosemite ational Park Isle Royale ational Park Mark R. Johnson DVM RESUME Employment 3/00 - present Global Wildlife Resources, Inc., Bozeman, Montana Executive Director for non-profit organization supporting wildlife & animal welfare professionals

More information

Case Study Learning to live with wolves: communitybased conservation in the Blackfoot Valley of Montana

Case Study Learning to live with wolves: communitybased conservation in the Blackfoot Valley of Montana Human Wildlife Interactions 11(3):245 257, Winter 2017 Case Study Learning to live with wolves: communitybased conservation in the Blackfoot Valley of Montana S M. W, College of Forestry and Conservation,

More information

The Perceptions of Michigan Hunters Regarding Wolves (Canis Lupus) and the ldea of a Wolf-Hunt as a Management Option

The Perceptions of Michigan Hunters Regarding Wolves (Canis Lupus) and the ldea of a Wolf-Hunt as a Management Option Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-2016 The Perceptions of Michigan Hunters Regarding Wolves (Canis Lupus) and the ldea of a Wolf-Hunt as a Management Option

More information

Gray Wolf (Canis lupus) Death by Stick Impalement

Gray Wolf (Canis lupus) Death by Stick Impalement University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Northern Prairie Wildlife Research Center Wildlife Damage Management, Internet Center for 2017 Gray Wolf (Canis lupus)

More information