DIDIER GRUSON, GILLES HILBERT, FREDERIC VARGAS, RUDDY VALENTINO, CECILE BEBEAR, ANNIE ALLERY, CHRISTIANE BEBEAR, GEORGES GBIKPI-BENISSAN,

Size: px
Start display at page:

Download "DIDIER GRUSON, GILLES HILBERT, FREDERIC VARGAS, RUDDY VALENTINO, CECILE BEBEAR, ANNIE ALLERY, CHRISTIANE BEBEAR, GEORGES GBIKPI-BENISSAN,"

Transcription

1 Rotation and Restricted Use of Antibiotics in a Medical Intensive Care Unit Impact on the Incidence of Ventilator-associated Pneumonia Caused by Antibiotic-resistant Gram-negative Bacteria DIDIER GRUSON, GILLES HILBERT, FREDERIC VARGAS, RUDDY VALENTINO, CECILE BEBEAR, ANNIE ALLERY, CHRISTIANE BEBEAR, GEORGES GBIKPI-BENISSAN, and JEAN-PIERRE CARDINAUD Pulmonary and Critical Care Division and Department of Bacteriology, University Hospital of Bordeaux, Bordeaux, France To test the hypothesis that a new program of antibiotic strategy control can minimize the incidence of ventilator-associated pneumonia (VAP) caused by potentially antibiotic-resistant microorganisms, we performed a prospective before-after study in 3,455 patients admitted to a single intensive care unit over a 4-yr period. Regarding the bacterial ecology and the increasing antimicrobial resistance in our medical intensive care unit (MICU), we decided to vary our choice of empiric and therapeutic antibiotic treatment, with a supervised rotation, and a restricted use of ceftazidime and ciprofloxacin, which were widely prescribed before this scheduled change. For all patients, VAP was diagnosed based on the results of quantitative culture of bronchoalveolar lavage specimens ( 10 4 cfu/ml). We studied 1,044 and 1,022 patients requiring more than 48 h of mechanical ventilation (MV), respectively, in the beforeperiod (2 yr: ) and the after-period (2 yr: ). We observed a decrease from 231 consecutive episodes of VAP in the before-period to 161 episodes of VAP in the after-period (p 0.01), particularly for VAP occurring before 7 d of MV. The total number of potentially antibiotic-resistant gram-negative bacilli responsible for VAP such as Pseudomonas aeruginosa, Burkholderia cepacia, Steno-trophomonas maltophilia, and Acinetobacter baumanii decreased from 140 to 79 isolated bacilli. The susceptibilities of these bacteria to the antibiotics regimen increased significantly, especially for P. aeruginosa and B. cepacia. The percentage of methicillin-sensitive Staphylococcus aureus increased significantly from 40% to 60% of S. aureus responsible for VAP. These results suggest that a new strategy of antibiotics use could be an efficient means to reduce the incidence of VAP caused by antibiotic-resistant bacteria. Nevertheless, further studies are needed to validate these data. Antimicrobial agents are one of the costliest categories of drug expenditure in hospitals. Investigations in various clinical practice settings have indicated that as much as 50% of antibiotic use is inappropriate (1, 2). Widespread use of antibiotics in intensive care units is a potential cause of the emergence of nosocomial infections caused by antibiotic-resistant gram-negative bacteria (3, 4). Ventilator-associated pneumonia (VAP) is a frequent cause of death from nosocomial infection in critically ill patients (5). The estimated prevalence of VAP ranges from 10 to 65%, with a high fatality rate, especially when it is caused by antibiotic-resistant bacteria (6, 7). The prior administration of antibiotics has become a recognized significant risk factor for superinfection caused by antibiotic-resistant microorganisms (8). This emergence of antibiotic-resistant microorganisms in critically ill patients represents a new challenge for intensive care physicians, and several antibiotic control strategies have been designed to prevent this problem (3, 9, 10). (Received in original form May 14, 1999 and in revised form January 31, 2000) Correspondence and requests for reprints should be addressed to Didier Gruson, Réanimation Médicale B, Hopital Pellegrin, Place Amélie-Raba-Léon, Bordeaux, France. Am J Respir Crit Care Med Vol 162. pp , 2000 Internet address: In the light of bacterial ecology, which has been evaluated for many years in our medical intensive care unit (MICU), we decided to apply a program to improve antibiotic use, including a restricted use and a rotation of antibiotics in empiric and therapeutic uses for VAP treatment. The main goal of this prospective before-after study was to determine whether the incidence of VAP attributed to antibiotic-resistant gram-negative bacteria could be reduced by a scheduled change of antimicrobial agents. METHODS Study Population and Design This study was performed in the MICU (16 beds) of a university teaching hospital (1,500 beds), between January 1995 and December During this period, all patients admitted to MICU were potentially eligible for this investigation. Patients were excluded if they were younger than 18 yr of age, and if their duration of MICU hospitalization was less than 48 h. Enrolled patients required mechanical ventilation for more than 48 h. The study was approved by the Bordeaux University School of Medicine Human Studies Committee. Informed consent was not required since all procedures were routine. We performed a before-after study to test the hypothesis that a new program of antibiotic use could minimize the incidence of VAP and the emergence of antibiotic-resistant microorganisms. We chose the ventilator-associated pneumonia as the nosocomial parameter for evaluation because it was the most frequent nosocomial infection occurring in our MICU. The before-period lasted 2 yr (January 1995 to December 1996). In this period, ceftazidime associated with ciprofloxacin was widely prescribed for the empiric and therapeutic treatment of VAP. This was the combination therapy most often prescribed. If the empiric therapy was effective, no change was made, i.e., de-escalation was not envisaged. The duration of antibiotic treatment was solely determined by the physician who managed the patients. Microbiologic data and incidence of nosocomial infections (VAP, bacteremia, urinary tract and catheter-related infections) were supervised in our unit for 1992 by a physician in our team. Guidelines dictating which antimicrobials should be prescribed for empiric and therapeutic use were written in November 1996 and applied in December This new program was defined as follows. 1. Restriction of ceftazidime and ciprofloxacin in empiric and therapeutic uses. 2. Rotation of antibiotics without favoring any one antibiotic. 3. Each administration of antibiotics was determined by one of the two investigators (D.G., G.H.). The usage of antibiotics was monitored on a monthly basis. Therefore, regular checks were made on prescription of one or another antibiotic. No preference was given to any particular antibiotic. The average rotation cycle was based on consumption supervised by the investigators. The results of monthly antibiotic intake were available at all times on the department computer. Prescription of a particular antibiotic was made only after consultation with one of the two investigators. The rotation outline was as follows. In the case of late VAP (occurring Day 7 of mechanical ventilation): (1) a betalactam and an aminoglycoside were prescribed empir-

2 838 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL ically for the time needed to receive the bacteriologic results; (2) while waiting for the bacteriologic results from bronchoalveolar lavage (BAL), the choice of betalactam was cefepime or piperacillintazobactam or imipenem or ticarcillin-clavulanic acid; (3) over a period of 4 mo the choice of the betalactam was as follows: cefepime for the first month, then piperacillin-tazobactam for the second month, then imipenem for the third month, then ticarcillin-clavulanic acid for the fourth month; (4) each cycle could last more than 1 mo, according to the frequency of late VAP; (5) the choice of an aminoglycoside was made between tobramycin, amikacin, netilmycin, and isepamycin. In the case of isolated antibiotic-resistant bacteria, the empiric treatment was retained as treatment for VAP when possible. The antibiotic associated with betalactam was initially an aminoglycoside. In fact, we withdrew prescription of quinolones. The rotation cycle of aminoglycosides began with amikacin. From the second month, according to the total consumption of cefepime and the frequency of VAP in our MICU, we prescribed piperacillin-tazobactam instead of cefepime. Tobramycin was associated with piperacillin-tazobactam. From the third month, and according to the consumption of the antibiotic, imipenem was used instead of piperacillin-tazobactam. In this case, the associated antibiotic was netilmycin. From the fourth month, ticarcillin-clavulanic acid replaced imipenem. We decreased the use of ceftazidime as much as possible; (6) if isolated bacteria were not antibiotic-resistant, de-escalation was started as soon as the bacteriologic results were received; (7) as this de-escalation was possible only after reading the bacteriologic results, no choice was made in advance. The effective antibiotic was chosen according to the previous month s intake. In the cast of early VAP (occurring Day 7 of mechanical ventilation): (1) a betalactam was prescribed empirically while awaiting the bacteriologic results from the BAL; (2) the rotation of betalactam was on a monthly basis and considering closely the previous month s consumption; (3) over 4 mo the choice of betalactam was amoxicillinclavulanic acid for 1 mo, followed by cefotaxim for 1 mo, then ceftriaxone for 1 mo, and then cefpirom for 1 mo. This treatment was validated on reception of the bacteriologic results. The antibiotic associated with betalactam was initially an aminoglycoside or fosfomycin. We withdrew prescription of quinolones as much as possible. This antibiotic rotation was supervised by the two investigators (DG and GH). With this cycle, the choice of an antibiotic was provided for in the treatment for VAP. Each treatment was validated by one investigator. We decreased the use of ceftazidime as much as possible. 4. The duration of treatment for microbiologically documented VAP was 15 d; we stopped aminoglycosides after 5 d of treatment. 5. Every morning, one of the two investigators met with the MICU patient care physicians team (three physicians) to insure optimal understanding and compliance with the protocol. 6. Once a week, a meeting was held with the nurses in order to identify the nosocomial problems of the unit. 7. Every month, one of the investigators evaluated the consumption of antibiotics. The studied parameter was: a day of antibiotic treatment, which is defined as the quantity (expressed in grams) of antibiotic consumed, divided by the defined daily dose of the antibiotic. The results of the global consumption of antibiotics in our MICU are expressed in days of antibiotic treatment. 8. Every trimester, all investigators met with the Laboratory of Bacteriology of our institution to evaluate the incidence of the emergence of antibiotic-resistant microorganisms. We did not perform routine surveillance cultures to determine the colonization on MICU admission and during MICU hospitalization. The after-period lasted 2 yr, from January 1997 to December During the 4-yr period of the study, the hygiene protocols were noted and displayed in each room of the unit, without fail. Definition of Clinical Suspicion of Ventilator-associated Pneumonia The clinical criteria used to define the diagnosis of VAP were the same for the 4 yr of study. VAP was defined as any lower respiratory tract infection that developed after 2 d of mechanical ventilation (MV). Clinical suspicion of VAP was defined as a new, progressive, or persistent ( 24 h) infiltrate on the chest radiograph, with two or more of the following criteria: (1) fever 38.3 C or hypothermia 36 C; (2) purulent endotracheal aspirate; (3) leukocytes count 10,000/ mm 3 or 4,000/mm 3. Every patient suspected of having pneumonia underwent fiberoptic bronchoscopy to obtain samples by BAL. Bronchoalveolar Lavage Fiberoptic bronchoscopy was performed within 24 h after VAP was suspected. Patients were ventilated with 100% oxygen, sedated with midazolam, and paralyzed with vecuronium to avoid resistance to the ventilator during the procedure. Topical anesthetics were not used. Heart rate, systemic blood pressure, and arterial oxygen saturation measured by pulse oximetry were monitored throughout the BAL. The trachea was suctioned before introducing the bronchoscope through an adaptator, which allows the maintenance of mechanical ventilation. The bronchoscope was then wedge-positioned in a segmental bronchus corresponding to the radiologic infiltrate without suctioning to avoid contaminating the working channel. Three 50-ml aliquots of sterile normal saline were infused through the working channel of the bronchoscope. The fluid was then withdrawn by hand suction. Microbiology and Definition of Ventilator-associated Pneumonia The specimens were immediately sent to the laboratory. The aliquot of BAL fluid was cytocentrifuged, and the air-dried slides were stained using the Gram and May-Grunwald-Giemsa stains. By microscopic examination, the percentage of infected cells and the presence and type of extracellular and/or intracellular bacteria were determined. An infected cell was defined as a polymorphonuclear leukocyte or an alveolar macrophage containing at least one microorganism. Pure BAL fluid (0.1 ml) and 0.1 ml of a 100-fold BAL fluid dilution were plated on MacConkey agar, Chocolate agar, and 5% sheep blood Columbia colistin-nalidixic acid agar. After overnight incubation in 5% CO 2 at 37 C, the colonies were counted and identified conventionally. Colonies with distinct morphologies were enumerated separately and the results expressed as CFU/ml. Microbiologically confirmed cases of VAP required the isolation of bacteria in significant quantities from BAL samples: 10 4 CFU/ml. Only the first episode of nosocomial ventilator-associated pneumonia was taken into account. Definition of Microorganism Susceptibility VAP was considered to be caused by potentially resistant gram-negative bacteria when Pseudomonas aeruginosa, Burkholderia cepacia, Acinetobacter baumanii, or Stenotrophomonas maltophilia yielded significant concentrations from BAL fluid. Several antibiotics tested against each bacterium cultured at a significant level were considered for comparison during the study period: amoxicillin, amoxicillin-clavulanic acid, ticarcillin, ticarcillin-clavulanic acid, piperacillin-tazobactam, cefoxitine, cefotaxime, cefoperazone, ceftazidime, cefepime, cefpirome, imipenem, gentamycin, tobramycin, amikacin, and ciprofloxacin. Microorganism susceptibilities were determined using the criteria established by the Comite National de l Antibiothérapie, the official committee in France responsible for this classification. Results are expressed as percentages of susceptible bacteria. Data Collection Data collection at study entry included date and time of MICU admission, sex, diagnosis, results of chest radiographs, and severity of illness indexes: simplified acute physiologic score (SAPS II) (11), and the total number of failed organs according to the definitions established in the organ dysfunctions and/or infection (ODIN) model (12). Data collected and entered daily included date and time of endotracheal tube insertion and duration of mechanical ventilation. Statistical Analysis Continuous variables were compared using Student s t test or, when inappropriate, the Mann-Whitney U test was used. Chi-square statistics were used for categorical variables or, when not appropriate, Fisher exact test was used. Differences between groups were considered to be significant for variables yielding a p value 0.05.

3 Gruson, Hilbert, Vargas, et al.: Rotation in Antibiotics Use and Nosocomial Pneumonia 839 RESULTS Patients There were 3,455 patients admitted to the MICU during the 4-yr period of the study: 892 and 845 patients were admitted to the MICU in 1995 and 1996, respectively, and 919 and 799 patients were admitted in 1997 and 1998, respectively. Six hundred fourteen patients were excluded because of MICU stay 48 h. Two thousand thirty-three patients required mechanical ventilation for more than 48 h. The percentage of patients requiring mechanical ventilation was similar between the before-period and the after-period (Table 1); 506 and 498 patients required mechanical ventilation in 1995 and 1996, respectively (before-period), and 526 and 503 patients required mechanical ventilation in 1997 and 1998, respectively (after-period). In patients who required mechanical ventilation for more than 48 h, the MICU mortality rate was 32 and 30.4% in the first and the second periods, respectively. A total of 523 patients were suspected of having a ventilator-associated pneumonia. In 26 cases (15 in the before-period and 11 in the after-period), the clinical status of the patients ruled out bronchoscopy. These 26 patients were excluded. During the 4 yr of this study, 497 patients met the criteria for bronchoscopy and bronchoalveolar lavage (Table 1). The number of patients with clinically suspected VAP decreased significantly between the before-period (total number, 294: 144 in 1995 and 150 in 1996) and the after period (total number, 203: 116 in 1997 and 87 in 1998). This decrease was statistically more significantly between the before-period and 1998 (p 0.01). Diagnosis of VAP A total of 392 patients had pneumonia diagnosed by BAL. The incidence rate of VAP for patients who received mechanical ventilation for more than 48 h was 22.1% in the before period and 15.7% in the after-period. Indeed, the number of patients with microbiologically documented VAP significantly decreased from 231 patients in the before-period (in 1995: n 115; in 1996: n 116) to 161 patients in the after-period (in 1997: n 82; in 1998: n 79). Characteristics of patients with VAP Clinical characteristics of enrolled patients are summarized in Table 2. Severity of illness indexes and indications for mechanical ventilation were comparable between the two periods. An antimicrobial therapy was present during the 15 d preceding the onset of VAP in 151 episodes (65%) in the before-period and in 112 episodes (69.5%) in the after-period. During the 4 yr of this study, the mean duration of mechanical ventilation before the occurrence of VAP was 11.7 d (Table 2). The mortality rate of patients with VAP in the before-period was not significantly different from the mortality rate of patients with VAP in the after period (Table 1). Distribution of Causative Microorganisms A total of 561 bacteria were cultured at a significant concentration by quantitative culture of BAL fluid: 332 and 229 bacteria were isolated in the before-period and the after-period, respectively. Microorganisms isolated from the 392 episodes of VAP are summarized in Table 3. The institution of a program of restricted antibiotic use did not decrease the incidence of polymicrobial VAP (Table 3). During the before-period, the most frequently isolated bacteria were ENTEROBACTERI- ACEAE (n 82, 24.7%), Staphylococcus aureus (n 67, 20.2%), and Pseudomonas aeruginosa (n 62, 18.7%). During the after-period, the most frequently isolated bacteria were Staphylococcus aureus (n 54, 23.6%), ENTEROBACTERIACEAE (n 52, 22.7%), and Pseudomonas aeruginosa (n 47, 20.5%). There were 140 (42%) and 79 (34%) potentially resistant gram-negative bacteria isolated during the before-period and the after-period, respectively (p 0.06). There was no difference in incidence of P. aeruginosa between the two periods of the study (18.7 versus 20.5%). The occurrence rates of B. cepacia, S. maltophilia, and A. baumanii decreased between the two periods, but not significantly (Table 3). The incidence of other gram-negative bacteria did not decrease during the study. Approximately the same incidence of ENTEROBACTERIACEAE responsible for VAP was observed between the two periods, with a decrease in the after-period, except for Proteus sp., which significantly increased from six bacteria (2.5%) to 11 bacteria (7.2%) (p 0.02). Staphylococcus aureus and other gram-positive cocci were responsible for VAP in an insignificantly different proportion in the after-period. As we indicate in Table 2, VAP occurring before Day 7 of mechanical ventilation were more frequent during the first period (31/231: 13%) than during the second period (15/161: 9%). During the first period, potentially resistant bacteria were responsible for early VAP. Bacteria responsible for early VAP were more sensitive to antibiotics in the second period. Bacteria Susceptibilities The susceptibilities to antibiotics of potentially resistant gramnegative bacilli increased after the set up of an antibiotics policy program. In fact, for these bacilli, the percentage of susceptibility to most of the antibiotics increased from the beforeperiod to the after-period. Analysis of the susceptibilities of P. aeruginosa, B. cepacia, S. maltophilia, and A. baumanii is detailed in Table 4. Ciprofloxacin in particular showed an improved efficacy. TABLE 1 CHARACTERISTICS OF PATIENTS ADMITTED TO MICU AND OF THE STUDY COHORT* p Value Patients admitted to MICU, n 1,737 1,718 NS Total number of days of hospitalization 11,315 10,884 NS Patients requiring MV 48 h, n (%) 1,004 (57.8) 1,029 (59.8) NS Clinical suspicion of VAP, n (% of patients requiring MV 48 h) 294 (28) 203 (19.8) 0.01 Microbiologically documented VAP, n (% of patients requiring MV 48 h) 231 (22.1) 161 (15.7) 0.01 MICU mortality rate in patients with VAP, n (%) 94 (40.6) 60 (37.2) NS Definition of abbreviations: MICU medical intensive care unit; MV mechanical ventilation; VAP ventilatory-associated pneumonia. * The before-period is defined as the period of the study before the onset of a progam of antibiotics restriction (during 1995 and 1996). The after-period is defined as the 2-yr period after the onset of the new program of antibiotics policy (during 1997 and 1998).

4 840 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL TABLE 2 EPIDEMIOLOGIC AND CLINICAL CHARACTERISTICS OF THE STUDY COHORT AT THE TIME OF MICU ADMISSION AND AT THE TIME OF DIAGNOSIS OF VENTILATORY-ASSOCIATED PNEUMONIA (VAP)* Parameters at the MICU admission (n 231) (n 161) Age, yr Sex, male, n (%) 148 (64) 101 (62) SAPS II Dysfunctional organs, n Indications for mechanical ventilation Neurologic failure, n Drug overdose, n Septic shock, n 6 4 Exacerbation of COPD, n Cardiac surgery, n Abdominal surgery, n Other pulmonary disease, n 8 5 Parameters at the time of diagnosis of VAP Temperature, C Leukocytes count, G/L Pa O2 /FI O2, mm Hg Duration of MV before the onset of VAP, d VAP episode occurring 5 d of MV, n (%) 19 (8.3) 7 (4.3) VAP episode occurring between 5 and 7 d of MV, n (%) 12 (5.2) 8 (4.9) VAP episode occurring between 7 and 10 d of MV, n (%) 60 (26) 40 (24.8) VAP episode occurring after 10 d of MV, n (%) 140 (60.6) 106 (65.8) Definition of abbreviations: MICU medical intensive care unit; MV mechanical ventilation. * There is no significant statistical difference in all these parameters between the before-period and the after-period. Values are mean SD. No increase in the susceptibility of the other gram-negative bacteria was found between the two periods. Nevertheless, a high percentage of these bacteria were sensitive to each antibiotic regimen. Tests also revealed beneficial results with regard to the S. aureus responsible for VAP. Indeed, the percentage of methicillin-sensitive S. aureus increased from 40% in the beforeperiod to 63% in the after-period (p 0.05). The activity of fluoroquinolones against S. aureus significantly increased from 40 to 68.5% (p 0.05), with better results in 1998: susceptibility to ofloxacin increased from 40% in the before-period to 73% in 1998 (p 0.01). The accuracy of antibiotic therapy was different between the two periods. A greater proportion of patients received an inadequate therapy in the before-period (73/231 cases of ventilator-associated pneumonia: 32%) compared with the afterperiod (32/161 cases of VAP: 20%) (p 0.05). Antibiotic Regimen Uses The antibiotic control policy led to a reduction in total antibiotic usage. This holds true for most of the antibiotics. The results of the total consumption of antibiotics are detailed in Table 5. Concerning the total consumption of ciprofloxacin and ceftazidime during the two study periods: the total number of ciprofloxacin days decreased from 8,022 in the first period to 1,252 in the second period (difference of 84%). The total number of ceftazidime days decreased from 993 in the first period of 670 in the second period. The consumption of ofloxacin sig- TABLE 3 MICROORGANISMS* ISOLATED FROM 392 CASES OF VAP p Value Polymicrobial episodes of VAP, n (%) 75 (32.5) 49 (30.4) NS Polymicrobial episodes of VAP: 2 bacteria isolated, n (%) 49 (21.2) 31 (19.2) NS Polymicrobial episodes of VAP: 2 bacteria isolated, n (%) 26 (11.2) 18 (11.2) NS Total number of bacteria, n Potentially antibiotic-resistant gram-negative bacteria, n (%) 140 (42.2) 79 (34.5) 0.06 Pseudomonas aeruginosa, n (% of total number of bacteria) 62 (18.7) 47 (20.5) NS Burkholderia cepacia, n (% of total number of bacteria) 39 (11.7) 17 (7.4) 0.09 Stenotrophomonas maltophilia, n (% of total number of bacteria) 19 (5.7) 8 (3.5) NS Acinetobacter baumanii, n (% of total number of bacteria) 20 (6) 7 (3) NS Other gram-negative n (% of total number of bacteria) 105 (31.6) 74 (32.3) NS Staphylococcus aureus, n (% of total number of bacteria) 67 (20.2) 54 (23.6) NS Meticillin-sensitive S. aureus, n (% of S. aureus) 27 (40.3) 34 (63) Other gram-positive cocci, n (% of total number of bacteria) 18 (5.4) 20 (8.7) NS Definition of abbreviations: NS not significant; VAP ventilatory-associated pneumonia. * Four gram-negative cocci were isolated during this study (two in each period). Fungal agents were concomitantly isolated at significant levels in 11 and nine episodes during the before-period and during the after-period, respectively. The before-period is defined as the period of the study before the onset of a protocol of antibiotics restriction; i.e., during 1995 and The after-period is defined as the 2-yr period after institution of the protocol, i.e., 1997 and 1998.

5 Gruson, Hilbert, Vargas, et al.: Rotation in Antibiotics Use and Nosocomial Pneumonia 841 TABLE 4 PERCENTAGES OF SUSCEPTIBILITY TO ANTIMICROBIAL AGENTS OF POTENTIALLY RESISTANT GRAM-NEGATIVE BACTERIA RESPONSIBLE FOR VAP P. aeruginosa B. cepacia S. maltophilia A. baumanii (n 62) (n 47) (n 39) (n 17) (n 19) (n 8) (n 20) (n 7) Ticarcillin-clavulanic acid Pipericillin-tazobactam Aztreonam Cefotaxime Ceftazidime Cefepime 53.2* 74.5* 7.7* 41.2* Cefpirome 38.7* 72.3* Imipenem Gentamycin 46.8* 74.5* Amikacin 74.2* 91.5* Tobramycin 80.6* 95.7* Ciprofloxacin * 29.4* * 50* Definition of abbreviation: VAP ventilatory-associated pneumonia. The following call outs refer to significant differences in the after-period compared with the before-period. * p p p nificantly decreased between the two periods of this study, respectively by 88%. Among the betalactams, intake decreased except for piperacillin-tazobactam and cefepime. Cefepime was available in our institution during the second semester Piperacillintazobactam was used with a higher frequency in the second period. Cefepime and piperacillin-tazobactam showed a faster turnover in cases of VAP caused by potentially resistant gramnegative bacilli. Among the class of aminoglycosides, the antibiotics turnover comprised amikacin, tobramycin, netilmycin, and isepamycin. In our institution, isepamycin has taken the place of amikacin since the beginning of The overall intake of TABLE 5 RESULTS OF THE TOTAL CONSUMPTION OF ANTIBIOTICS IN OUR MICU DURING THE BEFORE-PERIOD (1995 AND 1996) AND DURING THE AFTER-PERIOD (1997 AND 1998)* Expressed in Days of Antibiotic Treatment Amikacin Netilmicin Tobramycin Ciprofloxacin 8,022 1,252 Ofloxacin 2, Oxacillin Rifampin Vancomycin 1, Fosfomycin Amoxicillin-clavulanic acid Ceftriaxone Cefotaxime Ticarcillin-clavulanic acid Cefepime Ceftazidime Piperacillin-tazobactam 300 1,152 Imipenem 1, Definition of abbreviation: MICU medical intensive care unit. * The studied parameter was: a day of antibiotic treatment, which is defined as the quantity (expressed in grams) of antibiotic consumed, divided by the defined daily dose of the antibiotic. The results of the total consumption of antibiotics in our MICU are expressed in days of antibiotic treatment. aminoglycoside fell, except for isepamycin, introduced into our institution during the second period only. Usage of vancomycin decreased in parallel with a fall in the occurrence of methicillin-resistant Staphylococcus. DISCUSSION Regarding the bacterial ecology and the increasing antimicrobial resistance in our MICU during 1995 and 1996, we attempted to achieve better use of antimicrobial agents with their restricted use and their rotation. This new objective was adopted at the end of We undertook a prospective before-after study on a series of consecutive MICU patients who required mechanical ventilation for 48 h, using strict criteria to define VAP. Our protocol was listed as an important goal of quality assurance program. We wanted to determine whether an improved use of antibiotics through specific guidelines, supervised by two physicians of our team, could minimize the antibiotic resistance of gram-negative bacteria responsible for VAP. Our results indicate that the incidence of clinically suspected VAP and microbiologically documented VAP decreased significantly after the scheduled change of antibiotic classes. We also found a trend of a lower incidence of potentially antibiotic-resistant gram-negative bacilli. The susceptibilities of potentially antibiotic-resistant bacteria to antibiotic regimens significantly increased, especially for P. aeruginosa and B. cepacia. Similarly, the incidence of methicillin-resistant S. aureus responsible for VAP decreased significantly. The accuracy of antibiotic therapy was better in the second period. Nevertheless, we did not find a significant reduction of MICU mortality rate either in all patients who required mechanical ventilation for more than 48 h or in patients with VAP between the two periods. The attributable mortality of VAP in critically ill patients remains controversial. In a recent and rigorous study, Heyland and coworkers (13) reported that the time of onset of VAP, the type of organism ( low and high risk organisms), and the appropriateness of early empiric antibiotic therapy, did not influence the risk of mortality. The initial objective with this prospective before-after study was to determine whether the incidence of VAP attributed to antibiotic-resistant gram-negative bacteria could be reduced by a scheduled change of anti-

6 842 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL microbial agents. An accurate explanation of the same MICU mortality rate in patients with VAP between the two periods would need a different prospective-matched cohort study, with a matching procedure between patients with VAP and patients who did not develop clinically suspected VAP. It was not the aim of this initial study. A greater proportion of patients received an inadequate therapy in the before-period. This result could be associated with the better ecology in the second period, especially for early VAP occurring before Day 7 of mechanical ventilation, and with the better susceptibilities of potentially antibioticresistant bacilli during the second period. A new program of antibiotics administration led to a decrease in the occurrence of VAP. This decrease especially concerned early VAP: pneumonia occurring before Day 7 of mechanical ventilation was more frequent during the first period than during the second period. Therefore, we found an overall reduction in the incidence of infection with antibiotic-resistant organisms. This issue seems paradoxal: in general, early VAP is not due to resistant pathogens. Our ecology was so worrying during the first period that in our MICU, potentially resistant bacteria were responsible for early VAP. Bacteria responsible for early VAP were more sensitive to antibiotics in the second period. The incidence of late VAP did not differ between the two periods. Because the severity of certain cases necessitates longer periods of mechanical ventilation, and because of the immunodepression which accompanies organ dysfunction occurring in the ICU, we wonder whether it is really possible to avoid late VAP, with potentially resistant organisms, and whether it is just possible to have an effect on the antimicrobial resistance. Antimicrobial resistance seems to be related to antimicrobial use. Several reports have suggested this relation (14 16). McGowan and Gerding (16) suggested that (1) increasing duration of patient exposure to antimicrobial agents increases the likelihood of colonization with antibiotic-resistant microorganisms; (2) the changes in antimicrobial agent uses coincide with the changes in prevalence of resistance; (3) antimicrobial resistance is more prevalent in nosocomial bacterial strains than those in community-acquired infection; and (4) intensive care units have the highest rates of antimicrobial resistance, but they also have the highest rates of antibiotics prescription. Bacterial ecology with the emergence of resistant-antibiotic organisms was of great concern to us in During this period, more than 40% of VAP were caused by potentially antibioticresistance gram-negative bacilli. Similarly, during this period, 60% of S. aureus responsible for VAP were methicillin-resistant. This bacterial ecology was worrying. Without making ourselves unpopular with the other physicians in our team, a program to control and restrict antibiotic use had to be set up. This antimicrobial stewardship included limiting the use of ceftazidime and ciprofloxacin, because of a previous widespread overuse and a possible de-escalation in antibiotic choice, with an appropriate control of dosing and duration of treatment. The effectiveness of antimicrobial control has already been reported (14, 16). With the control of gentamycin resistance through the restriction of gentamycin and replacement with amikacin, Gerding and coworkers (17) showed significant reductions in gentamicin resistance during this restriction period. Meyer and coworkers (7) showed that restricting the use of ceftazidime allowed them to control an outbreak of ceftazidime-resistant Klebsiella pneumoniae. Pestotnik and coworkers (18) used a computer-assisted decision support system to decrease the total pharmacy acquisition costs of antibiotics and stabilize antimicrobial resistance patterns. We chose to compare the 2 yr before with the 2 yr after the institution of a new program of antibiotics use policy. We did not know the timespan necessary to improve the bacterial ecology in our MICU. We decided to report this evaluation at the end of 1998, because of the good results obtained. Our choice of parameter for evaluation was ventilator-associated pneumonia, because of the lower incidence of nosocomial bacteremia and urinary tract and catheter-related infections. These first results were encouraging. We observed a significant reduction in incidence of clinically suspected VAP and microbiologically documented VAP. This result has been also reported by Kollef and coworkers (3). As suggested by Niederman (19) in a recent editorial, antibiotics could play a role in the pathogenesis of VAP, in predisposing infection with resistant organisms. The decrease in the incidence of potentially antibioticresistant bacteria was not statistically significant. This could be explained by the low total number of microorganisms, and also by better results in 1998 than in 1997, during the after-period. Our results were encouraging for the decease in incidences of ciprofloxacin-aminoglycoside-third generation cephalosporin-resistant P. aeruginosa. The incidence of P. aeruginosa did not decrease, but its susceptibility to antibiotic regimen was greatly improved. The poor susceptibilities of P. aeruginosa to antimicrobial agents, especially ceftazidime and ciprofloxacin, that we had in 1995 and 1996 were a crucial factor for us in the decision to change antibiotic treatment. Because quinolones penetrate extremely well into respiratory secretions, we often used ciprofloxacin as empiric and therapeutic treatment of VAP during the before-period. Its supervised restricted use allowed us to significantly improve the susceptibility to this antibiotic of P. aeruginosa, B. cepacia, and A. baumanii. While still on a program of rotation of antimicrobial agents, we decided to introduce ciprofloxacin in the empiric and therapeutic treatment of VAP again, avoiding the monotherapy. Its beneficial effect in the treatment of pneumonia is highly important because of the excellent pulmonary concentration (20). An induction of chromosomal beta-lactamases in gramnegative bacilli by a repeated exposure to the same antibiotic could explain the cephalosporin resistance. The appearance of beta-lactamases has been identified as a consequence of the use of third-generation cephalosporins. This cephalosporin resistance could decrease with restricted use (21). The rotation of antibiotic use for empiric and therapeutic treatment of VAP could have restored a higher activity of cephalosporin. Our results confirm this hypothesis with a higher activity of ceftazidime, cefepime, and cefpirome for the majority of gramnegative bacteria. The replacement used during this rotation was a beta-lactam/beta-lactamase inhibitor combination such as cephalosporins, ticarcillin-clavulanic acid, or piperacillintazobactam, or a carbapenem. It is interesting to note that a real rotation of antibiotics could prevent new resistance. Indeed, the percentage of susceptibilities to the prescribed betalactams were equivalent between the two periods, with better results in the after-period. A more accurate antibiotics therapy allowed us to decrease the use of less effective antibiotics during the second period. Antibiotic therapy was easier to adapt during the second period in part because the bacterial ecology was better during this period. There would appear to be a link between an efficient use of antibiotics, bacterial ecology, and an accurately adapted empirical therapy. Similarly, we improved the susceptibility of S. aureus responsible for VAP, without reducing its incidence. Cyclic use was more problematic for gram-positive cocci such as staphylococci, for which the number of effective agents is limited. In these cases, we supervised the restriction of quinolones, the rotation of antibiotics such as fosfomycin, rifampin, pristiniamycin, and the de-escalation if possible, with a tendency to reduce the consumption of vancomycin.

7 Gruson, Hilbert, Vargas, et al.: Rotation in Antibiotics Use and Nosocomial Pneumonia 843 Even though the bacterial ecology studied in this article was specific to our own ICU, certain general recommendations may be used in all units. Without claiming to be a recipe or to be a rigid standardization, certain recommendations are universal. Faced with our ecology concerns, we rolled up our sleeves, so to speak, and applied a few elementary rules (22, 23). An antibiotic therapy must be used following a regularly monitored ecology. The dosage and the rhythm of antibiotic administration must be taken into account. The initial choice of the antibiotics is important. Antibiotic rotation seems to prevent the emergence of resistance. The reevaluation on Day 3 of all treatment with antibiotics allows us to check the appropriateness of the initial therapy, to modify the therapy using antibiotics that are just as effective but which have less influence on the microbial ecology, to check the posology and the rhythm of administration, and to specify the total duration of treatment and the chosen association. A reevaluation on Day 10 of treatment allows us to control the length of treatment for microbiologically documented pneumonia. With regular readouts from the pharmacy on the prescribed daily dose and/or the days of antibiotic treatment, the monitoring of the antibiotics used could represent an indicator of nosocomial infection. The evolution in antibiotic resistance should be available, based on the results from the bacteriologic units. Efficient cooperation between departments (ICU, Bacteriology, Pharmacy) seems indispensible. Our study has several limitations. First, this study was carried out in only one center, with a specific ecology. Second, we believe that a large study is needed to evaluate the impact of a new antibiotic use protocol on the ICU and hospital mortality caused by potentially antibiotic-resistant bacteria. A matched cohort study comparing patients with and without VAP during the same two periods could evaluate the attributable mortality of VAP, and the potential role of the improvement of bacterial ecology. Third, in this study, supervised rotation of antibiotics was one new strategy among others aimed at improving antibiotics usage, as well as restricted use of two antibiotics, and new rules for prescription of other antibiotics. We could not attribute the improvement of bacterial ecology to any particular new intervention. It would be difficult to define the responsibility of the rotation of antibiotics. Last, in our MICU, we did not perform routine surveillance cultures in order to evaluate the colonization with antibiotic-resistant bacteria. This study could not estimate the impact of the protocol on colonization in our unit, which was perhaps the intermediate phase between infection and VAP. In this study, we did not perform an analysis of the cost of antibiotics prescription. We only performed an analysis, between two periods, of the difference of total daily doses of some antimicrobial agents. A real and efficient turnover of antibiotic use necessitates the prescription of expensive antibiotics. We have chosen to wait before comparing the cost of our new policy. We are sure that in reducing the incidence of VAP caused by antibiotic-resistant microorganisms, a potentially more expensive antibiotic protocol could in fact be an economical maneuver in middle to long term. Further studies are needed to validate our results, and to demonstrate the importance of such protocol in order to minimize the emergence of resistance patterns. Acknowledgment: The writers thank Tara Embleton for stylistic editing of the manuscript. References 1. Dunagan, W. C., R. S. Woodward, G. Medoff, J. L. Gray, E. Casabar, C. Lawrenz, E. Spitznagel, and M. D. Smith Antibiotic misuse in two clinical situations: positive blood cultures and administration of aminoglycosides. Rev. Infect. Dis. 13: Lee, K. R., R. J. Leggiadro, and K. J. Burch Drug use evaluation of antibiotics in a pediatric teaching hospital. Infect. Control Hosp. Epidemiol. 15: Kollef, M. H., J. Vlasnik, L. Sharpless, C. Pasque, D. Murphy, and V. Fraser Scheduled change of antibiotic classes: a strategy to decrease the incidence of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 156: Fagon, J. Y., J. Chastre, Y. Domart, J. L. Trouillet, J. Pierre, C. Darne, and C. Gilbert Nosocomial pneumonia in patients receiving continuous mechanical ventilation: prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture technique. Am. Rev. Respir. Dis. 139: Vincent, J. L., D. J. Bihari, P. M. Suter, H. A. Bruining, J. White, M. H. Nicolas-Chanoin, M. Wolff, R. C. Spencer, and M. Hemmer The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. J.A.M.A. 274: Rello, J., A. Torres, M. Ricart, J. Valles, J. Gonzalez, A. Artigas, and R. Rodriguez-Roisin Ventilator-associated pneumonia by Staphylococcus aureus: comparison of methicillin-resistant and methicillinsensitive episodes. Am. J. Respir. Crit. Care Med. 150: Meyer, K. S., C. Urban, J. A. Eagan, B. J. Berger, and J. J. Rahal Nosocomial outbreak of Klebsiella infection resistant to late generation cephalosporins. Ann. Intern. Med. 119: Chenoweth, C., and J. P. Lynch Antimicrobial resistance: implications for managing respiratory failure. Curr. Opin. Pulm. Med. 3: Mc Gowan, J. E Do intensive hospital antibiotic control programs prevent the spread of antibiotic resistance? Infect. Control Hosp. Epidemiol. 15: Murray, B. E Can antibiotic resistance be controlled? N. Engl. J. Med. 330: Legall, J. R., S. Lemershow, and F. Saulnier New simplified acute physiology score (SAPS II) based on a European North American multicenter study. J.A.M.A. 270: Fagon, J. Y., J. Chastre, A. Novara, P. Medioni, and C. Gibert Characterization of intensive care unit patients using a model based on the presence or absence of organ dysfunctions and/or infection: the ODIN model. Intensive Care Med. 19: Heyland, D. K., D. J. Cook, L. Griffith, S. P. Keenaan, and Ch. Brun- Buisson The attributable morbidity and mortality of ventilatorassociated pneumonia in the critically ill patient. Am. J. Respir. Crit. Care Med. 159: McGowan, J. E Is antimicrobial resistance in hospital microorganisms related to antibiotic use? Bull. N.Y. Acad. Med. 63: Shlaes, D. M., D. N. Gerding, J. F. John, W. A. Craig, D. L. Bornstein, R. A. Duncan, M. R. Eckman, W. E. Farrer, W. H. Greene, V. Lorian, S. Levy, J. E. McGowan, S. M. Paul, J. Ruskin, F. C. Tenover, and C. Watanakunakorn Guidelines for the prevention of antimicrobial resistance in hospitals: joint statement by the Society for Health Care Epidemiology of American and the Infectious Diseases Society of America. Infect. Control Hosp. Epidemiol. 18: McGowan, J. E., and D. Gerding Does antibiotic restriction prevent resistance? New Horiz. 4: Gerding, D. N., T. A. Larson, R. A. Hughes, M. Weiler, C. Shanholtzer, and L. R. Peterson Aminoglycoside resistance and aminoglycoside usage: ten years of experience in one hospital. Antimicrob. Agents Chemother. 35: Pestotnik, S. L., D. C. Classen, R. S. Evans, and J. P. Burke Implementing antibiotic practice guidelines through computer-assisted decision support clinical and financial outcomes. Ann. Intern. Med. 124: Niederman, M. S Is crop rotation of antibiotics the solution to a resistant problem in the ICU? [Editorial]. Am. J. Respir. Crit. Care Med. 156: Reid, T. M. S., I. M. Gould, D. Golder, J. S. Legge, J. G. Douglas, J. A. R. Friend, and S. J. Watt Brief report: respiratory tract penetration of ciprofloxacin. Am. J. Med. 87(Suppl. 5A):S60 S Jones, R. N The current and future impact on antimicrobial resistance among nosocomial bacterial pathogens. Diagn. Microbiol. Infect. Dis. 15:3S 10S. 22. Yates, R. R New intervention strategies for reducing antibiotic use. Chest 115:24S 27S. 23. Wenzel, R. P., and M. T. Wong Managing antibiotic use: impact of infection control. Clin. Infect. Dis. 28:

Sepsis is the most common cause of death in

Sepsis is the most common cause of death in ADDRESSING ANTIMICROBIAL RESISTANCE IN THE INTENSIVE CARE UNIT * John P. Quinn, MD ABSTRACT Two of the more common strategies for optimizing antimicrobial therapy in the intensive care unit (ICU) are antibiotic

More information

Appropriate antimicrobial therapy in HAP: What does this mean?

Appropriate antimicrobial therapy in HAP: What does this mean? Appropriate antimicrobial therapy in HAP: What does this mean? Jaehee Lee, M.D. Kyungpook National University Hospital, Korea KNUH since 1907 Presentation outline Empiric antimicrobial choice: right spectrum,

More information

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran Letter to the Editor Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran Mohammad Rahbar, PhD; Massoud Hajia, PhD

More information

The International Collaborative Conference in Clinical Microbiology & Infectious Diseases

The International Collaborative Conference in Clinical Microbiology & Infectious Diseases The International Collaborative Conference in Clinical Microbiology & Infectious Diseases PLUS: Antimicrobial stewardship in hospitals: Improving outcomes through better education and implementation of

More information

Hospital-acquired pneumonia: microbiological data and potential adequacy of antimicrobial regimens

Hospital-acquired pneumonia: microbiological data and potential adequacy of antimicrobial regimens Eur Respir J 2002; 20: 432 439 DOI: 10.1183/09031936.02.00267602 Printed in UK all rights reserved Copyright #ERS Journals Ltd 2002 European Respiratory Journal ISSN 0903-1936 Hospital-acquired pneumonia:

More information

4/3/2017 CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA DISCLOSURE LEARNING OBJECTIVES

4/3/2017 CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA DISCLOSURE LEARNING OBJECTIVES CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA BILLIE BARTEL, PHARMD, BCCCP APRIL 7 TH, 2017 DISCLOSURE I have had no financial relationship over the past 12 months with any commercial

More information

Nosocomial Infections: What Are the Unmet Needs

Nosocomial Infections: What Are the Unmet Needs Nosocomial Infections: What Are the Unmet Needs Jean Chastre, MD Service de Réanimation Médicale Hôpital Pitié-Salpêtrière, AP-HP, Université Pierre et Marie Curie, Paris 6, France www.reamedpitie.com

More information

Original Articles. K A M S W Gunarathne 1, M Akbar 2, K Karunarathne 3, JRS de Silva 4. Sri Lanka Journal of Child Health, 2011; 40(4):

Original Articles. K A M S W Gunarathne 1, M Akbar 2, K Karunarathne 3, JRS de Silva 4. Sri Lanka Journal of Child Health, 2011; 40(4): Original Articles Analysis of blood/tracheal culture results to assess common pathogens and pattern of antibiotic resistance at medical intensive care unit, Lady Ridgeway Hospital for Children K A M S

More information

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization Infect Dis Ther (2014) 3:55 59 DOI 10.1007/s40121-014-0028-8 BRIEF REPORT Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

More information

Concise Antibiogram Toolkit Background

Concise Antibiogram Toolkit Background Background This toolkit is designed to guide nursing homes in creating their own antibiograms, an important tool for guiding empiric antimicrobial therapy. Information about antibiograms and instructions

More information

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Int.J.Curr.Microbiol.App.Sci (2017) 6(3): International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 3 (2017) pp. 891-895 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.603.104

More information

Hospital-acquired pneumonia (HAP) is the second

Hospital-acquired pneumonia (HAP) is the second Guidelines and Critical Pathways for Severe Hospital-Acquired Pneumonia* Stanley Fiel, MD, FCCP Hospital-acquired pneumonia (HAP) is associated with high morbidity and mortality. Early, appropriate, and

More information

Management of Hospital-acquired Pneumonia

Management of Hospital-acquired Pneumonia Management of Hospital-acquired Pneumonia Adel Alothman, MB, FRCPC, FACP Asst. Professor, COM, KSAU-HS Head, Infectious Diseases, Department of Medicine King Abdulaziz Medical City Riyadh Saudi Arabia

More information

GENERAL NOTES: 2016 site of infection type of organism location of the patient

GENERAL NOTES: 2016 site of infection type of organism location of the patient GENERAL NOTES: This is a summary of the antibiotic sensitivity profile of clinical isolates recovered at AIIMS Bhopal Hospital during the year 2016. However, for organisms in which < 30 isolates were recovered

More information

Antimicrobial Cycling. Donald E Low University of Toronto

Antimicrobial Cycling. Donald E Low University of Toronto Antimicrobial Cycling Donald E Low University of Toronto Bad Bugs, No Drugs 1 The Antimicrobial Availability Task Force of the IDSA 1 identified as particularly problematic pathogens A. baumannii and

More information

SHC Clinical Pathway: HAP/VAP Flowchart

SHC Clinical Pathway: HAP/VAP Flowchart SHC Clinical Pathway: Hospital-Acquired and Ventilator-Associated Pneumonia SHC Clinical Pathway: HAP/VAP Flowchart v.08-29-2017 Diagnosis Hospitalization (HAP) Pneumonia develops 48 hours following: Endotracheal

More information

Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland

Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland A report by the Hospital Antimicrobial Stewardship Working Group, a subgroup of the

More information

Antimicrobial Susceptibility Patterns

Antimicrobial Susceptibility Patterns Antimicrobial Susceptibility Patterns KNH SURGERY Department Masika M.M. Department of Medical Microbiology, UoN Medicines & Therapeutics Committee, KNH Outline Methodology Overall KNH data Surgery department

More information

UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients

UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients Background/methods: UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients This guideline establishes evidence-based consensus standards for management

More information

MAGNITUDE OF ANTIMICROBIAL USE. Antimicrobial Stewardship in Acute and Long Term Healthcare Facilities: Design, Implementation and Challenges

MAGNITUDE OF ANTIMICROBIAL USE. Antimicrobial Stewardship in Acute and Long Term Healthcare Facilities: Design, Implementation and Challenges Antimicrobial Stewardship in Acute and Long Term Healthcare Facilities: Design, Implementation and Challenges John A. Jernigan, MD, MS Division of Healthcare Quality Promotion Centers for Disease Control

More information

An evaluation of the susceptibility patterns of Gram-negative organisms isolated in cancer centres with aminoglycoside usage

An evaluation of the susceptibility patterns of Gram-negative organisms isolated in cancer centres with aminoglycoside usage Journal of Antimicrobial Chemotherapy (1991) 27, Suppl. C, 1-7 An evaluation of the susceptibility patterns of Gram-negative organisms isolated in cancer centres with aminoglycoside usage J. J. Muscato",

More information

NEW ATS/IDSA VAP-HAP GUIDELINES

NEW ATS/IDSA VAP-HAP GUIDELINES NEW ATS/IDSA VAP-HAP GUIDELINES MARK L. METERSKY, MD PROFESSOR OF MEDICINE UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE FARMINGTON, CT Mark Metersky, MD, FCCP, FACP is a Professor of Medicine at the University

More information

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia Po-Ren Hsueh National Taiwan University Hospital Ventilator-associated Pneumonia Microbiological Report Sputum from a

More information

Jump Starting Antimicrobial Stewardship

Jump Starting Antimicrobial Stewardship Jump Starting Antimicrobial Stewardship Amanda C. Hansen, PharmD Pharmacy Operations Manager Carilion Roanoke Memorial Hospital Roanoke, Virginia March 16, 2011 Objectives Discuss guidelines for developing

More information

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 9 (2015) pp. 952-956 http://www.ijcmas.com Original Research Article Prevalence of Metallo-Beta-Lactamase

More information

Interactive session: adapting to antibiogram. Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe

Interactive session: adapting to antibiogram. Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe Interactive session: adapting to antibiogram Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe Case 1 63 y old woman Dx: urosepsis? After 2 d: intermediate result: Gram-negative bacilli Empiric antibiotic

More information

Dr. Shaiful Azam Sazzad. MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College

Dr. Shaiful Azam Sazzad. MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College Dr. Shaiful Azam Sazzad MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College INTRODUCTION ICU acquired infection account for substantial morbidity, mortality and expense. Infection and

More information

Antibiotic Updates: Part II

Antibiotic Updates: Part II Antibiotic Updates: Part II Fredrick M. Abrahamian, DO, FACEP, FIDSA Health Sciences Clinical Professor of Emergency Medicine David Geffen School of Medicine at UCLA Los Angeles, California Financial Disclosures

More information

Antimicrobial Susceptibility Testing: Advanced Course

Antimicrobial Susceptibility Testing: Advanced Course Antimicrobial Susceptibility Testing: Advanced Course Cascade Reporting Cascade Reporting I. Selecting Antimicrobial Agents for Testing and Reporting Selection of the most appropriate antimicrobials to

More information

Antimicrobial stewardship in managing septic patients

Antimicrobial stewardship in managing septic patients Antimicrobial stewardship in managing septic patients November 11, 2017 Samuel L. Aitken, PharmD, BCPS (AQ-ID) Clinical Pharmacy Specialist, Infectious Diseases slaitken@mdanderson.org Conflict of interest

More information

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital, Original Article Vol. 28 No. 1 Surveillance of Antimicrobial Resistance:- Chaiwarith R, et al. 3 Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at

More information

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times Safe Patient Care Keeping our Residents Safe 2016 Use Standard Precautions for ALL Residents at ALL times #safepatientcare Do bugs need drugs? Dr Deirdre O Brien Consultant Microbiologist Mercy University

More information

Mono- versus Bitherapy for Management of HAP/VAP in the ICU

Mono- versus Bitherapy for Management of HAP/VAP in the ICU Mono- versus Bitherapy for Management of HAP/VAP in the ICU Jean Chastre, www.reamedpitie.com Conflicts of interest: Consulting or Lecture fees: Nektar-Bayer, Pfizer, Brahms, Sanofi- Aventis, Janssen-Cilag,

More information

Available online at ISSN No:

Available online at  ISSN No: Available online at www.ijmrhs.com ISSN No: 2319-5886 International Journal of Medical Research & Health Sciences, 2017, 6(4): 36-42 Comparative Evaluation of In-Vitro Doripenem Susceptibility with Other

More information

Antibiotic usage in nosocomial infections in hospitals. Dr. Birgit Ross Hospital Hygiene University Hospital Essen

Antibiotic usage in nosocomial infections in hospitals. Dr. Birgit Ross Hospital Hygiene University Hospital Essen Antibiotic usage in nosocomial infections in hospitals Dr. Birgit Ross Hospital Hygiene University Hospital Essen Infection control in healthcare settings - Isolation - Hand Hygiene - Environmental Hygiene

More information

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 2004, p. 4606 4610 Vol. 48, No. 12 0066-4804/04/$08.00 0 DOI: 10.1128/AAC.48.12.4606 4610.2004 Copyright 2004, American Society for Microbiology. All Rights

More information

Intrinsic, implied and default resistance

Intrinsic, implied and default resistance Appendix A Intrinsic, implied and default resistance Magiorakos et al. [1] and CLSI [2] are our primary sources of information on intrinsic resistance. Sanford et al. [3] and Gilbert et al. [4] have been

More information

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine 2012 ANTIBIOGRAM Central Zone Former DTHR Sites Department of Pathology and Laboratory Medicine Medically Relevant Pathogens Based on Gram Morphology Gram-negative Bacilli Lactose Fermenters Non-lactose

More information

Multi-drug resistant microorganisms

Multi-drug resistant microorganisms Multi-drug resistant microorganisms Arzu TOPELI Director of MICU Hacettepe University Faculty of Medicine, Ankara-Turkey Council Member of WFSICCM Deaths in the US declined by 220 per 100,000 with the

More information

Learning Points. Raymond Blum, M.D. Antimicrobial resistance among gram-negative pathogens is increasing

Learning Points. Raymond Blum, M.D. Antimicrobial resistance among gram-negative pathogens is increasing Raymond Blum, M.D. Learning Points Antimicrobial resistance among gram-negative pathogens is increasing Infection with antimicrobial-resistant pathogens is associated with increased mortality, length of

More information

Evaluating the Role of MRSA Nasal Swabs

Evaluating the Role of MRSA Nasal Swabs Evaluating the Role of MRSA Nasal Swabs Josh Arnold, PharmD PGY1 Pharmacy Resident Pharmacy Grand Rounds February 28, 2017 2016 MFMER slide-1 Objectives Identify the pathophysiology of MRSA nasal colonization

More information

Workplan on Antibiotic Usage Management

Workplan on Antibiotic Usage Management IMPACT Forum: Antibiotic Guideline in Perspective Workplan on Antibiotic Usage Management Dr. Raymond Yung Consultant Microbiologist PYNEH 20 April 2002 May 2002 Dr. Raymond Yung 1 Objective 1. Heighten

More information

Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship

Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship Natalie R. Tucker, PharmD Antimicrobial Stewardship Pharmacist Tyson E. Dietrich, PharmD PGY2 Infectious Diseases

More information

Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial

Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial BRIEF REPORT Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial Rodger D. MacArthur, 1 Mark Miller, 2 Timothy Albertson, 3 Edward Panacek, 3

More information

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing These suggestions are intended to indicate minimum sets of agents to test routinely in a diagnostic laboratory

More information

GUIDELINES FOR THE MANAGEMENT OF COMMUNITY-ACQUIRED PNEUMONIA IN ADULTS

GUIDELINES FOR THE MANAGEMENT OF COMMUNITY-ACQUIRED PNEUMONIA IN ADULTS Version 3.1 GUIDELINES FOR THE MANAGEMENT OF COMMUNITY-ACQUIRED PNEUMONIA IN ADULTS Date ratified June 2008 Updated March 2009 Review date June 2010 Ratified by Authors Consultation Evidence base Changes

More information

Collecting and Interpreting Stewardship Data: Breakout Session

Collecting and Interpreting Stewardship Data: Breakout Session Collecting and Interpreting Stewardship Data: Breakout Session Michael S. Calderwood, MD, MPH Regional Hospital Epidemiologist, Dartmouth-Hitchcock Medical Center March 20, 2019 None Disclosures Outline

More information

Effects of an Antibiotic Cycling Program on Antibiotic Prescribing Practices in an Intensive Care Unit

Effects of an Antibiotic Cycling Program on Antibiotic Prescribing Practices in an Intensive Care Unit ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Aug. 2004, p. 2861 2865 Vol. 48, No. 8 0066-4804/04/$08.00 0 DOI: 10.1128/AAC.48.8.2861 2865.2004 Copyright 2004, American Society for Microbiology. All Rights Reserved.

More information

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012 Inappropriate Use of Antibiotics and Clostridium difficile Infection Jocelyn Srigley, MD, FRCPC November 1, 2012 Financial Disclosures } No conflicts of interest } The study was supported by a Hamilton

More information

Control emergence of drug-resistant. Reduce costs

Control emergence of drug-resistant. Reduce costs ...PRESENTATIONS... Guidelines for the Management of Community-Acquired Pneumonia Richard E. Chaisson, MD Presentation Summary Guidelines for the treatment of community-acquired pneumonia (CAP) have been

More information

Antimicrobial Stewardship Program: Local Experience

Antimicrobial Stewardship Program: Local Experience Antimicrobial Stewardship Program: Local Experience Dr. WU Tak Chiu Associate Consultant Division of Infectious Diseases Department of Medicine Queen Elizabeth Hospital 18th January 2011 QUEEN ELIZABETH

More information

Journal of Antimicrobial Chemotherapy Advance Access published April 14, 2008

Journal of Antimicrobial Chemotherapy Advance Access published April 14, 2008 Journal of Antimicrobial Chemotherapy Advance Access published April 14, 2008 Journal of Antimicrobial Chemotherapy doi:10.1093/jac/dkn164 Control of extended-spectrum b-lactamase-producing Klebsiella

More information

Introduction to Pharmacokinetics and Pharmacodynamics

Introduction to Pharmacokinetics and Pharmacodynamics Introduction to Pharmacokinetics and Pharmacodynamics Diane M. Cappelletty, Pharm.D. Assistant Professor of Pharmacy Practice Wayne State University August, 2001 Vocabulary Clearance Renal elimination:

More information

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2. AND QUANTITATIVE PRECISION (SAMPLE UR-01, 2017) Background and Plan of Analysis Sample UR-01 (2017) was sent to API participants as a simulated urine culture for recognition of a significant pathogen colony

More information

Fighting MDR Pathogens in the ICU

Fighting MDR Pathogens in the ICU Fighting MDR Pathogens in the ICU Dr. Murat Akova Hacettepe University School of Medicine, Department of Infectious Diseases, Ankara, Turkey 1 50.000 deaths each year in US and Europe due to antimicrobial

More information

Reassessment of intravenous antibiotic therapy using a reminder or direct counselling

Reassessment of intravenous antibiotic therapy using a reminder or direct counselling J Antimicrob Chemother 2010; 65: 789 795 doi:10.1093/jac/dkq018 Advance publication 5 February 2010 Reassessment of intravenous antibiotic therapy using a reminder or direct counselling Philippe Lesprit

More information

PRACTIC GUIDELINES for APPROPRIATE ANTIBIOTICS USE

PRACTIC GUIDELINES for APPROPRIATE ANTIBIOTICS USE PRACTIC GUIDELINES for APPROPRIATE ANTIBIOTICS USE Global Alliance for Infection in Surgery World Society of Emergency Surgery (WSES) and not only!! Aims - 1 Rationalize the risk of antibiotics overuse

More information

Multidrug-Resistant Organisms: How Do We Define them? How do We Stop Them?

Multidrug-Resistant Organisms: How Do We Define them? How do We Stop Them? Multidrug-Resistant Organisms: How Do We Define them? How do We Stop Them? Roberta B. Carey, PhD Centers for Disease Control and Prevention Division of Healthcare Quality Promotion Why worry? MDROs Clinical

More information

Help with moving disc diffusion methods from BSAC to EUCAST. Media BSAC EUCAST

Help with moving disc diffusion methods from BSAC to EUCAST. Media BSAC EUCAST Help with moving disc diffusion methods from BSAC to EUCAST This document sets out the main differences between the BSAC and EUCAST disc diffusion methods with specific emphasis on preparation prior to

More information

GUIDELINES EXECUTIVE SUMMARY

GUIDELINES EXECUTIVE SUMMARY GUIDELINES Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship Timothy

More information

Treatment Guidelines and Outcomes of Hospital- Acquired and Ventilator-Associated Pneumonia

Treatment Guidelines and Outcomes of Hospital- Acquired and Ventilator-Associated Pneumonia SUPPLEMENT ARTICLE Treatment Guidelines and Outcomes of Hospital- Acquired and Ventilator-Associated Pneumonia Antoni Torres, Miquel Ferrer, and Joan Ramón Badia Pneumology Department, Clinic Institute

More information

ESCMID Online Lecture Library. by author

ESCMID Online Lecture Library. by author Expert rules in susceptibility testing EUCAST-ESGARS-EPASG Educational Workshop Linz, 16 19 September, 2014 Dr. Rafael Cantón Hospital Universitario Ramón y Cajal SERVICIO DE MICROBIOLOGÍA Y PARASITOLOGÍA

More information

2016 Antibiotic Susceptibility Report

2016 Antibiotic Susceptibility Report Fairview Northland Medical Center and Elk River, Milaca, Princeton and Zimmerman Clinics 2016 Antibiotic Susceptibility Report GRAM-NEGATIVE ORGANISMS 2016 Gram-Negative Non-Urine The number of isolates

More information

EUCAST recommended strains for internal quality control

EUCAST recommended strains for internal quality control EUCAST recommended strains for internal quality control Escherichia coli Pseudomonas aeruginosa Staphylococcus aureus Enterococcus faecalis Streptococcus pneumoniae Haemophilus influenzae ATCC 59 ATCC

More information

GUIDE TO INFECTION CONTROL IN THE HOSPITAL. Antibiotic Resistance

GUIDE TO INFECTION CONTROL IN THE HOSPITAL. Antibiotic Resistance GUIDE TO INFECTION CONTROL IN THE HOSPITAL CHAPTER 4: Antibiotic Resistance Author M.P. Stevens, MD, MPH S. Mehtar, MD R.P. Wenzel, MD, MSc Chapter Editor Michelle Doll, MD, MPH Topic Outline Key Issues

More information

Health Care-Associated Pneumonia and Community-Acquired Pneumonia: a Single-Center Experience

Health Care-Associated Pneumonia and Community-Acquired Pneumonia: a Single-Center Experience ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 2007, p. 3568 3573 Vol. 51, No. 10 0066-4804/07/$08.00 0 doi:10.1128/aac.00851-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. Health

More information

Cost high. acceptable. worst. best. acceptable. Cost low

Cost high. acceptable. worst. best. acceptable. Cost low Key words I Effect low worst acceptable Cost high Cost low acceptable best Effect high Fig. 1. Cost-Effectiveness. The best case is low cost and high efficacy. The acceptable cases are low cost and efficacy

More information

St. Joseph s General Hospital Vegreville. and. Mary Immaculate Care Centre. Antimicrobial Stewardship Report

St. Joseph s General Hospital Vegreville. and. Mary Immaculate Care Centre. Antimicrobial Stewardship Report St. Joseph s General Hospital Vegreville and Mary Immaculate Care Centre Antimicrobial Stewardship Report January to June 217 Introduction Antibiotics are among the most commonly prescribed medications

More information

Antibiotic Abyss. Discussion Points. MRSA Treatment Guidelines

Antibiotic Abyss. Discussion Points. MRSA Treatment Guidelines Antibiotic Abyss Fredrick M. Abrahamian, D.O., FACEP, FIDSA Professor of Medicine UCLA School of Medicine Director of Education Department of Emergency Medicine Olive View-UCLA Medical Center Sylmar, California

More information

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune Original article Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune Patil P, Joshi S, Bharadwaj R. Department of Microbiology, B.J. Medical College, Pune, India. Corresponding

More information

Konsequenzen für Bevölkerung und Gesundheitssysteme. Stephan Harbarth Infection Control Program

Konsequenzen für Bevölkerung und Gesundheitssysteme. Stephan Harbarth Infection Control Program Konsequenzen für Bevölkerung und Gesundheitssysteme Stephan Harbarth Infection Control Program University of Geneva Hospitals Outline Introduction What data sources are available? AMR-associated outcomes

More information

How is Ireland performing on antibiotic prescribing?

How is Ireland performing on antibiotic prescribing? European Antibiotic Awareness Campaign 2016 November Webinar Series on Antibiotic Prescribing How is Ireland performing on antibiotic prescribing? Dr Rob Cunney National Clinical Lead HCAI AMR Clinical

More information

Antimicrobial Stewardship Strategy: Antibiograms

Antimicrobial Stewardship Strategy: Antibiograms Antimicrobial Stewardship Strategy: Antibiograms A summary of the cumulative susceptibility of bacterial isolates to formulary antibiotics in a given institution or region. Its main functions are to guide

More information

Antimicrobial susceptibility

Antimicrobial susceptibility Antimicrobial susceptibility PATTERNS Microbiology Department Canterbury ealth Laboratories and Clinical Pharmacology Department Canterbury District ealth Board March 2011 Contents Preface... Page 1 ANTIMICROBIAL

More information

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat Hicham Ezzat Professor of Microbiology and Immunology Cairo University Introduction 1 Since the 1980s there have been dramatic

More information

Studies on Antimicrobial Consumption in a Tertiary Care Private Hospital, India

Studies on Antimicrobial Consumption in a Tertiary Care Private Hospital, India Human Journals Research Article April 2016 Vol.:6, Issue:1 All rights are reserved by Zarine Khety et al. Studies on Antimicrobial Consumption in a Tertiary Care Private Hospital, India Keywords: Drug

More information

Sustaining an Antimicrobial Stewardship

Sustaining an Antimicrobial Stewardship Sustaining an Antimicrobial Stewardship Much needless expense, untoward effect, harm and disappointment can be prevented by better judgment in the use of antimicrobials Whitney A. Jones, PharmD Antimicrobial

More information

Summary of the latest data on antibiotic resistance in the European Union

Summary of the latest data on antibiotic resistance in the European Union Summary of the latest data on antibiotic resistance in the European Union EARS-Net surveillance data November 2017 For most bacteria reported to the European Antimicrobial Resistance Surveillance Network

More information

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Research Journal of Pharmaceutical, Biological and Chemical Sciences Research Journal of Pharmaceutical, Biological and Chemical Sciences An Appraisal of Sensitivity and Resistance Pattern of Organisms Isolated from Hospital Acquired Pneumonia Patients. Vijayanarayana K

More information

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger J Antimicrob Chemother 2012; 67: 622 632 doi:10.1093/jac/dkr524 Advance Access publication 13 December 2011 Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011

More information

2016 Updates to the Hospital Acquired- and Ventilator Associated-Pneumonia Guidelines

2016 Updates to the Hospital Acquired- and Ventilator Associated-Pneumonia Guidelines 2016 Updates to the Hospital Acquired- and Ventilator Associated-Pneumonia Guidelines Janessa M. Smith, PharmD, BCPS Clinical Pharmacy Specialist, Infectious Diseases The Johns Hopkins Hospital Objectives

More information

Canadian Nosocomial Infection Surveillance Program 2018 SURVEILLANCE FOR HEALTHCARE ACQUIRED CEREBROSPINAL FLUID SHUNT ASSOCIATED INFECTIONS

Canadian Nosocomial Infection Surveillance Program 2018 SURVEILLANCE FOR HEALTHCARE ACQUIRED CEREBROSPINAL FLUID SHUNT ASSOCIATED INFECTIONS Canadian Nosocomial Infection Surveillance Program 2018 SURVEILLANCE FOR HEALTHCARE ACQUIRED CEREBROSPINAL FLUID SHUNT ASSOCIATED INFECTIONS FINAL November 29, 2017 Working Group: Joanne Langley (Chair),

More information

Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia

Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia Seligman et al. BMC Anesthesiology 2015, 15:19 RESEARCH ARTICLE Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia Renato Seligman

More information

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units NEW MICROBIOLOGICA, 34, 291-298, 2011 Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units Vladimíra Vojtová 1, Milan Kolář 2, Kristýna Hricová 2, Radek Uvízl 3, Jan Neiser

More information

MDR Acinetobacter baumannii. Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta

MDR Acinetobacter baumannii. Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta MDR Acinetobacter baumannii Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta 1 The Armageddon recipe Transmissible organism with prolonged environmental

More information

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India ISSN: 2319-7706 Volume 4 Number 11 (2015) pp. 731-736 http://www.ijcmas.com Original Research Article Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching

More information

Suitability of Antibiotic Treatment for CAP (CAPTIME) The duration of antibiotic treatment in community acquired pneumonia (CAP)

Suitability of Antibiotic Treatment for CAP (CAPTIME) The duration of antibiotic treatment in community acquired pneumonia (CAP) STUDY PROTOCOL Suitability of Antibiotic Treatment for CAP (CAPTIME) Purpose The duration of antibiotic treatment in community acquired pneumonia (CAP) lasts about 9 10 days, and is determined empirically.

More information

New Drugs for Bad Bugs- Statewide Antibiogram

New Drugs for Bad Bugs- Statewide Antibiogram New Drugs for Bad Bugs- Statewide Antibiogram Felicia Matthews, Pharm.D., BCPS Senior Consultant, Pharmacy Specialty BE MedMined Services Disclosures Employee of BD Corporation MedMined Services Agenda

More information

Hand Hygiene and MDRO (Multidrug-resistant Organisms) - Science and Myth PROF MARGARET IP DEPT OF MICROBIOLOGY

Hand Hygiene and MDRO (Multidrug-resistant Organisms) - Science and Myth PROF MARGARET IP DEPT OF MICROBIOLOGY Hand Hygiene and MDRO (Multidrug-resistant Organisms) - Science and Myth PROF MARGARET IP DEPT OF MICROBIOLOGY MDROs and Hand Hygiene Guidelines HH Apr14 The Science of Hand Hygiene in Healthcare Settings

More information

Childrens Hospital Antibiogram for 2012 (Based on data from 2011)

Childrens Hospital Antibiogram for 2012 (Based on data from 2011) Childrens Hospital Antibiogram for 2012 (Based on data from 2011) Prepared by: Department of Clinical Microbiology, Health Sciences Centre For further information contact: Andrew Walkty, MD, FRCPC Medical

More information

21 st Expert Committee on Selection and Use of Essential Medicines Peer Review Report Antibiotics Review

21 st Expert Committee on Selection and Use of Essential Medicines Peer Review Report Antibiotics Review (1) Have all important studies/evidence of which you are aware been included in the application? Yes No Please provide brief comments on any relevant studies that have not been included: (2) For each of

More information

2015 Antibiotic Susceptibility Report

2015 Antibiotic Susceptibility Report Citrobacter freundii Enterobacter aerogenes Enterobacter cloacae Escherichia coli Haemophilus influenzenza Klebsiella oxytoca Klebsiella pneumoniae Proteus mirabilis Pseudomonas aeruginosa Serratia marcescens

More information

Antimicrobial Pharmacodynamics

Antimicrobial Pharmacodynamics Antimicrobial Pharmacodynamics November 28, 2007 George P. Allen, Pharm.D. Assistant Professor, Pharmacy Practice OSU College of Pharmacy at OHSU Objectives Become familiar with PD parameters what they

More information

These recommendations were approved for use by the Pharmaceutical and Therapeutics Committee, RCWMCH on 1 February 2017.

These recommendations were approved for use by the Pharmaceutical and Therapeutics Committee, RCWMCH on 1 February 2017. Antibiotic regimens for suspected hospital-acquired infection (HAI) outside the Paediatric Intensive Care Unit at Red Cross War Memorial Children s Hospital (RCWMCH) Lead author: Brian Eley Contributing

More information

An Approach to Appropriate Antibiotic Prescribing in Outpatient and LTC Settings?

An Approach to Appropriate Antibiotic Prescribing in Outpatient and LTC Settings? An Approach to Appropriate Antibiotic Prescribing in Outpatient and LTC Settings? Dr. Andrew Morris Antimicrobial Stewardship ProgramMt. Sinai Hospital University Health Network amorris@mtsinai.on.ca andrew.morris@uhn.ca

More information

Taiwan Crit. Care Med.2009;10: %

Taiwan Crit. Care Med.2009;10: % 2008 30% 2008 2008 2004 813 386 07-346-8339 E-mail srwann@vghks.gov.tw 66 30% 2008 1 2008 2008 Intensive Care Med (2008)34:17-60 67 2 3 C activated protein C 4 5,6 65% JAMA 1995;273(2):117-23 Circulation,

More information

Healthcare Facilities and Healthcare Professionals. Public

Healthcare Facilities and Healthcare Professionals. Public Document Title: DOH Guidelines for Antimicrobial Stewardship Programs Document Ref. Number: DOH/ASP/GL/1.0 Version: 1.0 Approval Date: 13/12/2017 Effective Date: 14/12/2017 Document Owner: Applies to:

More information

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Routine internal quality control as recommended by EUCAST Version 3.1, valid from Routine internal quality control as recommended by EUCAST Version.1, valid from 01-01-01 Escherichia coli Pseudomonas aeruginosa Staphylococcus aureus Enterococcus faecalis Streptococcus pneumoniae Haemophilus

More information

Approach to pediatric Antibiotics

Approach to pediatric Antibiotics Approach to pediatric Antibiotics Gassem Gohal FAAP FRCPC Assistant professor of Pediatrics objectives To be familiar with common pediatric antibiotics o Classification o Action o Adverse effect To discus

More information

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010 Multi-Drug Resistant Organisms Is Combination Therapy the Way to Go? Sutthiporn Pattharachayakul, PharmD Prince of Songkhla University, Thailand Outline Prevalence of anti-microbial resistance in Acinetobacter

More information