Severe sepsis and septic shock

Size: px
Start display at page:

Download "Severe sepsis and septic shock"

Transcription

1 Feature Articles Antibiotic strategies in severe nosocomial sepsis: Why do we not de-escalate more often?* Sarah Heenen, MD; Frédérique Jacobs, MD; Jean-Louis Vincent, MD, PhD, FCCM Objectives: To assess the use of antibiotic de-escalation in patients with hospital-acquired severe sepsis in an academic setting. Design: We reviewed all episodes of severe sepsis treated over a 1-yr period in the department of intensive care. Antimicrobial therapy was considered as appropriate when the antimicrobial had in vitro activity against the causative microorganisms. According to the therapeutic strategy in the 5 days after the start of antimicrobial therapy, we classified patients into four groups: de-escalation (interruption of an antimicrobial agent or change of antibiotic to one with a narrower spectrum); no change in antibiotherapy; escalation (addition of a new antimicrobial agent or change in antibiotic to one with a broader spectrum); and mixed changes. Setting: A 35-bed medico-surgical intensive care department in which antibiotic strategies are reviewed by infectious disease specialists three times per week. Patients: One hundred sixty-nine patients with 216 episodes of severe sepsis attributable to a hospital-acquired infection who required broad-spectrum -lactam antibiotics alone or in association with other anti-infectious agents. Measurements and Main Results: The major sources of infection were the lungs (44%) and abdomen (38%). Microbiological data were available in 167 of the 216 episodes (77%). Initial antimicrobial therapy was inappropriate in 27 episodes (16% of culture-positive episodes). De-escalation was applied in 93 episodes (43%), escalation was applied in 22 episodes (10%), mixed changes were applied in 24 (11%) episodes, and there was no change in empirical antibiotic therapy in 77 (36%) episodes. In these 77 episodes, the reasons given for maintaining the initial antimicrobial therapy included the sensitivity pattern of the causative organisms and previous antibiotic therapy. The number of episodes when the chance to de-escalate may have been missed was small (4 episodes [5%]). Conclusion: Even in a highly focused environment with close collaboration among intensivists and infectious disease specialists, de-escalation may actually be possible in <50% of cases. (Crit Care Med 2012; 40: ) Key Words: antimicrobials; empiric antibiotics; infection; microbiology Severe sepsis and septic shock are common causes of morbidity and mortality, especially in the intensive care unit (ICU) (1). Infection control with effective antibiotic therapy and source elimination whenever indicated is a cornerstone in the management of sepsis. Early effective antibiotic therapy has been shown to decrease mortality rates (2 5) so that rapid institution of broad-spectrum antibiotic therapy is recommended if bacteriologic information is not available. However, broad-spectrum antibiotic *See also p From the Departments of Intensive Care (SH, JLV) and Infectious Disease (FJ), Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium. Institutional funds only were received. The authors have not disclosed any potential conflicts of interest. For information regarding this article, jlvincen@ulb.ac.be Copyright 2012 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins DOI: /CCM.0b013e ecf therapy can favor the emergence of resistant organisms (6, 7). Despite no strong evidence (8), antibiotic de-escalation, in which wide-spectrum empirical antibiotic therapy is started initially but the spectrum is narrowed as soon as microbiological results are available, therefore has been recommended to reduce selection pressure and possibly to reduce toxicity and limit costs (9 11). Concerns about the risk of recurrent infection in de-escalation therapy are probably unjustified (12, 13). De-escalating strategies are recommended particularly in hospital-acquired infections, in which the number of potential types of causative microorganism is relatively large and the risk of resistance is particularly high. Antibiotic de-escalating strategies have been studied primarily in hospital-acquired pneumonia (9, 12, 14 18). In these studies, the rate of de-escalation varied considerably, from 6% to 74%. The aim of our study was to assess how de-escalation is applied in patients with hospital-acquired severe sepsis in our intensive care department in which close collaboration with infectious disease specialists is associated with frequent reassessment of antibiotic regimens. We also assessed the impact of de-escalation on outcome and determined which factors were associated with de-escalation in our cohort. PATIENTS AND METHODS Patients The study was conducted in the 35-bed medico-surgical intensive care department of the academic hospital of the University of Brussels. We reviewed the files of all adult (older than 18 yrs) patients over a 1-yr period (2007) who were treated for severe sepsis (with or without septic shock) because of a hospital-acquired infection and required broad-spectrum b-lactam antibiotics, including piperacillin-tazobactam, ceftazidime, cefepime, and meropenem alone or in association with other anti-infectious agents. As a retrospective study, ethics committee approval was requested but patient consent was waived. Severe sepsis and septic shock were defined by standard criteria (19) Crit Care Med 2012 Vol. 40, No. 5

2 Patients who died within the first 3 days of therapy, before de-escalation could be instituted, were excluded. The choice of empirical treatment was made according to local guidelines and results of any previous microbiological data. Piperacillin-tazobactam was preferred as the first-line therapy in proven or suspected intra-abdominal infections. Ceftazidime and cefepime were used as first-line therapy in other cases, including ventilatoracquired and hospital-acquired pneumonia. Meropenem was used as second-line therapy (i.e., failure of piperacillin-tazobactam or cephalosporins) or in suspected or previous colonization by extended-spectrum b-lactamase (ESBL)-producing Gram-negative bacteria. Amikacin was usually added for 1 3 days in cases of severe sepsis (with high suspicion of Gram-negative bacteria involvement). Vancomycin was added when infection with methicillin-resistant Staphylococcus aureus or methicillin-resistant Staphylococcus epidermidis was suspected. An antifungal drug, generally fluconazole, was added in patients highly colonized by fungi, mostly in cases of sepsis resistant to broad-spectrum antibiotics. Demographic data, Sequential Organ Failure Assessment score (20) recorded on day 1 of the septic episode, source of infection, bacteriologic data, and antibiotic therapy for the 5 first days of treatment were noted for each episode. The site of infection, documented or suspected, was assessed according to standard criteria (21). Urine, bronchoalveolar lavage fluid, and catheters required quantitative cultures for confirmation of site: 100,000 colonies/ml for urine (semiquantitative), 10,000 colony-forming units/ml for bronchoalveolar lavage, and 15 colonies/ml for catheter cultures (22, 23). Cultures of other fluids (pleural, peritoneal, abscesses, tracheal aspirates, and blood) were nonquantitative. We considered isolated organisms to be colonizing if there was no clinical evidence of infection or no leukocytes in the samples (except in samples from normally sterile sites or from leukopenic patients). Microbiology results were considered as inconclusive when there was no growth of organism. For our study, multiresistant organisms were ESBL-producing Gram-negative rods, methicillin-resistant Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis. An episode of severe sepsis was considered to start on the day of sepsis diagnosis and to end with either resolution of sepsis (significant decrease in white blood cell count or C-reactive protein concentration, resolution of cardiovascular, and other organ dysfunctions), the patient s death, or a new episode of sepsis. Worsening of a patient s condition (hemodynamic, respiratory, neurologic, renal, or hepatic, or a new increase in blood lactate concentration or a coagulopathy) in association with signs of sepsis was considered as a new episode of sepsis only if the patient had transiently improved before the degradation and the degradation occurred 5 days after the previous episode. In our unit, antimicrobial therapy is prescribed by the ICU doctor after discussion with infectious disease consultants (a separate specialty from the microbiologists at our hospital) who are available 24 hrs per day. Rounds with infectious disease specialists are held at least three times per week to discuss all relevant aspects of management. The ICU team also includes a clinical pharmacist who reviews all drug prescriptions. Antimicrobial therapy was considered appropriate when the antimicrobial agent had in vitro activity against the incriminated organisms. De-escalation was defined either as the discontinuation of an antimicrobial agent (antibiotic or anti-fungal) or as a change from one antibiotic to another, i.e., from meropenem to any other b-lactam, from ceftazidime, cefepime, or piperacillintazobactam to amoxicillin-clavulanic acid or any other type of penicillin, or from vancomycin to any type of penicillin. Escalation was defined as the addition of a new antiinfectious agent or a change in antibiotic therapy in the reverse direction to that described. Changes among cefepime, ceftazidime, and piperacillin-tazobactam were not considered a significant alteration in the spectrum of cover. For the purposes of this study, we grouped episodes according to the antimicrobial strategy in the 5 days after diagnosis: de-escalation (group I); no change in the empirical treatment (group II); escalation (group III); and mixed strategy, in which changes in therapy were made in both directions (group IV). In each case, we identified the reasons that led to the specific strategy. Statistical Analyses Statistical analyses were performed using IBM SPSS Statistics 19 for windows (SPSS Inc, Chicago, IL). The Kolmogorov-Smirnov test was used, and histograms and normal-quantile plots were examined to verify if there were significant deviations from the normality assumption of continuous variables. Difference testing among groups was performed using analysis of variance, Student t test, chi-square test, or Fisher exact test, as appropriate. The Bonferroni correction was made for multiple comparisons. To examine differences in outcomes among groups, we studied only the first episodes of sepsis. Logistic regression analysis was used to identify the factors associated with deescalation. Variables associated with de-escalation (p.2) on a univariate basis were introduced into the multivariable analysis. Colinearity between variables was excluded before modeling. A Hosmer-Lemeshow goodness-of-fit test was performed, and classification tables and odds ratios with 95% confidence intervals were computed. Data are presented as mean ± sd or number (%) as appropriate. All tests were twotailed, and p<.05 was considered statistically significant. RESULTS We included a total of 241 episodes of severe sepsis, of which 25 were excluded because the patients died within the first 3 days of treatment. Demographic and infection-related data concerning the 216 evaluable episodes in 169 patients are presented in Table 1; 136 patients had 1 episode, 24 had 2 episodes, and nine had 2 episodes of severe sepsis or septic shock. Microbiological cultures provided a conclusive bacteriologic diagnosis in 163 episodes (75%). Table 2 presents the organisms found in these episodes and in four additional episodes in which only surveillance swabs (throat/nose and rectum swabs) were positive; multiple organisms were found in 86 of these episodes (51%). At least one Gramnegative bacillus was involved in 121 of the culture-positive episodes (72%); 19 of the isolated Gram-negative bacillus (11%) had ESBL activity. Enterobacter spp. and ESBL-producing organisms were more common in episodes in which escalation was used than in other groups. At least one Gram-positive coccus was isolated in 87 episodes, of which 33 strains were methicillin-resistant staphylococci (38%). Fungi were present in 29 of the culture-positive episodes (17%). Initial antimicrobial therapy was appropriate in 140 of the 167 culturepositive episodes (84%). It was more frequently appropriate in patients who underwent de-escalation than in patients in whom treatment was escalated or who had mixed strategies (Table 2). The empirical antibiotics are shown in Table 3 according to therapeutic strategy. Glycopeptides were more commonly used in episodes for which de-escalation was performed (group I) than in the episodes in which escalation was used (group III). Use of amikacin was more common in group I than in the other groups. The use of monotherapy was also significantly more common in the escalation and unchanged treatment groups (groups II and III) than in group I. Figure 1 summarizes the therapeutic strategy for all episodes according to the Crit Care Med 2012 Vol. 40, No

3 Table 1. Demographic and infection-related data Total Episodes microbiological data. In the microbiologically documented infections (167 episodes), initial treatment was appropriate in 140 episodes (84%). De-escalation was possible in 89 episodes and was performed in 72 of these 89 episodes (81%). In the 49 episodes in which microbiological documentation was inconclusive, Group I (De-Escalation) Group II (No Change) Group III (Escalation) Group IV (Mixed) N Male, n (%) 120 (56%) 51 (55%) 44 (57%) 14 (64%) 11 (46%) Age, yr (mean ± sd) 61 ± ± ± ± ± 12 Surgical admission, n (%) 106 (49%) 48 (52%) 35 (45%) 11 (50%) 12 (50%) Sequential Organ Function 9 ± 3 9 ± 4 9 ± 4 10 ± 4 9 ± 3 Assessment score (mean ± sd) Septic shock, n (%) 128 (59%) 52 (56%) 47 (61%) 15 (68%) 14 (58%) Septic source, n (%) Chest 94 (44%) 35 (38%) 32 (42%) 11 (50%) 16 (67%) Abdomen 83 (38%) 34 (37%) 31 (40%) 10 (45%) 8 (33%) Urinary tract infection 24 (11%) 11 (12%) 6 (8%) 3 (14%) 4 (17%) Soft tissue 35 (16%) 15 (16%) 13 (17%) 5 (23%) 2 (8%) Catheter 10 (5%) 4 (4%) 3 (4%) 2 (9%) 1 (4%) Primary bacteremia 11 (5%) 6 (6%) 3 (4%) 0 (0%) 2 (8%) Secondary bacteremia 46 (21%) 24 (26%) 6 (8%) a 5 (23%) 11 (46%) b Multiple 40 (19%) 11 (12%) 17 (22%) 5 (23%) 7 (29%) Unidentified 18 (8%) 8 (9%) 8 (10%) 1 (5%) 1 (4%) Positive microbiological documentation n (%) 167 (77%) 73 (78%) 53 (69%) 18 (81%) 23 (96%) b a Statistically different at 5% level vs. group I; b statistically different at 5% level vs. group II. Table 2. Detailed microbiological findings for the most frequently isolated microorganisms Total Episodes (Culture-Positive) Group I Group II Group III (De-Escalation) (No Change) (Escalation) Group IV (Mixed) N Gram-negative bacilli, n (%) 121 (72%) 58 (79%) 36 (68%) 12 (62%) 15 (65%) Escherichia coli 43 (26%) 24 (33%) 12 (23%) 4 (22%) 3 (13%) Pseudomonas aeruginosa 30 (18%) 11 (15%) 10 (19%) 6 (33%) 3 (13%) Enterobacter sp. 20 (12%) 5 (7%) 7 (13%) 6 (33%) 2 (9%) c Klebsiella sp. 17 (10%) 6 (8%) 4 (8%) 2 (11%) 5 (22%) Nonfermenting Gram-negative 6 (4%) 3 (4%) 0 (0%) 0 (0%) 3 (13%) a bacteria Acinetobacter sp. 4 (2%) 3 (4%) 1 (2%) 0 (0%) 0 (0%) Extended spectrum 19 (11%) 6 (8%) 4 (8%) 7 (39%) a,b 2 (9%) beta-lactamase Gram-positive cocci 87 (52%) 33 (45%) 32 (60%) 7 (39%) 15 (65%) Methicillin sensitive 23 (14%) 12 (16%) 6 (11%) 1 (6%) 4 (17%) Staphylococcus aureus Methicillin resistant 11 (7%) 6 (8%) 3 (6%) 1 (6%) 1 (4%) Staphylococcus aureus Methicillin resistant 22 (13%) 6 (8%) 10 (19%) 1 (6%) 5 (22%) Staphylococcus epidermidis Enterococci sp. 31 (19%) 10 (14%) 14 (26%) 4 (22%) 3 (13%) Fungi 29 (17%) 7 (10%) 9 (17%) 5 (28%) 8 (35%) a Clostridium difficile 8 (5%) 2 (3%) 2 (4%) 1 (6%) 3 (13%) Polymicrobial infection 86 (51%) 36 (49%) 27 (51%) 10 (56%) 13 (57%) Appropriate initial anti-microbial therapy 140 (84%) 72 (97%) 53 (100%) 8 (44%) a 7 (30%) a a Statistically different at 5% level vs. group I; b statistically different at 5% level vs. group II; c statistically different at 5% level vs. group III. therapy was de-escalated in 20 (41%), mostly because no resistant bacteria were found in any samples. Of the 93 total episodes of de-escalation, 61 involved stopping an anti-infectious agent, 20 involved a change in antibiotic, and 12 involved both an interruption and a change. Taking a closer look at the 77 group II episodes to determine why there was no change in antimicrobial strategy, we found that in 35 of the episodes (46%), de-escalation was not possible because of the sensitivity of the microorganisms; the spectrum was already as narrow as it could be. In 25 episodes (32%), there was no change in therapy because of lack of microbiological data (a late culture returned positive in six episodes); in most of these cases, patients had already been receiving antibiotics when sepsis developed and had only improved by increasing the spectrum of cover, so physicians were then reluctant to reduce it without microbiological data. In ten episodes (13%), the microbiological data were considered inconclusive by the physician and the patient was not considered a candidate for de-escalation; in these episodes, patients had either been receiving antibiotic therapy when the sepsis occurred and microbiological documentation showed microorganisms sensitive to the previous treatment (six episodes), or there were multiples sites of infection with negative cultures for one or more of them (four episodes). In three episodes (4%), the patient was colonized with multiresistant organisms and the physician was not comfortable to deescalate and to potentially lose coverage of the multiresistant organisms. In four episodes (5%), there was no good reason why the antibiotherapy was not changed and the opportunity to de-escalate was simply missed. In 46 episodes, therapy was escalated or mixed strategies were used (groups III and IV), including five episodes in which the microbiological data were negative. Some escalations were performed even when the causative organisms were covered by the empirical treatment (15 episodes [33%]). The major reasons for escalation were: in 28 episodes (61%), microbiological findings revealed a microorganism that was potentially not covered by the empirical therapy (pending antibiogram and late cultures included); in 11 (24%) episodes, there was an inadequate response to the initial empirical treatment (degradation within the 5 first days of treatment); and in seven episodes (15%), there was a re-evaluation within hrs. The organisms that were not covered were Candida albicans and nonalbicans (eight episodes), ESBL-producing bacteria (six episodes), methicillinresistant Staphylococcus epidermidis (three episodes), Clostridium difficile 1406 Crit Care Med 2012 Vol. 40, No. 5

4 Table 3. Initial empirical antibiotic therapy according to therapeutic strategy Total Episodes Group I (De-Escalation) Group II (No Change) Group III (Escalation) Group IV (Mixed) N Used agent, n (%) Piperacillin-tazobactam 81 (38%) 32 (34%) 33 (43%) 11 (50%) 5 (21%) Ceftazidime 5 (2%) 1 (1%) 2 (3%) 1 (5%) 1 (4%) Cefepime 55 (25%) 28 (30%) 12 (16%) 6 (27%) 9 (38%) Meropenem 75 (35%) 32 (34%) 30 (39%) 4 (18%) 9 (38%) Amikacin 33 (15%) 29 (31%) 0 (0%) a 0 (0%) a 4 (17%) b Vancomycin/linezolid 119 (55%) 62 (67%) 38 (49%) 5 (23%) a 14 (58%) Fluconazole 34 (16%) 19 (20%) 11 (14%) 2 (9%) 2 (8%) Cotrimoxazole 10 (5%) 6 (6%) 3 (4%) 1 (5%) 0 (0%) Other 63 (29%) 28 (30%) 21 (27%) 7 (32%) 7 (29%) Regimen, n (%) 1 agent 55 (25%) 11 (12%) 29 (38%) a 10 (45%) a 5 (17%) 2 agents 90 (40%) 40 (43%) 28 (36%) 10 (45%) 12 (54%) 3 agents 51 (24%) 27 (29%) 16 (21%) 1 (5%) 7 (29%) 3 agents 20 (9%) 15 (16%) 4 (5%) 1 (5%) 0 (0%) a Statistically different at 5% level vs. group I; b statistically different at 5% level vs. group II. aureus (three), methicillin-resistant Staphylococcus epidermidis (ten), and Enterococcus with either resistance or intermediate sensitivity to penicillin (seven). The remaining 18 episodes in which vancomycin was not de-escalated with no obvious microbiological support to keep it were mainly soft tissue infections for which vancomycin was kept for its good soft tissue penetration. There were also three episodes of previous methicillin-resistant Staphylococcus aureus/methicillin-resistant Staphylococcus epidermidis colonization. In cases of negative culture (49 episodes), de-escalation was performed in 20 episodes, escalation was performed in 5 episodes, and no change was performed in 24 episodes. Among these 24 episodes, the reason for no de-escalation was: monotherapy (12); soft tissue infections (four); septic episodes (three) while the patient was using antibiotics; two cases of positive Gram-negative stain tests with no growth; and three cases in which the patients were immunosuppressed and using large-spectrum anti-microbial therapy. Considering only the 169 first episodes of sepsis, de-escalation was performed in 79, no change was performed in 58, escalation was performed in 15, and mixed changes were performed in 17. Forty-four of these 169 patients died, 13 (16%) in group I, 15 (26%) in group II, 9 (60%) in group III, and 7 (41%) in group IV (p =.002). In the multivariable analysis, appropriate initial antimicrobial therapy (odds ratio 2.7; 95% confidence interval ; p =.01) was the only factor associated with increased odds of de-escalation; monotherapy compared to multitherapy (odds ratio 0.17; 95% confidence interval , p =.001) were associated with decreased odds of de-escalation. DISCUSSION Figure 1. Overview of the therapeutic strategy in the 216 episodes classified according to positive microbiological results, effectiveness of initial antibiotherapy, and possibility of de-escalation according to sensitivity of isolated organisms. (two episodes), and other organisms (nine episodes). Because the rate of ESBL is relatively low in our hospital, meropenem is reserved as a second-line treatment for nosocomial infection or for patients known to carry an ESBL-producing Gram-negative rods. In these conditions, microbiological results are often inconclusive and meropenem was rarely de-escalated in the absence of documentation. In contrast, vancomycin is frequently prescribed and de-escalated after 2 or 3 days in our hospital. In the present study, it was prescribed in 119 episodes and maintained in just 38. Taking a closer look at these 38 episodes, vancomycin was maintained in 20 episodes for methicillin-resistant Staphylococcus Current guidelines on the management of severe sepsis recommend early broad-spectrum antibiotic therapy with de-escalation as soon as possible (11). Our ICU team benefits from a close collaboration with infectious disease specialists in addition to microbiologists; nevertheless, 16% (27/167 episodes) of patients had organisms that were not covered by the empirical antibiotic treatment and our de-escalation rate was only 43%. In previous studies of ventilator-associated pneumonia (VAP) or hospitalacquired pneumonia, de-escalation rates Crit Care Med 2012 Vol. 40, No

5 have varied broadly, from 6% to 74% (9, 12, 14 18, 24). Comparisons among studies are made difficult by the lack of precise definitions of de-escalation, differences in empirical regimens, and the differences in patient populations and local microbioloigical epidemiology. One of the highest de-escalation rates was reported by Eachampati et al (12) in 135 cases of VAP. These authors used a wider empirical antibiotic spectrum than in our present study, with a 23% rate of Gram-negative bacillus-targeted monotherapy and an overall rate of bitherapy of 77% (including association of vancomycin with piperacillin-tazobactam, quinolones, carbapenem, or cefepime). Their rate of appropriate antibiotic therapy was 93% with these regimens. Only ten patients required antibiotic escalation (7%). In 2006, the Canadian Critical Care Trials groups (18) performed a large randomized study of techniques to diagnose VAP. They included patients from 28 ICUs in Canada and had a large-spectrum initial antibiotherapy with meropenem alone and meropenem in association with ciprofloxacin. Their de-escalation rate was high (74%), largely because 21% of the enrolled patients were not infected and treatment was therefore stopped, and because the wide spectrum of the empirical treatment easily allowed streamlining. Despite their initial broad antibiotherapy, their adequacy rate was only 89%. The lowest de-escalation rate of 6% was reported by Rello et al in 113 patients, with changed therapy (not always de-escalation) reported in 43 patients (38%) (14). These authors had a rate of inadequate initial antibiotic therapy of 25%. The low de-escalation rate can be explained, at least in part, by the use of monotherapy in 47% of cases. In 2004, the same group evaluated the practice of de-escalation in patients with VAP (15). They analyzed 121 episodes of VAP and found a total rate of de-escalation of 31%, increasing to 38% when isolates were sensitive. They used monotherapy in 41% of the cases. However, their rate of de-escalation cannot be compared to ours because 12% of their patients were treated with amoxicillin/clavulanate, so that they could not de-escalate in these patients. Morel et al (13) recently assessed antibiotic strategies in 133 episodes of suspected infection requiring empirical antibiotic treatment. These authors reported a de-escalation rate of 45% in their overall patient population, but this included patients in whom antibiotics were stopped because they were later found to be not infected. They assessed the risks of re-escalation and of re-infection in their patients and reported a significant reduction in recurrent infection in patients in whom de-escalation was used. In another recent study, Shime et al (25) analyzed the rate of de-escalation in immunocompetent patients with bacteremia attributable to antibiotic-sensitive pathogens. This group studied a narrow population because they only included patients with positive blood cultures, a single causative microorganism covered by the empirical antibiotic therapy, and patients in whom it was possible to deescalate the empirical treatment. Despite this selective group, they recorded a rate of de-escalation of just 39%, whereas in our study if we limit our population to the same group of patients, then we achieve a de-escalation rate of 81%. The authors do not provide any reason for not performing de-escalation but, interestingly, show a trend toward reduced mortality and treatment failures when comparing a de-escalation group with a group without de-escalation, although the group without de-escalation included patients with unchanged and escalated treatments. In our outcomes analysis, there was higher mortality in groups III and IV (escalation and mixed strategies) compared to groups I and II (de-escalation and no change in treatment). It is not possible to say whether this simply reflects the severity of patient condition or if it is a direct consequence of the antibiotic strategy, but, importantly, it demonstrates that deescalation did not increase mortality in this cohort. Even with an initial broad-spectrum antibiotic therapy that included meropenem, piperacillin-tazobactam, or cephalosporins, all organisms in our study were not covered. Hence, antibiotic escalation was needed in 22 episodes (10%), and a combination of de-escalation and escalation was used in 24 episodes (11%). In the 77 episodes in which therapy was not changed, a reason was identified in most cases and the number of cases in which the chance to de-escalate may have been missed was actually small (4 cases [5%]). Although the rates of escalation and not covered organisms in our study may seem high, the population we studied (nosocomial severe sepsis and septic shock) is a more complex subgroup of patients than patients with VAP or community-acquired infections with more resistant organisms and potentially less microbiological information. Despite this difficulty, our results are within the middle of the range compared to previous studies. There was no difference in the severity of infection between the episodes in which de-escalation was performed and other episodes. The choice of empirical antibiotic therapy is influenced by local epidemiology with different degrees of bacterial resistance, justifying different initial strategies and different possibilities for de-escalation among units; therefore, rates of de-escalation can vary considerably. Belgium is a country with mixed resistant patterns, with more resistance than in Northern European countries but less resistance than in some southern countries (26). Rates of appropriate empirical antimicrobial treatment may be improved by using a wider-spectrum microbiological policy at the beginning of the septic episode and de-escalation could be improved by daily review, with the help of microbiology or infectious disease consultants, of the used regimen in the light of the microbiological results. Use of more invasive diagnostic strategies also has been associated with an increase in de-escalation rates (17). Our study may have the disadvantage of having been conducted in a single center, but interregional variation in microbial patterns is so large that interpretation of multiregional or international data may be difficult. Nevertheless, it is important to emphasize that our results may not apply everywhere. Although the retrospective design of our study made it more difficult to retrieve the reasons leading to each strategy, a prospective study design may have influenced therapeutic changes. CONCLUSION We demonstrated that in our academic environment with close collaboration with infectious disease specialists, de-escalation was possible in 43% of episodes of severe nosocomial sepsis. Antibiotic de-escalation is a strategy that is promoted for its potential advantages for the patient and for the hospital community by ensuring adequate coverage of causal infective agents but limiting selection pressure for multiresistant bacteria. Further study is needed to better-define 1408 Crit Care Med 2012 Vol. 40, No. 5

6 appropriate empirical antimicrobial therapies and the use of de-escalation strategies in various groups of ICU patients. REFERENCES 1. Osmon S, Warren D, Seiler SM, et al: The influence of infection on hospital mortality for patients requiring 48 h of intensive care. Chest 2003; 124: Kollef MH, Sherman G, Ward S, et al: Inadequate antimicrobial treatment of infections: A risk factor for hospital mortality among critically ill patients. Chest 1999; 115: Iregui M, Ward S, Sherman G, et al: Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122: Garnacho-Montero J, Ortiz-Leyba C, Herrera- Melero I, et al: Mortality and morbidity attributable to inadequate empirical antimicrobial therapy in patients admitted to the ICU with sepsis: A matched cohort study. J Antimicrob Chemother 2008; 61: Gaieski DF, Mikkelsen ME, Band RA, et al: Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med 2010; 38: Lautenbach E, Patel JB, Bilker WB, et al: Extended-spectrum beta-lactamaseproducing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001; 32: Yates RR: New intervention strategies for reducing antibiotic resistance. Chest 1999; 115:24S 27S 8. Gomes Silva BN, Andriolo RB, Atallah AN, et al: De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst Rev 2010; CD Alvarez-Lerma F, Alvarez B, Luque P, et al: Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: A prospective observational study. Crit Care 2006; 10:R Niederman MS: Impact of antibiotic resistance on clinical outcomes and the cost of care. Crit Care Med 2001; 29:N114 N Dellinger RP, Levy MM, Carlet JM, et al: Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: Crit Care Med 2008; 36: Eachempati SR, Hydo LJ, Shou J, et al: Does de-escalation of antibiotic therapy for ventilator-associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically ill surgical patients? J Trauma 2009; 66: Morel J, Casoetto J, Jospe R, et al: Deescalation as part of a global strategy of empiric antibiotherapy management. A retrospective study in a medico-surgical intensive care unit. Crit Care 2010; 14:R Rello J, Gallego M, Mariscal D, et al: The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 1997; 156: Rello J, Vidaur L, Sandiumenge A, et al: De-escalation therapy in ventilatorassociated pneumonia. Crit Care Med 2004; 32: Leone M, Garcin F, Bouvenot J, et al: Ventilator-associated pneumonia: Breaking the vicious circle of antibiotic overuse. Crit Care Med 2007; 35: Giantsou E, Liratzopoulos N, Efraimidou E, et al: De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate. Intensive Care Med 2007; 33: Canadian Critical Care Trials Group: A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 2006; 355: Levy MM, Fink MP, Marshall JC, et al: 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31: Vincent JL, Moreno R, Takala J, et al: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis- Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996; 22: Calandra T, Cohen J, International Sepsis Forum Definition of Infection in the ICU Consensus Conference: The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med 2005; 33: Garner JS, Jarvis WR, Emori TG, et al: CDC definitions for nosocomial infections, Am J Infect Control 1988; 16: Cooper GL, Hopkins CC: Rapid diagnosis of intravascular catheter-associated infection by direct Gram staining of catheter segments. N Engl J Med 1985; 312: Hoffken G, Niederman MS: Nosocomial pneumonia: the importance of a de-escalating strategy for antibiotic treatment of pneumonia in the ICU: Chest 2002; 122: Shime N, Satake S, Fujita N: De-escalation of antimicrobials in the treatment of bacteraemia due to antibiotic-sensitive pathogens in immunocompetent patients. Infection 2011; 39: European Center for Disease Prevention and Control: Antimicrobial resistance surveillance in Europe Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Available at: Publications/1011_SUR_annual_EARS_ Net_2009.pdf. Accessed December 2, 2011 Crit Care Med 2012 Vol. 40, No

Appropriate antimicrobial therapy in HAP: What does this mean?

Appropriate antimicrobial therapy in HAP: What does this mean? Appropriate antimicrobial therapy in HAP: What does this mean? Jaehee Lee, M.D. Kyungpook National University Hospital, Korea KNUH since 1907 Presentation outline Empiric antimicrobial choice: right spectrum,

More information

4/3/2017 CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA DISCLOSURE LEARNING OBJECTIVES

4/3/2017 CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA DISCLOSURE LEARNING OBJECTIVES CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA BILLIE BARTEL, PHARMD, BCCCP APRIL 7 TH, 2017 DISCLOSURE I have had no financial relationship over the past 12 months with any commercial

More information

The International Collaborative Conference in Clinical Microbiology & Infectious Diseases

The International Collaborative Conference in Clinical Microbiology & Infectious Diseases The International Collaborative Conference in Clinical Microbiology & Infectious Diseases PLUS: Antimicrobial stewardship in hospitals: Improving outcomes through better education and implementation of

More information

Mono- versus Bitherapy for Management of HAP/VAP in the ICU

Mono- versus Bitherapy for Management of HAP/VAP in the ICU Mono- versus Bitherapy for Management of HAP/VAP in the ICU Jean Chastre, www.reamedpitie.com Conflicts of interest: Consulting or Lecture fees: Nektar-Bayer, Pfizer, Brahms, Sanofi- Aventis, Janssen-Cilag,

More information

Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial

Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial BRIEF REPORT Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial Rodger D. MacArthur, 1 Mark Miller, 2 Timothy Albertson, 3 Edward Panacek, 3

More information

Sepsis is the most common cause of death in

Sepsis is the most common cause of death in ADDRESSING ANTIMICROBIAL RESISTANCE IN THE INTENSIVE CARE UNIT * John P. Quinn, MD ABSTRACT Two of the more common strategies for optimizing antimicrobial therapy in the intensive care unit (ICU) are antibiotic

More information

Combination vs Monotherapy for Gram Negative Septic Shock

Combination vs Monotherapy for Gram Negative Septic Shock Combination vs Monotherapy for Gram Negative Septic Shock Critical Care Canada Forum November 8, 2018 Michael Klompas MD, MPH, FIDSA, FSHEA Professor, Harvard Medical School Hospital Epidemiologist, Brigham

More information

Appropriate Antibiotic Administration in Critically Ill Patients with Pneumonia

Appropriate Antibiotic Administration in Critically Ill Patients with Pneumonia Research Paper Appropriate Antibiotic Administration in Critically Ill Patients with Pneumonia R. A. KHAN, M. M. BAKRY 1 AND F. ISLAHUDIN 1 * Hospital SgBuloh, Jalan Hospital, 47000 SgBuloh, Selangor,

More information

Dr. Shaiful Azam Sazzad. MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College

Dr. Shaiful Azam Sazzad. MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College Dr. Shaiful Azam Sazzad MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College INTRODUCTION ICU acquired infection account for substantial morbidity, mortality and expense. Infection and

More information

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Int.J.Curr.Microbiol.App.Sci (2017) 6(3): International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 3 (2017) pp. 891-895 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.603.104

More information

Original Articles. K A M S W Gunarathne 1, M Akbar 2, K Karunarathne 3, JRS de Silva 4. Sri Lanka Journal of Child Health, 2011; 40(4):

Original Articles. K A M S W Gunarathne 1, M Akbar 2, K Karunarathne 3, JRS de Silva 4. Sri Lanka Journal of Child Health, 2011; 40(4): Original Articles Analysis of blood/tracheal culture results to assess common pathogens and pattern of antibiotic resistance at medical intensive care unit, Lady Ridgeway Hospital for Children K A M S

More information

Nosocomial Infections: What Are the Unmet Needs

Nosocomial Infections: What Are the Unmet Needs Nosocomial Infections: What Are the Unmet Needs Jean Chastre, MD Service de Réanimation Médicale Hôpital Pitié-Salpêtrière, AP-HP, Université Pierre et Marie Curie, Paris 6, France www.reamedpitie.com

More information

PRACTIC GUIDELINES for APPROPRIATE ANTIBIOTICS USE

PRACTIC GUIDELINES for APPROPRIATE ANTIBIOTICS USE PRACTIC GUIDELINES for APPROPRIATE ANTIBIOTICS USE Global Alliance for Infection in Surgery World Society of Emergency Surgery (WSES) and not only!! Aims - 1 Rationalize the risk of antibiotics overuse

More information

SHC Clinical Pathway: HAP/VAP Flowchart

SHC Clinical Pathway: HAP/VAP Flowchart SHC Clinical Pathway: Hospital-Acquired and Ventilator-Associated Pneumonia SHC Clinical Pathway: HAP/VAP Flowchart v.08-29-2017 Diagnosis Hospitalization (HAP) Pneumonia develops 48 hours following: Endotracheal

More information

Taiwan Crit. Care Med.2009;10: %

Taiwan Crit. Care Med.2009;10: % 2008 30% 2008 2008 2004 813 386 07-346-8339 E-mail srwann@vghks.gov.tw 66 30% 2008 1 2008 2008 Intensive Care Med (2008)34:17-60 67 2 3 C activated protein C 4 5,6 65% JAMA 1995;273(2):117-23 Circulation,

More information

UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients

UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients Background/methods: UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients This guideline establishes evidence-based consensus standards for management

More information

Interactive session: adapting to antibiogram. Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe

Interactive session: adapting to antibiogram. Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe Interactive session: adapting to antibiogram Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe Case 1 63 y old woman Dx: urosepsis? After 2 d: intermediate result: Gram-negative bacilli Empiric antibiotic

More information

Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland

Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland A report by the Hospital Antimicrobial Stewardship Working Group, a subgroup of the

More information

Multi-drug resistant microorganisms

Multi-drug resistant microorganisms Multi-drug resistant microorganisms Arzu TOPELI Director of MICU Hacettepe University Faculty of Medicine, Ankara-Turkey Council Member of WFSICCM Deaths in the US declined by 220 per 100,000 with the

More information

Frequency of empiric antibiotic deescalation in an acute care hospital with an established Antimicrobial Stewardship Program

Frequency of empiric antibiotic deescalation in an acute care hospital with an established Antimicrobial Stewardship Program Liu et al. BMC Infectious Diseases (2016) 16:751 DOI 10.1186/s12879-016-2080-3 RESEARCH ARTICLE Frequency of empiric antibiotic deescalation in an acute care hospital with an established Antimicrobial

More information

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization Infect Dis Ther (2014) 3:55 59 DOI 10.1007/s40121-014-0028-8 BRIEF REPORT Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

More information

Successful stewardship in hospital settings

Successful stewardship in hospital settings Successful stewardship in hospital settings Pr Charles-Edouard Luyt Service de Réanimation Institut de Cardiologie Groupe Hospitalier Pitié-Salpêtrière Université Pierre et Marie Curie, Paris 6 www.reamedpitie.com

More information

Antimicrobial stewardship in managing septic patients

Antimicrobial stewardship in managing septic patients Antimicrobial stewardship in managing septic patients November 11, 2017 Samuel L. Aitken, PharmD, BCPS (AQ-ID) Clinical Pharmacy Specialist, Infectious Diseases slaitken@mdanderson.org Conflict of interest

More information

Health Care-Associated Pneumonia and Community-Acquired Pneumonia: a Single-Center Experience

Health Care-Associated Pneumonia and Community-Acquired Pneumonia: a Single-Center Experience ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 2007, p. 3568 3573 Vol. 51, No. 10 0066-4804/07/$08.00 0 doi:10.1128/aac.00851-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. Health

More information

General Approach to Infectious Diseases

General Approach to Infectious Diseases General Approach to Infectious Diseases 2 The pharmacotherapy of infectious diseases is unique. To treat most diseases with drugs, we give drugs that have some desired pharmacologic action at some receptor

More information

GENERAL NOTES: 2016 site of infection type of organism location of the patient

GENERAL NOTES: 2016 site of infection type of organism location of the patient GENERAL NOTES: This is a summary of the antibiotic sensitivity profile of clinical isolates recovered at AIIMS Bhopal Hospital during the year 2016. However, for organisms in which < 30 isolates were recovered

More information

Antimicrobial Stewardship Strategy: Antibiograms

Antimicrobial Stewardship Strategy: Antibiograms Antimicrobial Stewardship Strategy: Antibiograms A summary of the cumulative susceptibility of bacterial isolates to formulary antibiotics in a given institution or region. Its main functions are to guide

More information

Duke University Hospital Guideline for Empiric Inpatient Treatment of Cancer- Related Neutropenic Fever in Adult Patients

Duke University Hospital Guideline for Empiric Inpatient Treatment of Cancer- Related Neutropenic Fever in Adult Patients Duke University Hospital Guideline for Empiric Inpatient Treatment of Cancer- Related Neutropenic Fever in Adult Patients PURPOSE Fever among neutropenic patients is common and a significant cause of morbidity

More information

Northwestern Medicine Central DuPage Hospital Antimicrobial Criteria Updated 11/16/16

Northwestern Medicine Central DuPage Hospital Antimicrobial Criteria Updated 11/16/16 Northwestern Medicine Central DuPage Hospital Antimicrobial Criteria Updated 11/16/16 These criteria are based on national and local susceptibility data as well as Infectious Disease Society of America

More information

ANTIBIOTIC STEWARDSHIP

ANTIBIOTIC STEWARDSHIP ANTIBIOTIC STEWARDSHIP S.A. Dehghan Manshadi M.D. Assistant Professor of Infectious Diseases and Tropical Medicine Tehran University of Medical Sciences Issues associated with use of antibiotics were recognized

More information

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times Safe Patient Care Keeping our Residents Safe 2016 Use Standard Precautions for ALL Residents at ALL times #safepatientcare Do bugs need drugs? Dr Deirdre O Brien Consultant Microbiologist Mercy University

More information

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012 Inappropriate Use of Antibiotics and Clostridium difficile Infection Jocelyn Srigley, MD, FRCPC November 1, 2012 Financial Disclosures } No conflicts of interest } The study was supported by a Hamilton

More information

Management of Hospital-acquired Pneumonia

Management of Hospital-acquired Pneumonia Management of Hospital-acquired Pneumonia Adel Alothman, MB, FRCPC, FACP Asst. Professor, COM, KSAU-HS Head, Infectious Diseases, Department of Medicine King Abdulaziz Medical City Riyadh Saudi Arabia

More information

Active Bacterial Core Surveillance Site and Epidemiologic Classification, United States, 2005a. Copyright restrictions may apply.

Active Bacterial Core Surveillance Site and Epidemiologic Classification, United States, 2005a. Copyright restrictions may apply. Impact of routine surgical ward and intensive care unit admission surveillance cultures on hospital-wide nosocomial methicillin-resistant Staphylococcus aureus infections in a university hospital: an interrupted

More information

Childrens Hospital Antibiogram for 2012 (Based on data from 2011)

Childrens Hospital Antibiogram for 2012 (Based on data from 2011) Childrens Hospital Antibiogram for 2012 (Based on data from 2011) Prepared by: Department of Clinical Microbiology, Health Sciences Centre For further information contact: Andrew Walkty, MD, FRCPC Medical

More information

Bacterial infections complicating cirrhosis

Bacterial infections complicating cirrhosis PHC www.aphc.info Bacterial infections complicating cirrhosis P. Angeli, Dept. of Medicine, Unit of Internal Medicine and Hepatology (), University of Padova (Italy) pangeli@unipd.it Agenda Epidemiology

More information

Antimicrobial Susceptibility Patterns

Antimicrobial Susceptibility Patterns Antimicrobial Susceptibility Patterns KNH SURGERY Department Masika M.M. Department of Medical Microbiology, UoN Medicines & Therapeutics Committee, KNH Outline Methodology Overall KNH data Surgery department

More information

Workplan on Antibiotic Usage Management

Workplan on Antibiotic Usage Management IMPACT Forum: Antibiotic Guideline in Perspective Workplan on Antibiotic Usage Management Dr. Raymond Yung Consultant Microbiologist PYNEH 20 April 2002 May 2002 Dr. Raymond Yung 1 Objective 1. Heighten

More information

Hospital-acquired pneumonia: microbiological data and potential adequacy of antimicrobial regimens

Hospital-acquired pneumonia: microbiological data and potential adequacy of antimicrobial regimens Eur Respir J 2002; 20: 432 439 DOI: 10.1183/09031936.02.00267602 Printed in UK all rights reserved Copyright #ERS Journals Ltd 2002 European Respiratory Journal ISSN 0903-1936 Hospital-acquired pneumonia:

More information

Antimicrobial Cycling. Donald E Low University of Toronto

Antimicrobial Cycling. Donald E Low University of Toronto Antimicrobial Cycling Donald E Low University of Toronto Bad Bugs, No Drugs 1 The Antimicrobial Availability Task Force of the IDSA 1 identified as particularly problematic pathogens A. baumannii and

More information

Antimicrobial stewardship

Antimicrobial stewardship Antimicrobial stewardship Magali Dodemont, Pharm. with the support of Wallonie-Bruxelles International WHY IMPLEMENT ANTIMICROBIAL STEWARDSHIP IN HOSPITALS? Optimization of antimicrobial use To limit the

More information

Concise Antibiogram Toolkit Background

Concise Antibiogram Toolkit Background Background This toolkit is designed to guide nursing homes in creating their own antibiograms, an important tool for guiding empiric antimicrobial therapy. Information about antibiograms and instructions

More information

Learning Points. Raymond Blum, M.D. Antimicrobial resistance among gram-negative pathogens is increasing

Learning Points. Raymond Blum, M.D. Antimicrobial resistance among gram-negative pathogens is increasing Raymond Blum, M.D. Learning Points Antimicrobial resistance among gram-negative pathogens is increasing Infection with antimicrobial-resistant pathogens is associated with increased mortality, length of

More information

Antibiotic De-Escalation

Antibiotic De-Escalation Antibiotic De-Escalation Robert G. Masterton, FRCPath, FRCP [Edin & Glas] KEYWORDS De-escalation Antimicrobial streamlining Antimicrobial stewardship The present topography of clinical sepsis is a landscape

More information

Meropenem for all? Midge Asogan ICU Fellow (also ID AT)

Meropenem for all? Midge Asogan ICU Fellow (also ID AT) Meropenem for all? Midge Asogan ICU Fellow (also ID AT) Infections Common reason for presentation to ICU Community acquired - vs nosocomial - new infection acquired within hospital environment Treatment

More information

Study Protocol. Funding: German Center for Infection Research (TTU-HAARBI, Research Clinical Unit)

Study Protocol. Funding: German Center for Infection Research (TTU-HAARBI, Research Clinical Unit) Effectiveness of antibiotic stewardship interventions in reducing the rate of colonization and infections due to antibiotic resistant bacteria and Clostridium difficile in hospital patients a systematic

More information

Changing trends in clinical characteristics and antibiotic susceptibility of Klebsiella pneumoniae bacteremia

Changing trends in clinical characteristics and antibiotic susceptibility of Klebsiella pneumoniae bacteremia ORIGINAL ARTICLE Korean J Intern Med 2018;33:595-603 Changing trends in clinical characteristics and antibiotic susceptibility of Klebsiella pneumoniae Miri Hyun, Chang In Noh, Seong Yeol Ryu, and Hyun

More information

An Approach to Appropriate Antibiotic Prescribing in Outpatient and LTC Settings?

An Approach to Appropriate Antibiotic Prescribing in Outpatient and LTC Settings? An Approach to Appropriate Antibiotic Prescribing in Outpatient and LTC Settings? Dr. Andrew Morris Antimicrobial Stewardship ProgramMt. Sinai Hospital University Health Network amorris@mtsinai.on.ca andrew.morris@uhn.ca

More information

OPTIMIZATION OF PK/PD OF ANTIBIOTICS FOR RESISTANT GRAM-NEGATIVE ORGANISMS

OPTIMIZATION OF PK/PD OF ANTIBIOTICS FOR RESISTANT GRAM-NEGATIVE ORGANISMS HTIDE CONFERENCE 2018 OPTIMIZATION OF PK/PD OF ANTIBIOTICS FOR RESISTANT GRAM-NEGATIVE ORGANISMS FEDERICO PEA INSTITUTE OF CLINICAL PHARMACOLOGY DEPARTMENT OF MEDICINE, UNIVERSITY OF UDINE, ITALY SANTA

More information

Preventing Multi-Drug Resistant Organism (MDRO) Infections. For National Patient Safety Goal

Preventing Multi-Drug Resistant Organism (MDRO) Infections. For National Patient Safety Goal Preventing Multi-Drug Resistant Organism (MDRO) Infections For National Patient Safety Goal 07.03.01 2009 Methicillin Resistant Staphlococcus aureus (MRSA) About 3-8% of the population at large is a carrier

More information

Healthcare-Associated Pneumonia and Community-Acquired Pneumonia: ACCEPTED. A Single Center Experience. Scott T. Micek, PharmD 1

Healthcare-Associated Pneumonia and Community-Acquired Pneumonia: ACCEPTED. A Single Center Experience. Scott T. Micek, PharmD 1 AAC Accepts, published online ahead of print on August 00 Antimicrob. Agents Chemother. doi:./aac.001-0 Copyright 00, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital, Original Article Vol. 28 No. 1 Surveillance of Antimicrobial Resistance:- Chaiwarith R, et al. 3 Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at

More information

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 9 (2015) pp. 952-956 http://www.ijcmas.com Original Research Article Prevalence of Metallo-Beta-Lactamase

More information

Antibiotic. Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting

Antibiotic. Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting Antibiotic Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting Any substance of natural, synthetic or semisynthetic origin which at low concentrations kills or inhibits the growth of bacteria

More information

Understanding the Hospital Antibiogram

Understanding the Hospital Antibiogram Understanding the Hospital Antibiogram Sharon Erdman, PharmD Clinical Professor Purdue University College of Pharmacy Infectious Diseases Clinical Pharmacist Eskenazi Health 5 Understanding the Hospital

More information

10 Golden rules of Antibiotic Stewardship in ICU. Jeroen Schouten, MD PhD intensivist, Nijmegen (Neth) Istanbul, Oct 6th 2017

10 Golden rules of Antibiotic Stewardship in ICU. Jeroen Schouten, MD PhD intensivist, Nijmegen (Neth) Istanbul, Oct 6th 2017 10 Golden rules of Antibiotic Stewardship in ICU Jeroen Schouten, MD PhD intensivist, Nijmegen (Neth) Istanbul, Oct 6th 2017 10 golden rules of Antibiotic Stewardship in the ICU ID, Pharma & Micro advice

More information

Intra-Abdominal Infections. Jessica Thompson, PharmD, BCPS (AQ-ID) Infectious Diseases Pharmacy Clinical Specialist Renown Health April 19, 2018

Intra-Abdominal Infections. Jessica Thompson, PharmD, BCPS (AQ-ID) Infectious Diseases Pharmacy Clinical Specialist Renown Health April 19, 2018 Intra-Abdominal Infections Jessica Thompson, PharmD, BCPS (AQ-ID) Infectious Diseases Pharmacy Clinical Specialist Renown Health April 19, 2018 Select guidelines Mazuski JE, et al. The Surgical Infection

More information

Key words: antibiotics; intensive care; mechanical ventilation; outcomes; pneumonia; resistance

Key words: antibiotics; intensive care; mechanical ventilation; outcomes; pneumonia; resistance Clinical Importance of Delays in the Initiation of Appropriate Antibiotic Treatment for Ventilator-Associated Pneumonia* Manuel Iregui, MD; Suzanne Ward, RN; Glenda Sherman, RN; Victoria J. Fraser, MD;

More information

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing These suggestions are intended to indicate minimum sets of agents to test routinely in a diagnostic laboratory

More information

Jump Starting Antimicrobial Stewardship

Jump Starting Antimicrobial Stewardship Jump Starting Antimicrobial Stewardship Amanda C. Hansen, PharmD Pharmacy Operations Manager Carilion Roanoke Memorial Hospital Roanoke, Virginia March 16, 2011 Objectives Discuss guidelines for developing

More information

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune Original article Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune Patil P, Joshi S, Bharadwaj R. Department of Microbiology, B.J. Medical College, Pune, India. Corresponding

More information

Objectives. Basic Microbiology. Patient related. Environment related. Organism related 10/12/2017

Objectives. Basic Microbiology. Patient related. Environment related. Organism related 10/12/2017 Basic Microbiology Vaneet Arora, MD MPH D(ABMM) FCCM Associate Director of Clinical Microbiology, UK HealthCare Assistant Professor, Department of Pathology and Laboratory Medicine University of Kentucky

More information

Mercy Medical Center Des Moines, Iowa Department of Pathology. Microbiology Department Antibiotic Susceptibility January December 2016

Mercy Medical Center Des Moines, Iowa Department of Pathology. Microbiology Department Antibiotic Susceptibility January December 2016 Mercy Medical Center Des Moines, Iowa Department of Pathology Microbiology Department Antibiotic Susceptibility January December 2016 These statistics are intended solely as a GUIDE to choosing appropriate

More information

1/30/ Division of Disease Control and Health Protection. Division of Disease Control and Health Protection

1/30/ Division of Disease Control and Health Protection. Division of Disease Control and Health Protection Surveillance, Outbreaks, and Reportable Diseases, Oh My! Assisted Living Facility, Nursing Home and Surveyor Infection Prevention Training February 2015 A.C. Burke, MA, CIC Health Care-Associated Infection

More information

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia Po-Ren Hsueh National Taiwan University Hospital Ventilator-associated Pneumonia Microbiological Report Sputum from a

More information

These recommendations were approved for use by the Pharmaceutical and Therapeutics Committee, RCWMCH on 1 February 2017.

These recommendations were approved for use by the Pharmaceutical and Therapeutics Committee, RCWMCH on 1 February 2017. Antibiotic regimens for suspected hospital-acquired infection (HAI) outside the Paediatric Intensive Care Unit at Red Cross War Memorial Children s Hospital (RCWMCH) Lead author: Brian Eley Contributing

More information

Reducing the Burden of Severe Sepsis and Infections in Indian ICUs

Reducing the Burden of Severe Sepsis and Infections in Indian ICUs Reducing the Burden of Severe Sepsis and Infections in Indian ICUs J.V. Divatia Professor & Head Department of Anaesthesia, Critical Care & Pain Tata Memorial Hospital Mumbai India Infections in the ICU

More information

Hospital-acquired pneumonia (HAP) is the second

Hospital-acquired pneumonia (HAP) is the second Guidelines and Critical Pathways for Severe Hospital-Acquired Pneumonia* Stanley Fiel, MD, FCCP Hospital-acquired pneumonia (HAP) is associated with high morbidity and mortality. Early, appropriate, and

More information

Epidemiology of early-onset bloodstream infection and implications for treatment

Epidemiology of early-onset bloodstream infection and implications for treatment Epidemiology of early-onset bloodstream infection and implications for treatment Richard S. Johannes, MD, MS Marlborough, Massachusetts Health care-associated infections: For over 35 years, infections

More information

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine 2012 ANTIBIOGRAM Central Zone Former DTHR Sites Department of Pathology and Laboratory Medicine Medically Relevant Pathogens Based on Gram Morphology Gram-negative Bacilli Lactose Fermenters Non-lactose

More information

Antibiotic Updates: Part II

Antibiotic Updates: Part II Antibiotic Updates: Part II Fredrick M. Abrahamian, DO, FACEP, FIDSA Health Sciences Clinical Professor of Emergency Medicine David Geffen School of Medicine at UCLA Los Angeles, California Financial Disclosures

More information

03/09/2014. Infection Prevention and Control A Foundation Course. Talk outline

03/09/2014. Infection Prevention and Control A Foundation Course. Talk outline Infection Prevention and Control A Foundation Course 2014 What is healthcare-associated infection (HCAI), antimicrobial resistance (AMR) and multi-drug resistant organisms (MDROs)? Why we should be worried?

More information

Gram negative bacteraemia

Gram negative bacteraemia Gram negative bacteraemia David Enoch Consultant Medical Microbiologist PHE Cambridge Cambridge University Hospitals NHS FT Overview Gram negative bacteraemia Changing epidemiology in England Epidemiology

More information

Summary of the latest data on antibiotic resistance in the European Union

Summary of the latest data on antibiotic resistance in the European Union Summary of the latest data on antibiotic resistance in the European Union EARS-Net surveillance data November 2017 For most bacteria reported to the European Antimicrobial Resistance Surveillance Network

More information

Role of the nurse in diagnosing infection: The right sample, every time

Role of the nurse in diagnosing infection: The right sample, every time BROUGHT TO YOU BY Role of the nurse in diagnosing infection: The right sample, every time The module has been written by Shanika Anne-Marie Crusz and Amelia Joseph Authors affiliation: Department of Clinical

More information

Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship

Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship Natalie R. Tucker, PharmD Antimicrobial Stewardship Pharmacist Tyson E. Dietrich, PharmD PGY2 Infectious Diseases

More information

Collecting and Interpreting Stewardship Data: Breakout Session

Collecting and Interpreting Stewardship Data: Breakout Session Collecting and Interpreting Stewardship Data: Breakout Session Michael S. Calderwood, MD, MPH Regional Hospital Epidemiologist, Dartmouth-Hitchcock Medical Center March 20, 2019 None Disclosures Outline

More information

Aberdeen Hospital. Antibiotic Susceptibility Patterns For Commonly Isolated Organisms For 2015

Aberdeen Hospital. Antibiotic Susceptibility Patterns For Commonly Isolated Organisms For 2015 Aberdeen Hospital Antibiotic Susceptibility Patterns For Commonly Isolated s For 2015 Services Laboratory Microbiology Department Aberdeen Hospital Nova Scotia Health Authority 835 East River Road New

More information

The β- Lactam Antibiotics. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018

The β- Lactam Antibiotics. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018 The β- Lactam Antibiotics Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018 Penicillins. Cephalosporins. Carbapenems. Monobactams. The β- Lactam Antibiotics 2 3 How

More information

Antimicrobial stewardship: Quick, don t just do something! Stand there!

Antimicrobial stewardship: Quick, don t just do something! Stand there! Antimicrobial stewardship: Quick, don t just do something! Stand there! Stanley I. Martin, MD, FACP, FIDSA Director, Division of Infectious Diseases Director, Antimicrobial Stewardship Program Geisinger

More information

General Surgery Small Group Activity (Facilitator Notes) Curriculum for Antimicrobial Stewardship

General Surgery Small Group Activity (Facilitator Notes) Curriculum for Antimicrobial Stewardship General Surgery Small Group Activity (Facilitator Notes) Curriculum for Antimicrobial Stewardship Facilitator instructions: Read through the facilitator notes and make note of discussion points for each

More information

IMPLEMENTATION AND ASSESSMENT OF A GUIDELINE-BASED TREATMENT ALGORITHM FOR COMMUNITY-ACQUIRED PNEUMONIA (CAP)

IMPLEMENTATION AND ASSESSMENT OF A GUIDELINE-BASED TREATMENT ALGORITHM FOR COMMUNITY-ACQUIRED PNEUMONIA (CAP) IMPLEMENTATION AND ASSESSMENT OF A GUIDELINE-BASED TREATMENT ALGORITHM FOR COMMUNITY-ACQUIRED PNEUMONIA (CAP) Lucas Schonsberg, PharmD PGY-1 Pharmacy Practice Resident Providence St. Patrick Hospital Missoula,

More information

Randomized Controlled Trial on Adjunctive Lavage for Severe Peritoneal Dialysis- Related Peritonitis

Randomized Controlled Trial on Adjunctive Lavage for Severe Peritoneal Dialysis- Related Peritonitis Randomized Controlled Trial on Adjunctive Lavage for Severe Peritoneal Dialysis- Related Peritonitis Steve SM Wong Alice Ho Miu Ling Nethersole Hospital Background PD peritonitis is a major cause of PD

More information

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat Hicham Ezzat Professor of Microbiology and Immunology Cairo University Introduction 1 Since the 1980s there have been dramatic

More information

DETERMINANTS OF TARGET NON- ATTAINMENT IN CRITICALLY ILL PATIENTS RECEIVING β-lactams

DETERMINANTS OF TARGET NON- ATTAINMENT IN CRITICALLY ILL PATIENTS RECEIVING β-lactams DETERMINANTS OF TARGET NON- ATTAINMENT IN CRITICALLY ILL PATIENTS RECEIVING β-lactams Jan J. De Waele MD PhD Surgical ICU Ghent University Hospital Ghent, Belgium Disclosures Financial: consultancy for

More information

The increasing emergence of antimicrobial

The increasing emergence of antimicrobial Eur Respir Rev 2007; 16: 103, 33 39 DOI: 10.1183/09059180.00010302 CopyrightßERSJ Ltd 2007 Importance of appropriate initial antibiotic therapy and de-escalation in the treatment of nosocomial pneumonia

More information

Epidemiology and Microbiology of Surgical Wound Infections

Epidemiology and Microbiology of Surgical Wound Infections JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 2000, p. 918 922 Vol. 38, No. 2 0095-1137/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. Epidemiology and Microbiology of Surgical

More information

Antimicrobial stewardship in companion animals: Welcome to a whole new era

Antimicrobial stewardship in companion animals: Welcome to a whole new era Antimicrobial stewardship in companion animals: Welcome to a whole new era John F. Prescott, University Professor Emeritus, Department of Pathobiology, University of Guelph, Guelph, Ontario NG 2W1 prescott@uoguelph.ca

More information

National Surveillance of Antimicrobial Resistance

National Surveillance of Antimicrobial Resistance National Surveillance of Antimicrobial Resistance Report to Ministry of Health by Sri Lanka College of Microbiologists SLCM ARSP & NLBSA Technical Committees December 2014 National Surveillance of Antimicrobial

More information

Objectives 4/26/2017. Co-Investigators Sadie Giuliani, PharmD, BCPS Claude Tonnerre, MD Jayme Hartzell, PharmD, MS, BCPS

Objectives 4/26/2017. Co-Investigators Sadie Giuliani, PharmD, BCPS Claude Tonnerre, MD Jayme Hartzell, PharmD, MS, BCPS IMPLEMENTATION AND ASSESSMENT OF A GUIDELINE-BASED TREATMENT ALGORITHM FOR COMMUNITY-ACQUIRED PNEUMONIA (CAP) Lucas Schonsberg, PharmD PGY-1 Pharmacy Practice Resident Providence St. Patrick Hospital Missoula,

More information

8/17/2016 ABOUT US REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM

8/17/2016 ABOUT US REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM Mary Moore, MS CIC MT (ASCP) Infection Prevention Coordinator Great River Medical Center, West Burlington REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM ABOUT

More information

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR Original article RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR R.Sujatha 1,Nidhi Pal 2, Deepak S 3 1. Professor & Head, Department

More information

Sustaining an Antimicrobial Stewardship

Sustaining an Antimicrobial Stewardship Sustaining an Antimicrobial Stewardship Much needless expense, untoward effect, harm and disappointment can be prevented by better judgment in the use of antimicrobials Whitney A. Jones, PharmD Antimicrobial

More information

Konsequenzen für Bevölkerung und Gesundheitssysteme. Stephan Harbarth Infection Control Program

Konsequenzen für Bevölkerung und Gesundheitssysteme. Stephan Harbarth Infection Control Program Konsequenzen für Bevölkerung und Gesundheitssysteme Stephan Harbarth Infection Control Program University of Geneva Hospitals Outline Introduction What data sources are available? AMR-associated outcomes

More information

Cost high. acceptable. worst. best. acceptable. Cost low

Cost high. acceptable. worst. best. acceptable. Cost low Key words I Effect low worst acceptable Cost high Cost low acceptable best Effect high Fig. 1. Cost-Effectiveness. The best case is low cost and high efficacy. The acceptable cases are low cost and efficacy

More information

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya LU Edirisinghe 1, D Vidanagama 2 1 Senior Registrar in Medicine, 2 Consultant Microbiologist,

More information

Fighting MDR Pathogens in the ICU

Fighting MDR Pathogens in the ICU Fighting MDR Pathogens in the ICU Dr. Murat Akova Hacettepe University School of Medicine, Department of Infectious Diseases, Ankara, Turkey 1 50.000 deaths each year in US and Europe due to antimicrobial

More information

Appropriate Management of Common Pediatric Infections. Blaise L. Congeni M.D. Akron Children s Hospital Division of Pediatric Infectious Diseases

Appropriate Management of Common Pediatric Infections. Blaise L. Congeni M.D. Akron Children s Hospital Division of Pediatric Infectious Diseases Appropriate Management of Common Pediatric Infections Blaise L. Congeni M.D. Akron Children s Hospital Division of Pediatric Infectious Diseases It s all about the microorganism The common pathogens Viruses

More information

Treatment Guidelines and Outcomes of Hospital- Acquired and Ventilator-Associated Pneumonia

Treatment Guidelines and Outcomes of Hospital- Acquired and Ventilator-Associated Pneumonia SUPPLEMENT ARTICLE Treatment Guidelines and Outcomes of Hospital- Acquired and Ventilator-Associated Pneumonia Antoni Torres, Miquel Ferrer, and Joan Ramón Badia Pneumology Department, Clinic Institute

More information

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 2004, p. 4606 4610 Vol. 48, No. 12 0066-4804/04/$08.00 0 DOI: 10.1128/AAC.48.12.4606 4610.2004 Copyright 2004, American Society for Microbiology. All Rights

More information