Litter use by laying hens in a commercial aviary: dust bathing and piling

Size: px
Start display at page:

Download "Litter use by laying hens in a commercial aviary: dust bathing and piling"

Transcription

1 Litter use by laying hens in a commercial aviary: dust bathing and piling D. L. M. Campbell, M. M. Makagon, J. C. Swanson, and J. M. Siegford,1 Animal Behavior and Welfare Group, Department of Animal Science, Michigan State University, East Lansing, MI 48824; and Department of Animal Sciences, Purdue University, West Lafayette, IN ABSTRACT The laying hen industry, including in the United States, is responding to social concerns about hen welfare by implementing alternative housing systems such as the aviary, to provide more space and resources to large groups of hens. Data detailing the behavior of hens in commercial aviaries is needed to determine hens use of the resources in order to understand their impact on hen welfare. The open litter area of aviaries provides additional space for hens during the day. Litter is also a substrate for dust bathing which is a strongly motivated natural behavior. Hens are often synchronous in their performance of dust bathing, which may lead to overcrowding in the litter area. Additionally, the open litter area can facilitate expression of unusual behavior such as flock piling (defined as the occurrence of densely grouped clusters of hens, resulting from no obvious cause and occurring randomly throughout the day and flock cycle) which may be a welfare concern. Therefore, we conducted observations of hen occupancy of the open litter area and the performance of dust bathing and flock piling across 3 production points (peak lay, mid lay and end of lay) for two flocks of Lohmann White laying hens housed in a commercial aviary. All areas of the open litter area were occupied to the same degree. Hens performed dust bathing throughout the day but showed peak dust bathing activity in the afternoon for Flock 1 (all P < 0.001) and in the late morning for Flock 2 (all P < 0.001). Overall, 174 incidents of piling behavior were observed between the 2 flocks, with piles varying in size, duration, and time of occurrence; however, no smothering was detected. Crowding on the open litter area sometimes occurred during peak periods of synchronous dust bathing and when hens piled. Further research is needed to understand the welfare implications of individual hen use of the open litter area and the causes and welfare implications of hen piling. Key words: behavior, welfare, aviary, laying hen, dust bathing 2016 Poultry Science 95: INTRODUCTION The North American laying hen industry is responding to changing legislation and consumer concerns for hen welfare with growing numbers of producers phasing out conventional cages in favor of alternative housing systems such as the aviary. These indoor tiered systems house large groups of hens together, providing more space and resources designed to meet hen behavioral needs in comparison to conventional cages (reviewed in Cooper and Albentosa, 2003). Though aviaries come in many configurations, all contain perches, nestboxes, and provide access to a litter area in which hens can forage and dust bathe. Observational research in commercial facilities shows hens use these resources (Hansen, 1994; Odén et al., 2002), suggesting this system allows hens to address biologically-driven behavioral needs, potentially improving their welfare (Moesta et al., 2008). However, we do not yet have detailed C 2015 Poultry Science Association Inc. Received January 15, Accepted June 3, Corresponding author: siegford@msu.edu information on hens behavior in the commercial aviaries currently being installed in the United States. Determining hens use of the available space and resources is essential for making recommendations for modifications in system design if required, and to determine optimal practices for long-term sustainable management, ensuring these systems provide the improved welfare as intended. The open litter area is a distinct feature of the aviary alternative system (cf. furnished cages), but we do not know how fully hens occupy the available space or what type of behavior is performed in this resource. Previous observations in percheries show individual hens spend approximately 23% of their time on the open litter (Carmichael et al., 1999; Channing et al., 2001), with more birds using the litter in the afternoon for behavior such as foraging and dust bathing (Channing et al., 2001). We focused on dust bathing in this study as it was easily distinguished from video recordings by multiple observers and has previously been shown to be subject to over crowding though other uses of the open litter, including foraging are also important. Dust bathing is important 164

2 LITTER USE BY AVIARY LAYING HENS 165 for maintaining feather condition (van Liere, 1992) and is a behavioral need of hens (Cooper and Albentosa, 2003; but see Widowski and Duncan, 2000). Hens express strong motivation to access substrates in which to perform dust bathing (Wichman and Keeling, 2008) and show stress when substrate access is removed (Vestergaard et al., 1997). Observations in commercial systems with litter, namely aviaries and percheries, confirm hens use the litter area for dust bathing (Carmichael et al., 1999; Channing et al., 2001; Odén et al., 2002), thus satisfying their dust bathing motivation (Colson et al., 2007). However, the quality of the litter material can influence the amount of dust bathing (Odén et al., 2002). The daily internal behavioral rhythm of hens typically leads to dust bathing in the afternoon every second day (Vestergaard, 1982; but see Carmichael et al., 1999) and the probability of hens dust bathing increases when other hens are observed dust bathing through a process called social facilitation (Duncan et al., 1998 but see Olsson et al., 2002). These factors combined may lead to behavioral synchrony or simultaneous dust bathing behavior in large groups of hens (Odén et al., 2002) which can potentially overcrowd the litter areas or prevent litter access to some individuals (Odén et al., 2002). The provision of open areas and group housing of large numbers of birds can also lead to unusual behavior that might otherwise not be prevalent or problematic in a less complex space housing small numbers of hens, such as the conventional cage. Population pressure within large groups of hens can lead to flock hysteria/panic, typically manifested as hens flying wildly about, running around, or crowding and piling together (Hansen, 1976; Richards et al., 2012; Barrett et al., 2014). Flock panic can cause hen injury and smothering as well as a decrease in egg production, which constitute welfare and economic concerns (Hansen, 1976; Laycock and Ball, 1990; Hegelund et al., 2006; Bright and Johnson, 2011; but see Barrett et al., 2014). To date, there is little information available on the behaviors that lead to flock panic and the relationship of panic to piling and smothering. Over 50% of surveyed free-range producers in the United Kingdom reported smothering at some point in their flocks (Barrett et al., 2014) that was attributed to flock panic, nestbox crowding, or creeping/recurring piling, with piling defined as the random occurrence of densely grouped clusters of hens for no obvious reason (Bright and Johnson, 2011; Barrett et al., 2014). These reports of undesirable flock behavior suggest that panic can lead to piling, but that not all piling results from flock panic and not all panic or piling causes smothering. Thus, further research is warranted to understand the causes and extent of any welfare problems resulting from such piling behavior. The objective of this research was to examine hens spatial use of the open litter area in a commercial laying hen aviary facility in order to better understand the impacts of providing access to litter covered open floor areas on hen behavior and welfare. We report the percentage of the open litter area that was occupied by hens at different times across the day. We also report the proportion of hens on the open litter that were using the floor substrate for dust bathing, a behavior pattern that may improve hen welfare, and whether dust bathing proportions peaked at specific times of day. Finally, we documented all occurrences of piling during recording days - behavior that may negatively impact hen welfare - detailing piling size, duration, possible causes, and smothering outcomes. Housing MATERIALS AND METHODS The commercial aviary housed 49,842 (Flock 1) and 49,677 (Flock 2) Lohmann White laying hens which were placed at 19 weeks and 17 weeks into Flock 1 and Flock 2, respectively, and depopulated at 77 or 78 weeks of age for Flock 1 and Flock 2, respectively. Experimental data were collected over 2 flock cycles: Flock 1 data collection spanned June 2011 to May 2012, and Flock 2 data collection spanned August 2012 to August (For additional details on provision of other resources, see Jones et al., 2014; Zhao et al., 2015). The aviary system contained 6 rows of 3-tiered enclosures with internal perches, water, feed, and nestboxes (Figure 1). There were 2 outer rows of enclosures that each faced a house wall across an open litter area (called single rows), and 2 central pairs of enclosure rows that faced each other across a shared open litter area (called double rows; Figure 2). Each single or double row and associated litter area was divided into 10 sections along its length (each 1,440 cm long) by wire gates. Each single row section was initially populated with 852 laying hens and each double row section with 1,704 hens. The tiered enclosures within each section were further divided into 6 units by internal wire dividers (Figure 2). Hens could enter and exit each unit through an opening locted on the lowest tier of the enclosure, but the dividers prohibited hens from moving directly between enclosures within an aviary section. A perch, which ran the length of the enclosure, was located outside the enclosure opening to facilitate movement of hens between the enclosure and the floor area. The floor area accessible to hens comprised open litter in front of the tiered enclosures (40% of total litter area) and the litter area underneath the enclosures (60% of total litter area Figure 1; for additional details on available space per bird, see Jones et al., 2014; Zhao et al., 2015). The litter area itself did not have dividers and thus the hens could reenter any of the 6 tiered enclosures within a section from the open litter area. Video observations for dust bathing and spatial litter use were conducted at the level of the unit (6 units within each focal section), though no physical dividers were present in the litter area. Piling was observed wherever it occurred within the entire section.

3 166 CAMPBELL ET AL. Figure 1. Representation of the tiered aviary enclosures as seen from the end of a unit showing the outer perch, open litter, underneath litter areas, the inner perches and ledges on each numbered tier and location of the nestbox. Figure 2. A schematic top-down diagram of the aviary house showing the tiered enclosure and open litter area, focal video-recorded sections, unit dividers, and single and double rows. System Management Hens remained confined to the tiered enclosures until they reached peak lay, which in this study was defined as 95% production. Once this criterion was reached for each flock (Flock 1 = 26 wk and Flock 2 = 24 wk), the doors in the lower tier of each unit opened daily after the majority of eggs were laid (at approximately 11:00) and closed again 30 min prior to lights coming on the following day (at approximately 06:00). As might be expected in a commercial facility that was adapting to a new housing system, adjustments to management practices occurred during the observation period of Flock 1 and several issues affected hen distributions and data collection. First, installation of video cameras was not complete prior to opening of the aviary enclosure doors allowing hens to access the open litter, thus peak lay recording for Flock 1 occurred 2 wk after the hens initial exposure to litter. Second, the gates between sections remained open during the peak lay video recording period of Flock 1, allowing birds to travel the length of the row, affecting absolute hen numbers per section. Section gates were closed and hens were redistributed evenly between sections prior to mid lay video recording. Finally, unit doors of aviary enclosures remained open continuously during the mid lay video recording period, giving birds 24 h access to litter. Doors began closing again following the schedule above prior to end lay recording. All management issues were resolved by the observation period of Flock 2, and hen disturbances were minimized with no personnel entry after morning egg collection during all recordings. Litter Assessment We visually scored floor litter coverage and dryness and measured litter depth to document how floor cover might affect litter area use (see Table 1 for scoring descriptions). Assessments were made in open litter

4 LITTER USE BY AVIARY LAYING HENS 167 Table 1. The definitions for scoring litter coverage and litter dryness in the open floor litter area, as well as how depth in each section was assessed. Litter cover Litter dryness Litter depth 0 Less than 25% of area is covered 0 Dry and flaky Measured in cm from floor to surface of litter 1 25 to 49.9% of area is covered 1 Dry and clumped, not easy to move 2 50 to 74.9% of area is covered 2 Foot leaves imprint in litter 3 75 to 99.9% of area is covered 4 100% of area is covered areas under each of the 3 ceiling-mounted cameras in each section immediately prior to peak, mid, and end lay video recording, with the exception of Flock 1 peak lay, where litter dryness and depth were not measured. At all time points, litter dryness was scored as zero, so this parameter was not analyzed further. Video Data Collection Video recordings of the outer perch of the tiered enclosure and of the open litter area were made in 8 of the 40 sections within the house (4 sections in singlerows and 4 in double-rows) using ceiling-mounted highresolution digital video cameras (VF450, Clinton Electronics, Loves Park, IL). Three cameras were installed per section with each camera capturing the outer perch and litter area in front of 2 units. For peak lay of Flock 1 (the first data collection point), cameras were installed in the 4 single-row sections only; thereafter additional cameras were installed to include an additional 4 double-row sections (8 focal sections total). Video data were collected at 3 points in the laying hen production cycle commencing at peak lay (Flock 1: 95.93% production, 27 wk; Flock 2: 96.5% production, 24 wk), mid lay (Flock 1: 93.19% production, 52 wk; Flock 2: 89.33% production, 55 wk) and end lay (Flock 1: 82.86% production, 77 wk; Flock 2: 76.85% production, 76 wk). With the exception of the Flock 1 mid lay period (see System Management), behavioral observations began at approximately 11:00 AM, once tiered enclosure doors opened and hens had access to the open litter. Video recordings were decoded to document 3 aspects of behavior across the day (interobserver reliability 85% between 5 observers for dust bathing, 7 observers for pixel analysis, and 4 observers for piling). First, we used the software program ImageJ (National Institutes of Health, Bethesda, MD; Schneider et al., 2012) to complete pixel analysis of video snapshots sampled every 15 min across three 2 h periods for overall hen occupancy of the visible litter area (which included the area underneath the outer perch (Figure 1). We used ImageJ (National Institutes of Health, Bethesda, MD; Schneider et al., 2012) to convert the images to binary (black/white, hens/litter) and to calculate the percentage of litter floor space occupied by hens. Second, for observing specific behavior patterns performed on the open litter area (but not including the area directly under the outer perch), we counted the percentage of hens on the open litter that were dust bathing by sampling every 15 min within three 2 h periods starting from aviary opening ( 11:00 to 13:00 morning ; with an extra 2 h time period starting at lights on ( 6:30 to 8:30) for the mid lay period of Flock 1 only), during the mid-afternoon ( 15:00 to 17:00 afternoon ) and before lights out ( 19:00 to 21:00 evening ). At each 15 min interval, hens were observed for 1 min to determine if they were actively dust bathing versus sitting, standing, walking, or foraging. The video images used for the pixel analysis coincided with the start of the 1 min observations of hens to determine if they were dust bathing. Third, at each age, we observed all piling behavior occurring on the open litter from aviary opening until lights off. Based on preliminary observations, and for consistency between observers, we defined a pile as a minimum of 10 hens pressed against each other for at least 1 min, their heads facing the same direction and not performing any other discernible behavior (e.g., dust bathing). All piles were further classified by whether they occurred against a section gate or outer wall (for single-row sections only) or in a central area of the litter. We noted the time of day piles occurred, total time the pile lasted (duration), and how many hens were present at visually estimated peak pile size. Hens in piles typically had their heads up and were facing the same direction, thus counts of combs were made. However, in very large piles there may have been some hens ( 10 hens/pile) hidden from view during counting as the clustering could be very tight. We also discerned the cause of the pile to the best of our ability (Table 2). Ethics All research was approved by the Michigan State University Institutional Animal Care and Use Committee prior to the start of data collection. Data and Statistical Analyses Due to substantial differences in the management occurring between the periods of observation of the flocks, and because we recorded 2 weeks after aviary opening for Flock 1 but the day of aviary opening for Flock 2, data from each flock were analyzed separately. All analyses were conducted in JMP 11.0 (SAS Institute Inc.,

5 168 CAMPBELL ET AL. Table 2. The possible causes of pile formation for all observed piles as determined from video observations and the percentage of total observed piles for each cause. Behavioral cause of piling % of total observed piles Hens on other side of gate, appeared to interest hens in focal section No discernible cause: >5 hens begin interacting with each other and a pile formed >5 hens pecking at something and 8.62 others join Sudden mass movement resulting from 6.89 unknown flock disturbance (but not hysterical in nature; Hansen, 1976) Rooster accidentally present in enclosure 2.29 Aggression between 2 hens attracted 0.60 others Cary, NC) with α set at A t-test was applied to the litter depth data for Flock 1 (n = 48 units), and one-way ANOVAs were applied to the litter coverage data for both flocks (Flock 1 n = 60; Flock 2 n = 72 units) and litter depth data for Flock 2 (n = 72 units) for comparisons between different time points (peak, mid, and end of lay). ImageJ measurements of spatial occupancy of the litter in each sampled unit were averaged for all 15 min counts within each 2 h time period (lights on, morning, afternoon, and evening) for each age (peak, mid, and end of lay) of the 2 flocks. Kruskal-Wallis tests were applied to the non-normal data to assess differences across the time of day within each age for each flock (Flock 1 peak lay: n = 72 units, mid lay: n = 192 units, end lay: n = 144 units; Flock 2: all n = 144 units). To assess perferences for litter areas within a section, all 15 min counts occurring within the 2 h time periods were averaged between 2 units for each time point. The studentized residuals were checked for normality and a general linear model was applied to confirm no interaction between time of day and unit location (all P > 0.09). Data from the lights on (mid lay Flock 1 only), morning, afternoon, and evening time periods were pooled and comparisons were then made using Kruskal-Wallis tests between each of the outer 2 units (averaged) of the litter area (by the gates) and the central 2 units (Flock 1 peak lay: n = 36, mid lay: n = 94, end lay: n = 72; Flock 2: all n = 72). A previous partial dataset from Flock 1 showed no difference in spatial use between single and double rows (Makagon et al., 2012) therefore we did not distinguish between row type in our analysis. Wilcoxon signed-rank tests were applied to duration and size of Flock 2 piles only to assess for differences between time points (peak lay: n = 59, mid lay: n = 20, end lay: n = 29). The possible causes of all piles were described and tallied. Box plots for Figures 3 7 were generated by JMP, and unless otherwise stated, lines within the boxes Figure 3. The percentage of open litter area occupied by hens during each 2 h observational time period during the day at each time point for both flocks. Dissimilar letters indicate significant differences.

6 LITTER USE BY AVIARY LAYING HENS 169 Figure 4. The average percentage of open litter area occupied by hens with respect to their distribution across the section s open litter area at each time point of both flocks. Dissimilar letters indicate significant differences. represent the median while the lower and upper boundaries of the box represent the interquartile range (i.e., difference between the first and third quartiles.) The whiskers extending from the boxes are drawn to the outermost data point that falls within the distances computed as follows: upper whisker = third quartile (interquartile range) and lower whisker = first quartile (interquartile range). If the data points did not reach the computed ranges, then the whiskers were determined by the upper and lower data point values (not including outliers). The disconnected points are potential outliers. For litter area spatial use and dust bathing data, we display the raw unit sample values before averaging to accurately illustrate the variability of the individual observations. Data on piles were compiled to display their location within single and double rows, timeframes in which piles occurred and the average duration and average peak size at each time point. Litter Assessment RESULTS Litter substrate covered the smallest amount of the open floor area at peak lay for both Flock 1 (F 2, 57 = , P < 0.001) and Flock 2 (F 2, 69 = 101.4, P < 0.001; Table 3), and by mid lay in both flocks the open floor area was fully covered by litter. There was an increase in litter depth over time for both Flock 1 (t(42.38) = 6.72, P < 0.001) and Flock 2 (F 2, 69 = 90.39, P < 0.001; Table 3). Litter depth in the open area never exceeded 6.6 cm despite the fact that litter was not removed from the system until after hen depopulation. Open Litter Area Spatial Occupancy More open litter space was occupied in the afternoon (15:00 to 17:00) across flocks, time points and sections, except during peak lay in Flock 2, when hens first gained access to litter and occupied it most in the morning (11:00 to 13:00). The highest average amount of open litter space occupied at peak lay of Flock 1 was in the afternoon (H = 17.73, df = 2, P < 0.001; Figure 3), which was similar to the pattern observed at end lay (H = 68.35, df = 2, P < 0.001; Figure 3). At mid lay in Flock 1, the highest average amount of open litter space was occupied in the afternoon and the least in the evening (19:00 to 21:00) (H = , df = 2, P < 0.001; Figure 3). For peak lay of Flock 2, the highest average amount of open litter space was occupied in the morning (H = 32.91, df = 2, P < 0.001), while at mid lay, the highest average amount of open litter space was occupied in the afternoon and the least in the evening (H = 68.61, df = 2, P < ), which was similar to what was observed at end lay (H = 75.63, df = 2, P < 0.001; Figure 3).

7 170 CAMPBELL ET AL. Figure 5. The percentages of hens/individual unit on the open litter that were dust bathing within each 2 h observational time period during the day for each time point of both flocks. Dissimilar letters indicate significant differences. In Flock 1, there were no significant differences in the occupancy of the different locations within a section s open litter area (peak lay: H = 5.36, df = 2, P = 0.068; mid lay: H = 0.79, df = 2, P = 0.675; end lay: H = 0.37, df = 2, P = 0.83; Figure 4). However, in Flock 2 at peak lay, when recording occurred immediately after the hens first received access to the litter, litter areas closest to section-dividing gates had higher occupancy than the center of the open litter area (H = 32.42, df = 2, P < 0.001). This preference had disappeared by mid lay (H = 0.72, df = 2, P = 0.699) and was also not present at end lay (H = 0.53, df = 2, P = 0.765; Figure 4). Dust Bathing More hens on the open litter in Flock 1 at peak lay were dust bathing in the afternoon compared to other times of the day (H = 19.91, df = 2, P < 0.001; Figure 5). At mid lay of Flock 1, again, the highest average percentage of hens on the open litter was observed dust bathing in the afternoon while the lowest average percentage was observed dust bathing when the lights first came on (H = , df = 2, P < 0.001; Figure 5). At end lay in Flock 1, the highest average percentage of hens dust bathed in the afternoon and the fewest in the evening (H = 70.15, df = 2, P < 0.001; Figure 5). In Flock 2, at peak lay, the highest average percentage of hens dust bathed in the morning (H = 61.33, df = 2, P < 0.001; Figure 5), while the highest average percentage of hens on the open litter area were observed dust bathing in the morning and afternoon at mid lay (H = 24.35, df = 2, P < 0.001; Figure 5). Finally, at end lay in Flock 2, the highest average percentage of hens dust bathed in the morning and the lowest percentage in the evening (H = 60.49, df = 2, P < 0.001; Figure 5). Piling Overall, 174 piles were observed during data collection dates with 66 piles observed in Flock 1 and 108 in Flock 2. At least 1 pile was observed in each focal section across all data collection points. In the single rows, for both flocks, piles formed by the gate (Flock 1: n = 36, Flock 2: n = 28), against the wall (Flock 1: n = 12, Flock 2: n = 58), or started by the gate and moved to the wall (Flock 1: n = 4; Flock 2: n = 1). In Flock 1, 2 piles also formed in the center of the litter in the single rows. In the double rows, piles formed in the center of the open litter area (Flock 1: n = 12; Flock 2: n = 10) with 11 piles occurring against a gate in Flock 2 (NB: there was no wall in the double rows). Commencing with when the first pile began and the last pile ended, piles occurred throughout the day when hens had litter access for all time points of both flocks

8 LITTER USE BY AVIARY LAYING HENS 171 Figure 6. The total duration (min) of piles at each time point for both flocks. Dissimilar letters indicate significant differences for Flock 2. (Flock 1 peak lay: 11:00 to 18:50; mid lay: 08:20 to 18:45; end lay: 11:04 to 18:45; Flock 2 peak lay: 11:21 to 20:45; mid lay: 11:19 to 19:05; end lay: 10:52 to 19:51). Over both flocks and all time points, the durations of piles ranged from 1 min to 359 min. The longest lasting piles occurred at mid lay in both flocks, and more long-lasting piles (>1 h)occurred in Flock 2. For Flock 2, mid lay piles had the significantly longest duration and those at peak lay the shortest (H = 46.71, df = 2, P < 0.001; Figure 6). Piles were always localized and never included all hens in a section, with peak size varying across time points and flocks ranging from 10 (minimum requirement for a pile) to 229 hens (Figure 7). On average, piles were larger in the double rows, (Flock 1: mean ± SE 6.82; Flock 2: ± 14.69) compared to single rows (Flock 1: ± 2.71; Flock 2: ± 3.42), likely a consequence of differences in population size as there were twice as many hens in double sections and twice as much open litter space. Analyses of pile size revealed Flock 2 piles had the fewest hens at peak lay (H = 57.72, df = 2, P < 0.001; Figure 7). Behavioral observations of the formation of piles showed 5 possible causes, but the study was only observational in nature. We took no measurements of environmental parameters such as changes in lighting or temperature and had no acoustic information, which may have affected piling behavior. Possible causes of pile formation and descriptions are listed in Table 2. Overall, the piles were dynamic, shrinking and growing throughout their duration as hens constantly left and joined piles. Some hens appeared motivated to reach the center of the pile and would walk over the top of other hens to squeeze themselves into the middle (personal observation). The piles in the center of the open litter area were typically circular in shape and in all piles, the majority of hens had their heads facing in the same direction and their bodies were tightly squeezed together. However, no hen death was observed following piling, suggesting that smothering was not occurring. Finally, all piles, with the exception of 3 that appeared to end due to a sudden disturbance, eventually just dissolved, with hens leaving one by one for no discernible reason. DISCUSSION The results from our observations of laying hen behavior on the open litter area of a commercial aviary showed hens were using the entire open litter area. Hens performed dust bathing, fulfilling a behavioral need that has been determined to be important for improving their welfare (Cooper and Albentosa, 2003; but see Widowski and Duncan, 2000). However, the hens also exhibited unusual piling activity, which might be detrimental to welfare although the causes and implications of this behavior in this study are inconclusive. Spatial analysis of hens on the open litter area showed great variability in the amount of floor space occupied

9 172 CAMPBELL ET AL. Figure 7. The peak number of hens in a pile for each time point of both flocks. Dissimilar letters indicate significant differences for Flock 2. Table 3. The mean (± SE) litter depth (cm) measurements and litter coverage scores describing the mean (± SE) percentage of the open floor area covered by litter at 3 time points for both flocks. A litter coverage score of 0 was defined as < 25% of the area was covered by litter; a score of 4 was defined as 100% of the open litter area was covered by litter. (See Table 1 for definitions of all score categories.) No litter depth measurements were taken for peak lay of Flock 1. Flock Time point Depth (cm) % litter coverage scores One Peak lay N/A 3 ± 0.12 One Mid lay 3.10 ± ± 0 One End lay 5.40 ± ± 0 Two Peak lay 0.71 ± ± 0 Two Mid lay 1.27 ± ± 0.09 Two End lay 3.57 ± ± 0.04 by the hens with higher percentages at certain times of day, typically in the afternoon. Hens also occupied all open litter areas to the same degree, suggesting they did not have a preference for areas closer to gates dividing sections or the more open central areas. The only exception was observed at peak lay in Flock 2 when there was higher litter occupancy near the gates. This system provided approximately 196 cm 2 open litter area per hen in the double rows and 200 cm 2 open litter area per hen in the single rows (see Jones et al., 2014 for full details). This open litter area, in combination with the underneath litter area and available cage area, exceeded the minimum per hen space requirements set by United Egg Producers (UEP, 2010) although there has been little research which definitively determines how much space a hen actually needs or prefers. Recent kinematic analysis of Hyline W-36 hens indicates different static and dynamic physical space requirements for a range of behavior. At a minimum, a single standing hen requires approximately 563 cm 2, but the amount of physical space needed increases to approximately 1,693 cm 2 for wing flapping (Mench and Blatchford, 2014). However, group housing is suggested to affect these requirements as, for example, not all hens will wing-flap at the same time. Further, spatial distribution in open areas is not expected to be uniform (as hens cluster in groups rather than disperse evenly; Channing et al., 2001). Thus, modeling for group size, hens in flocks of 100 individuals or greater are predicted to need approximately 600 cm 2 of space to perform both static postures and dynamic behaviors (Mench and Blatchford, 2014). Based on these numbers, we calculated optimal maximum occupancy of the open litter area to occur when hens bodies take up approximately 33% of the available space. On average, our results indicate hens are using percentages of the open litter area close to this figure, suggesting even distribution of birds within the system and adaptation to the available space. There were also times of higher litter occupancy, which may or may not be indicative of crowding depending on the types of behavior being performed, such as piling, when the hens chose to be in extremely close proximity

10 LITTER USE BY AVIARY LAYING HENS 173 to each other. To better understand what constitutes over-crowding and the welfare consequences of high occupancy on the open litter area, further research should investigate the interactions between space occupancy and physical contact between hens, specifically injurious contact (e.g., collisions with other hens following flight landings: D. L. M. Campbell, unpublished data) or frequency of aggressive contact or feather pecking. Consistent with previous studies in both aviaries and commercial percheries, hens used this litter resource for dust bathing (Hansen, 1994; Carmichael et al., 1999; Channing et al., 2001; Odén et al., 2002) displaying an expected diurnal rhythm (Vestergaard, 1982), although hens in Flock 2 showed peak dust bathing somewhat earlier in the day than those in Flock 1. We presented dust bathing data as percentages of hens on the litter using it for that purpose and found comparable results to those reported by Odén and colleagues (2002) when hens had good quality litter. As anticipated, the litter depth in our study system increased as the flock cycle progressed due to the accumulation of manure, feathers, and feed, but at each video recording time point, litter was deemed dry and flaky, which is generally considered to be optimal for dust bathing. We did not estimate absolute numbers of hens dust bathing in the system as we could not observe either the dust bathing occurring in the portion of the litter area under the tiered enclosures or sham dust bathing within the enclosures, which may still occur in the presence of litter (Lindberg and Nicol, 1997; but see Hansen, 1994). Additionally, hens typically dust bathe every 48 h (Vestergaard, 1982) and thus we would not expect to see all hens dust bathing in the course of a single day. Within our system, we had no method of tracking single hens to investigate dust bathing variability at the individual level (Vestergaard, 1982); an avenue warranting further investigation. Hens from our aviary system did show lower feather lipid levels in comparison to those of hens from conventional or enriched colony cages at the same facility (see Blatchford et al., 2014), which might be due to effective dust bathing activity (van Liere and Bokma, 1987). The percentages of hens dust bathing on the open litter, averaged across 2 h time periods, suggest that each hen had sufficient room to perform all the motions of the dust bathing sequence (if hens were distributing themselves evenly on the litter). However, Figure 3 illustrates the variability within our data. High occupancy of the litter area (e.g., Flock 2 at peak lay in Figure 3) combined with high percentages of hens dust bathing (e.g., Flock 2 at peak lay in Figure 5), indicate that at these points, large numbers of hens were synchronous in their behavior and that the majority of the floor area was covered. Thus under these conditions crowding (defined as minimal space between birds or compressed hens; Appleby, 2004) could occur as a result of high occupancy and simultaneous performance of a dynamic behavior pattern requiring space to execute. This potential for crowding is consistent with previous observations of hens in commercial facilities and may result in some hens experiencing restricted room available for dust bathing effectively, leading to interrupted dust bathing sequences and incomplete dust baths or prevention of litter access altogether (Odén et al., 2002), an avenue for future research. Alternatively, laying hens are gregarious and may be socially facilitated to dust bath together (Duncan et al., 1998), thus, flock synchrony could represent an expression of a preference rather than a forced choice resulting from inadequate resources. Additionally, the large groups we observed may have sometimes resulted from litter substrate distribution rather than lack of available space as initial litter coverage at peak lay of Flock 2 was patchy in comparison to mid and end lay coverage. It is also important to note that on occasion we observed a low total percentage of the open litter space occupied (e.g., evening of peak lay in Flock 2; Figure 3), but a high percentage of the hens on the litter dust bathing (e.g., scattered points evident in the evening of peak lay in Flock 2; Figure 5). In these cases, only a small group of hens were out on litter and their behavior was synchronized, without crowding, unless hens chose to cluster together. This situation should give all hens in these small groups the space needed to dust bathe and to regulate the distance between hens according to their preference. The above examples illustrate that it is important to consider both the number of hens present (or, here, the space taken up by the hens) as well as the percentage of hens present that are engaged in a behavior when determining if crowding is occurring. Future investigations might couple such measurements with individual tracking of hens to determine whether individuals are able to complete full dust bathing sequences or if hens dust bathing outside the peak time did not have litter space access earlier in the day and were thus forced to dust bathe in the evening. Furthermore, it will be important to understand whether these hens experience poorer welfare as a result of dust bathing at a time potentially different than that dictated by their internal rhythm. To the best of our knowledge, our detailed observations of unusual hen piling within United States aviaries are the first of this type to be reported in the scientific literature. Furthermore, the published accounts of piling in United Kingdom systems (Bright and Johnson, 2011; Barrett et al., 2014) suggest our piles are distinct, although more detailed published behavioral descriptions would enable stronger direct comparisons. Our observed piling might be similar to creeping/recurring piling defined by Bright and Johnson (2011) asthisalso occurred spontaneously at any time of day across all time points of the flock cycle and was most frequent on open litter and in corners (Barrett et al., 2014). But in contrast, we never observed smothering resulting from these piles. We are unsure if the piles we observed in our study represent a welfare concern, and further research would need to determine whether they cause stress or injury to the hens or affect egg production.

11 174 CAMPBELL ET AL. Hen panic or hysteria is an undesirable flock behavior which can cause piling (Richards et al., 2012; Barrett et al., 2014), but only 6.89% of our observed piles appeared to result from flock disturbance, though we were unable to account for the presence of sounds or other variables not discernable on film. There may have been other hysteria or panic episodes similar to previous reports with hens flying wildly about (e.g., Hansen, 1976), but in our study they did not lead to piling. We attempted to determine other causes for piles, but we do not know why certain events (e.g., activity of a small group of hens) would trigger piling or what might lead to their apparently spontaneous formation. Hen piling may fall under the principles of preferential social aggregation (Febrer et al., broilers), attraction to unfamiliar conspecifics (Lindberg and Nicol, 1996), or may provide some degree of reward to the hens through physical contact with other hens within the pile, similar to chicks huddling for warmth. With respect to why hens tried to access the center of the pile, we hypothesize they may have been trying to get closer to the apparent source of an attraction. As we only made visual recordings, it is possible there may have been auditory or olfactory cues that were attracting the hens to each other; future research could determine whether vocalizations change when a pile is forming and if there are other cues signaling the pile to dissolve. Additional research could investigate contributing roles of environmental parameters such as localized temperature, light, or drafts, including examination of pile formation in other areas of the aviary system such as under or within the aviary enclosures. Lastly, previous research indicates piling occurs in multiple laying hen strains but that possible differences in piling frequency exist between them (Bright and Johnson, 2011), an opportunity for further study. Overall, we saw differences between ages and flocks in the behavior we observed. This may in part be due to variation in our data collection and sampling protocol. There were management differences within Flock 1 that were resolved by Flock 2, and we were unable to sample within the same age week for both flocks as our collection points were production-related and based on when peak lay (95% production) occurred in each flock. This sampling difference may, for example, be apparent in the high proportions of hens dust bathing at peak lay of Flock 2. We recorded on the very first day that the aviaries opened and thus, may have captured a rebound dust bathing effect (Nørgaard-Nielsen, 1997) not seen in the recordings of Flock 1 peak lay. This sampling difference may also account for hens preferring to occupy the litter area closest to the gates at peak lay of Flock 2 as they may have been acclimating to the spatial configuration of this new area access. Previous studies have also found differences between time points and variation between flocks in distributions and behavior within commercial alternative systems (Carmichael et al., 1999; Barrett et al., 2014). We also do not have enough information on day-to-day variation of flock behavior, however, some degree of consistency is indicated as similar behavioral patterns are evident across our sampled time points (see Figures 3 5). In conclusion, hens used all areas of the open litter and displayed some synchronicity with respect to dust bathing and piling; however, on average, hens occupied all areas of the open litter area without preference for areas near walls or gates dividing sections. These results are similar to previous research findings (Odén et al., 2002) and our own observations of hens transitioning between the enclosure and the litter areas (Campbell et al., 2015). Further research should track individual use of the litter areas to determine if all hens use litter equally, as well as determine the impact of piling on hen welfare. ACKNOWLEDGMENTS We would like to thank H. Albeer, J. Bergen, L. Devoe, S. Dorey, K. Dunn, N. Fairfield, R. Gohier, S. Goodwin, Y. Guo, A. Hinson, L. Kim, A. Marsh, E. Stefansky, L. Turner and D. Voishich for assistance with video data collection and C. Daigle, K. Dunn, M. Erasmus, P. Regmi, L. Turner and K. Wurtz for onsite data collection and camera installation (all from Michigan State University, East Lansing, MI). Research support provided in part by a grant from the Coalition for a Sustainable Egg Supply (Kansas City, MO). REFERENCES Appleby, M. C What causes crowding? Effects of space, facilities and group size on behaviour, with particular reference to furnished cages for hens. Anim. Welf. 13: Barrett, J., A. C. Rayner, R. Gill, T. H. Willings, and A. Bright Smothering in UK free-range flocks. Part 1: incidence, location, timing and management. Vet. Rec. 175:19. doi: /vr Blatchford, R. A., M. A. De Luz, and J. A. Mench Dustbathing behavior and feather lipid levels of laying hens in enriched cages (abstract). In Proc. 48 th Cong. Int l. Soc. Appl. Ethol., Vitoria-Gasteiz, Spain. Bright, A., and E. A. Johnson Smothering in commercial freerange laying hens: a preliminary investigation. Vet. Rec. 163:512. doi: /vr.c7462. Carmichael, N. L., A. W. Walker, and B. O. Hughes Laying hens in large flocks in a perchery system: influence of stocking density on location, use of resources and behaviour. Br. Poult. Sci. 40: Channing, C. E., B. O. Hughes, and A. W. Walker Spatial distribution and behaviour of laying hens housed in an alternative system. Appl Anim. Behav. Sci. 72: Colson, S., C. Arnould, and V. Michel Motivation to dustbathe of laying hens housed in cages and aviaries. Animal 1: Cooper, J. J., and M. J. Albentosa Behavioural priorities of laying hens. Av. Poult. Biol. Rev. 14: Duncan, I. J. H., T. M. Widowski, A. E. Malleau, A. C. Lindberg, and J. C. Petherick External factors and causation of dustbathing in domestic hens. Behav. Proc. 43: Febrer, K., T. A. Jones, C. A. Donnelly, and S. A. Dawkins Forced to crowd or choosing to cluster? Spatial distribution

12 LITTER USE BY AVIARY LAYING HENS 175 indicates social attraction in broiler chickens. Anim. Behav. 72: Hansen, I Behavioral expression of laying hens in aviaries and cages frequencies, time budgets and facility utilization. Br. Poult. Sci. 35: Hansen, R. S Nervousness and hysteria of mature female chickens. Poult. Sci. 55: Hegelund, L., J. T. Sørensen, and J. E Hermansen Welfare and productivity of laying hens in commercial organic egg production systems in Denmark. NJAS Wagen. J. Life. Sc. 54: Jones, D. R., D. M. Karcher, and Z. Abdo Effect of a commercial housing system on egg quality during extended storage. Poult. Sci. 93: Laycock, S. R., and R. O. Ball Alleviation of hysteria in laying hens with dietary tryptophan. Can. J. Vet. Res. 54: Lindberg, A. C., and C. J. Nicol Effects of social and environmental familiarity of group preferences and spacing behaviour in laying hens. Appl. Anim. Behav. Sci. 49: Lindberg, A. C., and C. J. Nicol Dustbathing in modified battery cages: Is sham dustbathing an adequate substitute? Appl. Anim. Behav. Sci. 55: Makagon, M. M., J. M. Siegford, and J. C. Swanson Use of open litter areas by hens housed in a commercial aviary system. Proc. 11 th Reg. Cong. Int l. Soc. Appl. Ethol., Banff, AB, Canada. Mench, J. A., and R. A. Blatchford Determination of space use by laying hens using kinematic analysis. Poult. Sci. 93: Moesta, A., A. Briese, U. Knierim, and J. Hartung Behaviour of laying hens in aviaries review. Part 2: Feeding behaviour, reproductive and dust bathing behaviour of chickens. Dtsch Tierarztl. Wochenschr. 115:4 14. Nørgaard-Nielsen, G Dustbathing and feather pecking in domestic chickens reared with and without access to sand. Appl. Anim. Beh. Sci. 52: Odén, K., L. J. Keeling, and B. Algers Behaviour of laying hens in two types of aviary systems on 25 commercial farms in Sweden. Br. Poult. Sci. 43: Olsson, I. A. S., I. J. H. Duncan, L. J. Keeling, and T. M. Widowski How important is social facilitation for dustbathing in laying hens? Appl. Anim. Behav. Sci. 79: Richards, G. J., S. N. Brown, F. Booth, M. J. Toscano, and L. J. Wilkins Panic in free-range laying hens. Vet. Rec. 170:519. doi: /vr Schneider, C. A., W. S. Rasband, and K. W. Eliceiri NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9: United Egg Producers (UEP) Husbandry Guidelines for US Egg Laying Flocks. Accessed Jan. 4, van Liere, D. W The significance of fowls bathing in dust. Anim. Welf. 3: van Liere, D. W., and S. Bokma Short-term feather maintenance as a function of dust bathing in laying hens. Appl. Anim. Behav. Sci. 18: Vestergaard, K Dust-bathing in the domestic fowl diurnal rhythm and dust deprivation. Appl. Anim. Ethol. 8: Vestergaard, K. S., E. Skadhauge, and L. G. Lawson The stress of not being able to perform dustbathing in laying hens. Physiol. Behav. 62: Wichman, A., and L. J. Keeling Hens are motivated to dustbathe in peat irrespective of being reared with or without a suitable dustbathing substrate. Anim. Behav. 75: Widowski, T. M., and I. J. H. Duncan Working for a dustbath: are hens increasing pleasure rather than reducing suffering? Appl. Anim. Behav. Sci. 68: Zhao, Y., T. A. Shepherd, J. C. Swanson, J. A. Mench, D. M. Karcher, and H. Xin Comparative evaluation of three egg production systems: Housing characteristics and management practices. Poult. Sci. 94:

Failed landings after laying hen flight in a commercial aviary over two flock cycles 1

Failed landings after laying hen flight in a commercial aviary over two flock cycles 1 Failed landings after laying hen flight in a commercial aviary over two flock cycles 1 D. L. M. Campbell, S. L. Goodwin, M. M. Makagon, J. C. Swanson, and J. M. Siegford,2 Animal Behavior and Welfare Group,

More information

The welfare of laying hens

The welfare of laying hens The welfare of laying hens I.C. DE JONG* and H.J. BLOKHUIS Animal Sciences Group of Wageningen UR, Division of Animal Production, PO Box 65, 8200 AB Lelystad, The Netherlands. *Corresponding author: ingrid.dejong@wur.nl

More information

Laying Hen Welfare. Janice Siegford. Department of Animal Science

Laying Hen Welfare. Janice Siegford. Department of Animal Science Laying Hen Welfare Janice Siegford Department of Animal Science Laying Hen Welfare + NAMI? Pressures on the egg industry Changes to laying hen housing Impacts of changes on hen behavior and welfare Possible

More information

CIWF Response to the Coalition for Sustainable Egg Supply Study April 2015

CIWF Response to the Coalition for Sustainable Egg Supply Study April 2015 CIWF Response to the Coalition for Sustainable Egg Supply Study April 2015 The Coalition for Sustainable Egg Supply study seeks to understand the sustainability impacts of three laying hen housing systems

More information

Urges, Needs, Preferences, Priorities Coming to Terms with the Welfare of Hens

Urges, Needs, Preferences, Priorities Coming to Terms with the Welfare of Hens Urges, Needs, Preferences, Priorities Coming to Terms with the Welfare of Hens Tina Widowski Department of Animal & Poultry Science University of Guelph Goals Different concepts of animal welfare and

More information

Coalition for a Sustainable Egg Supply Richard Blatchford University of California, Davis

Coalition for a Sustainable Egg Supply Richard Blatchford University of California, Davis Coalition for a Sustainable Egg Supply Richard Blatchford University of California, Davis Growing public interest in food production Concern about hen welfare, focusing on conventional cages Overview Egg

More information

The 1999 EU Hens Directive bans the conventional battery cage from 2012.

The 1999 EU Hens Directive bans the conventional battery cage from 2012. PS/MJ/BR9718 April 2002 ENRICHED CAGES FOR EGG-LAYING HENS B R I E F I N G EU ban on the conventional battery cage The 1999 EU Hens Directive bans the conventional battery cage from 2012. The ban is well

More information

Modification of Laying Hen Cages to Improve Behavior

Modification of Laying Hen Cages to Improve Behavior Modification of Laying Hen Cages to Improve Behavior MICHAEL C. APPLEBY1 Institute of Ecology and Resource Management, University of Edinburgh, West Mains Road, Edinburgh EH9 3JG, United Kingdom ABSTRACT

More information

POULTRY WELFARE STANDARDS AND GUIDELINES LAYER HEN CAGES SUPPORTING PAPER PUBLIC CONSULTATON VERSION

POULTRY WELFARE STANDARDS AND GUIDELINES LAYER HEN CAGES SUPPORTING PAPER PUBLIC CONSULTATON VERSION POULTRY WELFARE STANDARDS AND GUIDELINES LAYER HEN CAGES SUPPORTING PAPER PUBLIC CONSULTATON VERSION Prepared by the Poultry Standards and Guidelines Drafting Group, Oct 2016 ISSUE Whether poultry should

More information

MANAGING AVIARY SYSTEMS TO ACHIEVE OPTIMAL RESULTS. TOPICS:

MANAGING AVIARY SYSTEMS TO ACHIEVE OPTIMAL RESULTS. TOPICS: MANAGING AVIARY SYSTEMS TO ACHIEVE OPTIMAL RESULTS. TOPICS: Housing system System design Minimiza2on of stress Ligh2ng Ven2la2on Feed run 2mes Feed placement Watering Water placement Perch Scratch material

More information

Exterior egg quality as affected by enrichment resources layout in furnished laying-hen cages

Exterior egg quality as affected by enrichment resources layout in furnished laying-hen cages Open Access Asian-Australas J Anim Sci Vol. 30, No. 10:1495-1499 October 2017 https://doi.org/10.5713/ajas.16.0794 pissn 1011-2367 eissn 1976-5517 Exterior egg quality as affected by enrichment resources

More information

EXECUTIVE SUMMARY. Assessment of layer hen welfare

EXECUTIVE SUMMARY. Assessment of layer hen welfare EXECUTIVE SUMMARY There are two main types of housing systems for layer hens in Australia. The first is conventional or battery cages, which are barren wire cages, set in rows and tiers. A small number

More information

COMPARISON OF ALTERNATIVE CAGE-FREE SYSTEMS FOR THE U.S.

COMPARISON OF ALTERNATIVE CAGE-FREE SYSTEMS FOR THE U.S. COMPARISON OF ALTERNATIVE CAGE-FREE SYSTEMS FOR THE U.S. Two Main Product Families for Cage-Free Systems:- 1.0 Original-design cage free modules and aviaries Designed from basics as cage-free. Key features:

More information

A standardized cage measurement system: A versatile tool for calculating usable cage space 1

A standardized cage measurement system: A versatile tool for calculating usable cage space 1 2012 Poultry Science Association, Inc. A standardized cage measurement system: A versatile tool for calculating usable cage space 1 A. S. Kiess,* P. Y. Hester, 1 J. A. Mench, R. C. Newberry, and J. P.

More information

Effects of Cage Stocking Density on Feeding Behaviors of Group-Housed Laying Hens

Effects of Cage Stocking Density on Feeding Behaviors of Group-Housed Laying Hens AS 651 ASL R2018 2005 Effects of Cage Stocking Density on Feeding Behaviors of Group-Housed Laying Hens R. N. Cook Iowa State University Hongwei Xin Iowa State University, hxin@iastate.edu Recommended

More information

Behaviour of Hens in Cages

Behaviour of Hens in Cages Behaviour of Hens in Cages - a pilot study using video tapes A report for the Rural Industries Research and Development Corporation by Clare Rudkin and Geoff D. Stewart August RIRDC Publication No / RIRDC

More information

Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens

Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens 1 Open Access Asian Australas. J. Anim. Sci. [Epub ahead of print] http://dx.doi.org/10.5713/ajas.15.0576 www.ajas.info pissn 1011-2367 eissn 1976-5517 Effects of Furnished Cage Type on Behavior and Welfare

More information

Why in earth? Dustbathing behaviour in jungle and domestic fowl reviewed from a Tinbergian and animal welfare perspective

Why in earth? Dustbathing behaviour in jungle and domestic fowl reviewed from a Tinbergian and animal welfare perspective RESEARCH PUBLISHED IN: Applied Animal Behaviour Science Why in earth? Dustbathing behaviour in jungle and domestic fowl reviewed from a Tinbergian and animal welfare perspective Olsson IAS and Keeling

More information

ENVIRONMENT, WELL-BEING, AND BEHAVIOR

ENVIRONMENT, WELL-BEING, AND BEHAVIOR ENVIRONMENT, WELL-BEING, AND BEHAVIOR The effect of perch availability during pullet rearing and egg laying on the behavior of caged White Leghorn hens 1 P. Y. Hester,* 2 J. P. Garner, S. A. Enneking,*

More information

Effect of Nest Design, Passages, and Hybrid on Use of Nest and Production Performance of Layers in Furnished Cages

Effect of Nest Design, Passages, and Hybrid on Use of Nest and Production Performance of Layers in Furnished Cages Effect of Nest Design, Passages, and Hybrid on Use of Nest and Production Performance of Layers in Furnished Cages H. Wall, 1 R. Tauson, and K. Elwinger Department of Animal Nutrition and Management, Swedish

More information

Chicken Farmers of Canada animal Care Program. Implementation guide

Chicken Farmers of Canada animal Care Program. Implementation guide Chicken Farmers of Canada animal Care Program Implementation guide Implementation Guide Animal Care Program Introduction Chicken Farmers of Canada (CFC) has developed a comprehensive animal care program

More information

REARING LAYING HENS IN A BARN SYSTEM WITHOUT BEAK TRIMMING: THE RONDEEL EXAMPLE

REARING LAYING HENS IN A BARN SYSTEM WITHOUT BEAK TRIMMING: THE RONDEEL EXAMPLE REARING LAYING HENS IN A BARN SYSTEM WITHOUT BEAK TRIMMING: THE RONDEEL EXAMPLE BACKGROUND: BEAK TRIMMING AND FEATHER PECKING IN LAYING HENS Injurious feather pecking is a major welfare problem in laying

More information

Challenges and Opportunities: Findings of a German survey study on colony and aviary systems

Challenges and Opportunities: Findings of a German survey study on colony and aviary systems Challenges and Opportunities: Findings of a German survey study on colony and aviary systems FRIEDRICH-LOEFFLER-INSTITUT (FLI) Federal Research Institute for Animal Health Lars Schrader 9th Annual Egg

More information

Proposed Draft Australian Animal Welfare Standards And Guidelines For Poultry. Submission from the Australian Veterinary Association Ltd

Proposed Draft Australian Animal Welfare Standards And Guidelines For Poultry. Submission from the Australian Veterinary Association Ltd Proposed Draft Australian Animal Welfare Standards And Guidelines For Poultry Submission from the Australian Veterinary Association Ltd 1 24 February 2018 Introduction The Australian Veterinary Association

More information

Availability of Cage-Free Eggs in Vancouver, British Columbia

Availability of Cage-Free Eggs in Vancouver, British Columbia Availability of Cage-Free Eggs in Vancouver, British Columbia By Bruce Passmore 303-8623 Granville St, Vancouver, BC, V6P 5A2 Canada www.vancouverhumanesociety.bc.ca May 2006 Abstract: The majority of

More information

Effects of housing system on the costs of commercial egg production 1

Effects of housing system on the costs of commercial egg production 1 Effects of housing system on the costs of commercial egg production 1 W. A. Matthews,2 and D. A. Sumner,,3 University of California Agricultural Issues Center; and Department of Agricultural and Resource

More information

Human-Animal Interactions in the Turkey Industry

Human-Animal Interactions in the Turkey Industry Human-Animal Interactions in the Turkey Industry Dr. Naomi A. Botheras 1, Ms. Jessica A. Pempek 2, Mr. Drew K. Enigk 2 1 PI, 222E Animal Sciences Building, 2029 Fyffe Court, Columbus, OH 43210 (614) 292-3776;

More information

NATURA CAGE-FREE. Modern aviary system for barn and free range egg production

NATURA CAGE-FREE. Modern aviary system for barn and free range egg production NATURA CAGE-FREE Modern aviary system for barn and free range egg production NATURA aviary systems for layers: Flexible, efficient, user and bird friendly NATURA a well-established and proven system, which

More information

Female Persistency Post-Peak - Managing Fertility and Production

Female Persistency Post-Peak - Managing Fertility and Production May 2013 Female Persistency Post-Peak - Managing Fertility and Production Michael Longley, Global Technical Transfer Manager Summary Introduction Chick numbers are most often reduced during the period

More information

feather pecking. Animal Needs Index focuses on housing and management and the plumage

feather pecking. Animal Needs Index focuses on housing and management and the plumage WELFARE ASSESSMENT OF POULTRY IN ALTERNATIVE HOUSING: COMPARISON BETWEEN ANIMAL NEEDS INDEX AND ASSESSING FEATHER PECKING DAMAGE Monique Bestman (corr. author) & Jan-Paul Wagenaar Louis Bolk Instituut,

More information

Female Persistency Post-Peak - Managing Fertility and Production

Female Persistency Post-Peak - Managing Fertility and Production Female Persistency Post-Peak - Managing Fertility and Production Michael Longley, Global Technical Transfer Manager May 2013 SUMMARY Introduction Chick numbers are most often reduced during the period

More information

Effects of a Pre-Molt Calcium and Low-Energy Molt Program on Laying Hen Behavior During and Post-Molt

Effects of a Pre-Molt Calcium and Low-Energy Molt Program on Laying Hen Behavior During and Post-Molt Animal Industry Report AS 655 ASL R2446 2009 Effects of a Pre-Molt Calcium and Low-Energy Molt Program on Laying Hen Behavior During and Post-Molt Emily R. Dickey Anna K. Johnson George Brant Rob Fitzgerald

More information

Best Practice in the Breeder House

Best Practice in the Breeder House Best Practice in the Breeder House Preventing Floor Eggs Best Practice in the Breeder House Preventing Floor Eggs Why are floor eggs a problem? Eggs laid on the floor (floor eggs) have a significantly

More information

An Evaluation of Pullet and Young Laying Hen Ammonia Aversion Using a Preference Test Chamber

An Evaluation of Pullet and Young Laying Hen Ammonia Aversion Using a Preference Test Chamber Agricultural and Biosystems Engineering Conference Proceedings and Presentations Agricultural and Biosystems Engineering 6-2009 An Evaluation of Pullet and Young Laying Hen Ammonia Aversion Using a Preference

More information

Compassion in World Farming Trust LAID BARE... THE CASE AGAINST ENRICHED CAGES IN EUROPE

Compassion in World Farming Trust LAID BARE... THE CASE AGAINST ENRICHED CAGES IN EUROPE Compassion in World Farming Trust LAID BARE... THE CASE AGAINST ENRICHED CAGES IN EUROPE A report for Compassion in World Farming Trust 2002 Compassion in World Farming Trust is an educational charity

More information

Does it matter if she can t?

Does it matter if she can t? She loves perching in trees Does it matter if she can t? Perching in trees is just one of the things this laying hen loves to do. Descending from a small, shy woodland bird from the Indian subcontinent,

More information

SHORT TERM SCIENTIFIC MISSION (STSM) SCIENTIFIC REPORT

SHORT TERM SCIENTIFIC MISSION (STSM) SCIENTIFIC REPORT SHORT TERM SCIENTIFIC MISSION (STSM) SCIENTIFIC REPORT The STSM applicant submits this report for approval to the STSM coordinator Action number: CA15134 Synergy for preventing damaging behaviour in group

More information

Effects of Dietary Modification on Laying Hens in High-Rise Houses: Part II Hen Production Performance

Effects of Dietary Modification on Laying Hens in High-Rise Houses: Part II Hen Production Performance AS 5 ASL R2451 2009 Effects of Dietary Modification on Laying Hens in High-Rise Houses: Part II Hen Production Performance Stacey Roberts Iowa State University Hongwei Li Iowa State University Hongwei

More information

CALIFORNIA EGG LAWS & REGULATIONS: BACKGROUND INFORMATION

CALIFORNIA EGG LAWS & REGULATIONS: BACKGROUND INFORMATION CALIFORNIA EGG LAWS & REGULATIONS: BACKGROUND INFORMATION On November 4, 2008, California voters passed Proposition 2, which changes the way many hens in egg production are housed today. California passed

More information

How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation?

How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation? 16 How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation? R A Renema*, F E Robinson*, and J A Proudman** *Alberta Poultry Research Centre,

More information

Perch Arrangements in Small-Group Furnished Cages for Laying Hens

Perch Arrangements in Small-Group Furnished Cages for Laying Hens 2007 Poultry Science Association, Inc. Perch Arrangements in Small-Group Furnished Cages for Laying Hens H. Wall 1 and R. Tauson Department of Animal Nutrition and Management, Swedish University of Agricultural

More information

CHICKEN LICENSE a Small-scale Chicken Flock

CHICKEN LICENSE a Small-scale Chicken Flock CITY OF BATH, MAINE City Hall 55 Front Street Bath, Me 04530 www.cityofbath.com CODES ENFORCEMENT OFFICE Phone (207) 443-8334 FAX (207) 443-8337 TDDD (207) 443-8368 CHICKEN LICENSE For a Small-scale Chicken

More information

Be Smart. A Practical Guide to Managing Feather Cover in Broiler Breeder Females

Be Smart. A Practical Guide to Managing Feather Cover in Broiler Breeder Females Be Smart An Aviagen Brand A Practical Guide to Managing Feather Cover in Broiler Breeder Females Dr. Vanessa Kretzschmar-McCluskey, Global Technical Transfer Manager, Aviagen Inc. Dr. Colin Fisher, Nutrition

More information

Title: Husbandry Care of Poultry, Fowl and Quail

Title: Husbandry Care of Poultry, Fowl and Quail Policy: Date: 8/3/15 Enabled by: The Guide, The Ag Guide PPM Supersedes: 10/7/2013 Title: Husbandry Care of Poultry, Fowl and Quail I. Purpose: The purpose of this policy is to outline the minimum standards

More information

INFO SHEET. Cull Eggs: What To Expect And How To Reduce The Incidence.

INFO SHEET. Cull Eggs: What To Expect And How To Reduce The Incidence. INFO SHEET Cull Eggs: What To Expect And How To Reduce The Incidence info.hybrid@hendrix-genetics.com www.hybridturkeys.com Introduction Over the years, several Hybrid customers have inquired about the

More information

CHICKEN LICENSE a Small-scale Chicken Flock

CHICKEN LICENSE a Small-scale Chicken Flock CITY OF BATH, MAINE City Hall 55 Front Street Bath, Me 04530 www.cityofbath.com CODES ENFORCEMENT OFFICE Phone (207) 443-8334 FAX (207) 443-8337 TDDD (207) 443-8368 CHICKEN LICENSE For a Small-scale Chicken

More information

Laura M. Dixon a & Ian J. H. Duncan a a Department of Animal and Poultry Science,

Laura M. Dixon a & Ian J. H. Duncan a a Department of Animal and Poultry Science, This article was downloaded by: [Dr Kenneth Shapiro] On: 09 June 2015, At: 08:29 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

Applied Animal Behaviour Science 126 (2010) Contents lists available at ScienceDirect Applied Animal Behaviour Science journal homepage:

Applied Animal Behaviour Science 126 (2010) Contents lists available at ScienceDirect Applied Animal Behaviour Science journal homepage: Applied Animal Behaviour Science 126 (2010) 134139 Contents lists available at ScienceDirect Applied Animal Behaviour Science journal homepage: www.elsevier.com/locate/applanim Effect of crate height during

More information

Slide 1 NO NOTES. Slide 2 NO NOTES. Slide 3 NO NOTES. Slide 4 NO NOTES. Slide 5

Slide 1 NO NOTES. Slide 2 NO NOTES. Slide 3 NO NOTES. Slide 4 NO NOTES. Slide 5 Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Left is broiler (for meat) bird (Cobb/Ross), have different nutritional needs to layers. From chick to kill can be as little as 34 days. Commercial layer (ends up

More information

There are very serious welfare issues in the breeding and intensive rearing of meat chickens:

There are very serious welfare issues in the breeding and intensive rearing of meat chickens: BACKGROUND Worldwide, a total of around 50 billion chickens are slaughtered annually for meat, including nine billion in the USA, over five billion in the EU27 and around 800 million in the UK. Commercial

More information

Introduction. B. SCHOLZ 1 *, H. HAMANN 1 and O. DISTL 1. Bünteweg 17p, Hannover, Germany. *Corresponding author:

Introduction. B. SCHOLZ 1 *, H. HAMANN 1 and O. DISTL 1. Bünteweg 17p, Hannover, Germany. *Corresponding author: Evaluation of bone strength, keel bone deformity and egg quality of laying hens housed in small group housing systems and furnished cages in comparison to an aviary housing system. B. SCHOLZ 1 *, H. HAMANN

More information

ANS 490-A: Ewe Lamb stemperament and Effects on Maze Entry, Exit Order and Coping Styles When Exposed to Novel Stimulus

ANS 490-A: Ewe Lamb stemperament and Effects on Maze Entry, Exit Order and Coping Styles When Exposed to Novel Stimulus Animal Industry Report AS 663 ASL R3182 2017 ANS 490-A: Ewe Lamb stemperament and Effects on Maze Entry, Exit Order and Coping Styles When Exposed to Novel Stimulus Emily Strong Iowa State University Samaneh

More information

Position Statements. AAALAC Position Statements & FAQs. Laboratory Animals - Definition 2013 CLASS 1. The Attending Veterinarian & Veterinary Care

Position Statements. AAALAC Position Statements & FAQs. Laboratory Animals - Definition 2013 CLASS 1. The Attending Veterinarian & Veterinary Care AAALAC Position Statements & Jim Sheets, DVM, MPH, DACLAM Council Member AAALAC, International Position Statements Laboratory Animals Attending Veterinarian & Veterinary Care Cage and Pen Space Social

More information

Behavioural effects of food deprivation on red junglefowl (Gallus gallus) and White Leghorn layers. Jenny Lind

Behavioural effects of food deprivation on red junglefowl (Gallus gallus) and White Leghorn layers. Jenny Lind Final Thesis Behavioural effects of food deprivation on red junglefowl (Gallus gallus) and White Leghorn layers Jenny Lind LiTH-IFM-Ex 07/1863--SE Table of contents 1. Abstract...3 2. Introduction... 3

More information

ORDINANCE ARTICLE 2: DEFINITIONS. Amend the definition of Agriculture and add the following definitions:

ORDINANCE ARTICLE 2: DEFINITIONS. Amend the definition of Agriculture and add the following definitions: ORDINANCE BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF BATH THAT THE LAND USE CODE OF THE CITY OF BATH ADOPTED JULY 19, 2000, AND SUBSEQUENTLY AMENDED, BE HEREBY FURTHER AMENDED AS FOLLOWS: Section

More information

ASSEMBLY BILL No. 3021

ASSEMBLY BILL No. 3021 california legislature 2017 18 regular session ASSEMBLY BILL No. 3021 Introduced by Assembly Members Levine, Medina, and Salas February 16, 2018 An act to add Division 8.5 (commencing with Section 16200)

More information

RE: Consultation on Australian Animal Welfare Standards and Guidelines for Poultry

RE: Consultation on Australian Animal Welfare Standards and Guidelines for Poultry T 03 9607 9380 E LFreidin@liv.asn.au 26 February 2018 Kathleen Plowman Chief Executive Officer Animal Health Australia PO Box 5116 Braddon ACT 2612 By email: publicconspoultry@animalhealthaustralia.com.au

More information

Performance of Broiler Breeders as Affected by Body Weight During the Breeding Season 1

Performance of Broiler Breeders as Affected by Body Weight During the Breeding Season 1 Performance of Broiler Breeders as Affected by Body Weight During the Breeding Season 1 H. R. WILSON and R. H. HARMS Department of Poultry Science, University of Florida, Gainesville, Florida 32611 (Received

More information

Secretary Dr Karen Gao Contact:

Secretary Dr Karen Gao Contact: Date: February 26, 2018 Name: Australasian Veterinary Poultry Association Contact information: President Dr Sheridan Alfirevich Secretary Dr Karen Gao Contact: http://www.avpa.asn.au/ The Australasian

More information

Back to basics - Accommodating birds in the laboratory setting

Back to basics - Accommodating birds in the laboratory setting Back to basics - Accommodating birds in the laboratory setting Penny Hawkins Research Animals Department, RSPCA, UK Helping animals through welfare science Aim: to provide practical information on refining

More information

FRENZ. World Leading Poultry Layer Standard

FRENZ. World Leading Poultry Layer Standard Celebrating New Zealand F years ree Ranging pasture far med As Nature Intended FRENZ World Leading Poultry Layer Standard Celebrating New Zealand F years ree Ranging pasture far med As Nature Intended

More information

Presence of Males Within Laying Hens Affects Tonic Immobility Response and Sociality

Presence of Males Within Laying Hens Affects Tonic Immobility Response and Sociality International Journal of Poultry Science 9 (12): 1087-1091, 2010 ISSN 1682-8356 Asian Network for Scientific Information, 2010 Presence of Males Within Laying Hens Affects Tonic Immobility Response and

More information

LOHMANN TIERZUCHT. The specialist for layer breeding BREEDING FOR SUCCESS TOGETHER

LOHMANN TIERZUCHT. The specialist for layer breeding BREEDING FOR SUCCESS TOGETHER LOHMANN TIERZUCHT The specialist for layer breeding BREEDING FOR SUCCESS TOGETHER European lessons learned from moving an industry to cage- free Presented by: Prof. Dr. Rudolf Preisinger Chicago, April

More information

SCIENTIFIC REPORT. Analysis of the baseline survey on the prevalence of Salmonella in turkey flocks, in the EU,

SCIENTIFIC REPORT. Analysis of the baseline survey on the prevalence of Salmonella in turkey flocks, in the EU, The EFSA Journal / EFSA Scientific Report (28) 198, 1-224 SCIENTIFIC REPORT Analysis of the baseline survey on the prevalence of Salmonella in turkey flocks, in the EU, 26-27 Part B: factors related to

More information

POULTRY STANDARDS The focus of PROOF certification is the on. farm management of livestock in a farming

POULTRY STANDARDS The focus of PROOF certification is the on. farm management of livestock in a farming The focus of PROOF certification is the on farm management of livestock in a farming system that provides unrestricted daytime access to actively managed, pastured range areas in an environment that encourages

More information

Age, lighting treatment, feed allocation and feed form influence broiler breeder feeding time

Age, lighting treatment, feed allocation and feed form influence broiler breeder feeding time South African Journal of Animal Science 2016, 46 (No. 1) Age, lighting treatment, feed allocation and feed form influence broiler breeder feeding time R.M. Gous # & R. Danisman School of Agricultural,

More information

Behavioural needs, priorities and preferences of laying hens

Behavioural needs, priorities and preferences of laying hens 054310_Journal_2 27-03-2006 09:46 Pagina 297 DOI: 10.1079/WPS200598 Behavioural needs, priorities and preferences of laying hens C.A. WEEKS* and C.J. NICOL Department of Clinical Veterinary Science, University

More information

Comparative Evaluation of the Egg Production Performance Indicators of Hy-Line Hybrid Kept in Traditional Cage System versus the Enriched Cages One

Comparative Evaluation of the Egg Production Performance Indicators of Hy-Line Hybrid Kept in Traditional Cage System versus the Enriched Cages One EUROPEAN ACADEMIC RESEARCH Vol. V, Issue 2/ May 2017 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+) Comparative Evaluation of the Egg Production Performance Indicators

More information

Purpose Bred Mice and Rats in Research, Testing and Teaching Section 4: Following Current Husbandry Standards

Purpose Bred Mice and Rats in Research, Testing and Teaching Section 4: Following Current Husbandry Standards Purpose Bred Mice and Rats in Research, Testing and Teaching : Following Current Husbandry Standards Having completed the first three small animal training sections, you should understand the importance

More information

Feather pecking in domestic chicks: its relation to dustbathing and foraging

Feather pecking in domestic chicks: its relation to dustbathing and foraging Anim. Behav., 1997, 54, 757 768 Feather pecking in domestic chicks: its relation to dustbathing and foraging BEAT HUBER-EICHER & BEAT WECHSLER Abteilung Sozial- und Nutztierethologie, Zoologisches Institut,

More information

Use of space and its impact on the welfare of laying hens in a commercial free-range system

Use of space and its impact on the welfare of laying hens in a commercial free-range system Use of space and its impact on the welfare of laying hens in a commercial free-range system A. Rodriguez-Aurrekoetxea and I. Estevez,,1 Neiker-Tecnalia, Department of Animal Production, Vitoria-Gasteiz,

More information

Animal Behavior: Biology 3401 Laboratory 4: Social behaviour of young domestic chickens

Animal Behavior: Biology 3401 Laboratory 4: Social behaviour of young domestic chickens 1 Introduction: Animal Behavior: Biology 3401 Laboratory 4: Social behaviour of young domestic chickens In many species, social interactions among siblings and (or) between siblings and their parents during

More information

CONSULTATION ON THE REGULATORY IMPACT STATEMENT AND DRAFT AUSTRALIAN ANIMAL WELFARE STANDARDS AND GUIDELINES FOR THE WELFARE OF POULTRY

CONSULTATION ON THE REGULATORY IMPACT STATEMENT AND DRAFT AUSTRALIAN ANIMAL WELFARE STANDARDS AND GUIDELINES FOR THE WELFARE OF POULTRY Hon Alannah MacTiernan MLC Minister for Regional Development; Agriculture and Food; Minister Assisting the Minister for State Development; Jobs and Trade Our ref: 64-06101 Ms Kathleen Plowman Chief Executive

More information

City of Sacramento City Council 915 I Street, Sacramento, CA,

City of Sacramento City Council 915 I Street, Sacramento, CA, City of Sacramento City Council 915 I Street, Sacramento, CA, 95814 www.cityofsacramento.org Meeting Date: 8/30/2011 Report Type: Staff/Discussion Title: Ordinance: Keeping of Hen Chickens (Passed for

More information

Purpose and focus of the module: Poultry Definition Domestication Classification. Basic Anatomy & Physiology

Purpose and focus of the module: Poultry Definition Domestication Classification. Basic Anatomy & Physiology Module: Poultry Production Code: AP21 Purpose and focus of the module: It aims at providing students with adequate knowledge and skills in poultry husbandry techniques and farm management. Skill Objectives

More information

Should the U.S. Ban Battery Cages For Egg-Laying Chickens? by Debbie Gray

Should the U.S. Ban Battery Cages For Egg-Laying Chickens? by Debbie Gray 1 Should the U.S. Ban Battery Cages For Egg-Laying Chickens? by Debbie Gray Imagine being locked in a cage so small that you cannot even spread your arms. You are forced to stand on a floor made only of

More information

M housing facilities. This does not mean that an expensive

M housing facilities. This does not mean that an expensive Chicken Houses. ROSS M. SHERWOOD.* ANY farm flocks do not give good returns because of poor M housing facilities. This does not mean that an expensive house with elaborate fixtures is necessary. It does

More information

SUBMISSION ON THE DRAFT ANIMAL WELFARE (LAYER HEN) CODE OF WELFARE AND DRAFT ECONOMIC ANALYSIS

SUBMISSION ON THE DRAFT ANIMAL WELFARE (LAYER HEN) CODE OF WELFARE AND DRAFT ECONOMIC ANALYSIS SUBMISSION ON THE DRAFT ANIMAL WELFARE (LAYER HEN) CODE OF WELFARE AND DRAFT ECONOMIC ANALYSIS 29 April 2011 Voiceless Limited ACN 108 494 631 2 Paddington Street Paddington NSW 2021 P +61 2 9357 0777

More information

Animal Welfare Assessment and Challenges Applicable to Pregnant Sow Housing

Animal Welfare Assessment and Challenges Applicable to Pregnant Sow Housing Animal Welfare Assessment and Challenges Applicable to Pregnant Sow Housing Gail C. Golab, PhD, DVM, MANZCVS, DACAW Director, Animal Welfare Division To Cover How AVMA approaches animal welfare issues

More information

An Explanation of Damaging Pecking Behavior in Poultry and Captive Birds

An Explanation of Damaging Pecking Behavior in Poultry and Captive Birds Animal Sciences ag.purdue.edu/ansc An Explanation of Damaging Pecking Behavior in Poultry and Captive Birds Authors: Yiru Dong, Darrin Karcher and Marisa Erasmus Department of Animal Sciences, Purdue University

More information

This article is downloaded from.

This article is downloaded from. This article is downloaded from http://researchoutput.csu.edu.au It is the paper published as: Author: A. Wichman, L. Rogers and R. Freire Title: Visual lateralisation and development of spatial and social

More information

Key facts for maximum broiler performance. Changing broiler requires a change of approach

Key facts for maximum broiler performance. Changing broiler requires a change of approach Key facts for maximum broiler performance Changing broiler requires a change of approach Good chick quality = UNIFORMITY everywhere in the supply chain Performance 1. Professional breeder house / management

More information

Breeding success of Greylag Geese on the Outer Hebrides, September 2016

Breeding success of Greylag Geese on the Outer Hebrides, September 2016 Breeding success of Greylag Geese on the Outer Hebrides, September 2016 Wildfowl & Wetlands Trust Report Author Carl Mitchell September 2016 The Wildfowl & Wetlands Trust All rights reserved. No part of

More information

Comparison of production and egg quality parameters of laying hens housed in conventional and enriched cages

Comparison of production and egg quality parameters of laying hens housed in conventional and enriched cages Comparison of production and egg quality parameters of laying hens housed in conventional and enriched cages DAVID KARKULÍN Department of Poultry Science and Small Animal Husbandry, Slovak Agricultural

More information

Evaluation of plumage condition and foot pad health of laying hens housed in small group housing systems, furnished cages and an aviary system

Evaluation of plumage condition and foot pad health of laying hens housed in small group housing systems, furnished cages and an aviary system Evaluation of plumage condition and foot pad health of laying hens housed in small group housing systems, furnished cages and an aviary system S. RÖNCHEN 1 *, H. HAMANN 1 and O. DISTL 1 Institute for Animal

More information

THE CORPORATION OF THE DISTRICT OF SUMMERLAND COUNCIL REPORT

THE CORPORATION OF THE DISTRICT OF SUMMERLAND COUNCIL REPORT THE CORPORATION OF THE DISTRICT OF SUMMERLAND COUNCIL REPORT DATE: August 20, 2015 TO: Linda Tynan, Chief Administrative Officer FROM: Jeremy Denegar, Director of Corporate Services SUBJECT: Animal Control

More information

CITY OF CHARLES STURT DOMESTIC LIVESTOCK MANAGEMENT BY-LAW By-law No. 6 of 2014

CITY OF CHARLES STURT DOMESTIC LIVESTOCK MANAGEMENT BY-LAW By-law No. 6 of 2014 CITY OF CHARLES STURT By law made under the Local Government Act 1999 DOMESTIC LIVESTOCK MANAGEMENT BY-LAW 2014 By-law No. 6 of 2014 For the management, control and regulation of the keeping of livestock

More information

Steggles Sydney Royal School Meat Bird Pairs Competition Support Guide

Steggles Sydney Royal School Meat Bird Pairs Competition Support Guide Steggles Sydney Royal School Meat Bird Pairs Competition Support Guide 1 Contents Introduction Setting up On arrival of your day-old chicks Monitoring Weighing and assessing growth Temperature control

More information

Scientists and Experts on Battery Cages and Laying Hen Welfare

Scientists and Experts on Battery Cages and Laying Hen Welfare Scientists and Experts on Battery Cages and Laying Hen Welfare Abstract An extensive body of scientific evidence confirms that birds confined in barren battery cages suffer immensely. Compiled below are

More information

Relationship Between Eye Color and Success in Anatomy. Sam Holladay IB Math Studies Mr. Saputo 4/3/15

Relationship Between Eye Color and Success in Anatomy. Sam Holladay IB Math Studies Mr. Saputo 4/3/15 Relationship Between Eye Color and Success in Anatomy Sam Holladay IB Math Studies Mr. Saputo 4/3/15 Table of Contents Section A: Introduction.. 2 Section B: Information/Measurement... 3 Section C: Mathematical

More information

FREQUENCY OF ENGAGEMENT WITH DIFFERENT MATERIALS BY GROWING RABBITS

FREQUENCY OF ENGAGEMENT WITH DIFFERENT MATERIALS BY GROWING RABBITS Ethology and Welfare FREQUENCY OF ENGAGEMENT WITH DIFFERENT MATERIALS BY GROWING RABBITS Wagner C.*, Weirich C., Hoy St. Department of Animal Breeding and Genetics, Justus Liebig University, Bismarckstraße

More information

Use of Cool Perches by Broiler Chickens 1

Use of Cool Perches by Broiler Chickens 1 Use of Cool Perches by Broiler Chickens 1 I. Estevez,*,2 N. Tablante, R. L. Pettit-Riley,* and L. Carr *Department of Animal and Avian Sciences; Virginia-Maryland Regional College of Veterinary Medicine;

More information

March 16, Guide's space recommendations as a minimum while always recognizing that performance standards also must be met.

March 16, Guide's space recommendations as a minimum while always recognizing that performance standards also must be met. Comments of The American Association of Immunologists (AAI) to the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) Regarding the 8 th Edition of the Guide

More information

The effect of perches in cages during pullet rearing and egg laying on hen performance, foot health, and plumage

The effect of perches in cages during pullet rearing and egg laying on hen performance, foot health, and plumage The effect of perches in cages during pullet rearing and egg laying on hen performance, foot health, and plumage P. Y. Hester,* 1 S. A. Enneking,* K. Y. Jefferson-Moore, M. E. Einstein,* H. W. Cheng, and

More information

LAYING BEHAVIOUR OF EGG AND MEAT TYPE CHICKEN AS INFLUENCED BY NEST TIER

LAYING BEHAVIOUR OF EGG AND MEAT TYPE CHICKEN AS INFLUENCED BY NEST TIER Wayamba Journal of Animal Science ISSN: 2012-578X; P839-P844, 2014 First Submitted December 01, 2013; Number 1385910056 LAYING BEHAVIOUR OF EGG AND MEAT TYPE CHICKEN AS INFLUENCED BY NEST TIER B. Roy 1,

More information

City of Sacramento City Council 915 I Street, Sacramento, CA,

City of Sacramento City Council 915 I Street, Sacramento, CA, City of Sacramento City Council 915 I Street, Sacramento, CA, 95814 www.cityofsacramento.org 11 Meeting Date: 8/23/2011 Report Type: Consent Title: (Pass for Publication) Ordinance Amendment: Keeping of

More information

Effect of Storage and Layer Age on Quality of Eggs From Two Lines of Hens 1

Effect of Storage and Layer Age on Quality of Eggs From Two Lines of Hens 1 Effect of Storage and Layer Age on Quality of Eggs From Two Lines of Hens 1 F. G. Silversides*,2 and T. A. Scott *Crops and Livestock Research Centre, Charlottetown, Prince Edward Island, Canada C1A 7M8

More information

Relationship between hen age, body weight, laying rate, egg weight and rearing system

Relationship between hen age, body weight, laying rate, egg weight and rearing system Relationship between hen age, body weight, laying rate, egg weight and rearing system S.WĘŻYK, J. KRAWCZYK, CALIK J. and K. POŁTOWICZ National Research Institute of Animal Production, 32-083 Balice n.

More information

The Benefits of Floor Feeding (for Optimal Uniformity)

The Benefits of Floor Feeding (for Optimal Uniformity) The Benefits of Floor Feeding (for Optimal Uniformity) Greg Hitt, International Technical Service Manager, Asia June 2015 SUMMARY A well-managed floor feeding system provides a range of benefits for bird

More information

HUMANE SOCIETY INTERNATIONAL

HUMANE SOCIETY INTERNATIONAL HUMANE SOCIETY INTERNATIONAL -----------~,.- CANADA September 5, 2008 Mayor Ayotte and Members ofcouncil City ofpeterborough 500 George Street North Peterborough, ON, K9H 3R9 SEP 11 2008 Dear Mayor Ayotte

More information