Correspondence should be addressed to Rezvan Moniri;

Similar documents
Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Mechanism of antibiotic resistance

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

Characterization of the Multidrug-Resistant Acinetobacter

Acinetobacter Resistance in Turkish Tertiary Care Hospitals. Zeliha KOCAK TUFAN, MD, Assoc. Prof.

Analysis of drug-resistant gene detection of blaoxa-like genes from Acinetobacter baumannii

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

Comparative Assessment of b-lactamases Produced by Multidrug Resistant Bacteria

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Fatemeh Fallah, 1 Maryam Noori, 2 Ali Hashemi, 2 Hossein Goudarzi, 2 Abdollah Karimi, 1 Soroor Erfanimanesh, 2 and Shadi Alimehr 1. 1.

European Committee on Antimicrobial Susceptibility Testing

PrevalenceofAntimicrobialResistanceamongGramNegativeIsolatesinanAdultIntensiveCareUnitataTertiaryCareCenterinSaudiArabia

EUCAST recommended strains for internal quality control

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

International Journal of Health Sciences and Research ISSN:

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

PROTOCOL for serotyping and antimicrobial susceptibility testing of Salmonella test strains

Available online at ISSN No:

DR. MICHAEL A. BORG DIRECTOR OF INFECTION PREVENTION & CONTROL MATER DEI HOSPITAL - MALTA

BLA-NDM-1 IN CLINICAL ISOLATES OF Acinetobacter baumannii FROM NORTH INDIA

The First Report of CMY, AAC(6')-Ib and 16S rrna Methylase Genes among Pseudomonas aeruginosa Isolates from Iran

European Committee on Antimicrobial Susceptibility Testing

Study of drug resistance pattern of principal ESBL producing urinary isolates in an urban hospital setting in Eastern India

Antimicrobial Profile and Phenotypic Metallo-β-Lactamase Detection of Acinetobacter baumannii Isolated From Clinical and Environmental Specimens

Research Article Neonatal Meningitis by Multidrug Resistant Elizabethkingia meningosepticum Identified by 16S Ribosomal RNA Gene Sequencing

Intrinsic, implied and default resistance

Antimicrobial susceptibility profiling and genomic diversity of Acinetobacter baumannii isolates: A study in western Iran

International Journal of Pharma and Bio Sciences ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ESBL PRODUCING GRAM NEGATIVE BACILLI ABSTRACT

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Detection of Inducible AmpC β-lactamase-producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India

Multi-drug resistant Acinetobacter (MDRA) Surveillance and Control. Alison Holmes

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Witchcraft for Gram negatives

EARS Net Report, Quarter

DRUG-RESISTANT ACINETOBACTER BAUMANNII A GROWING SUPERBUG POPULATION. Cara Wilder Ph.D. Technical Writer March 13 th 2014

Antimicrobial Susceptibility Testing: Advanced Course

Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii

GENERAL NOTES: 2016 site of infection type of organism location of the patient

1 INTRODUCTION OBJECTIVES OUTLINE OF THE SALM/CAMP EQAS

Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); August 2017

Multi-drug resistant microorganisms

Aliakbar Rezaei, Hossein Fazeli, Mehdi Moghadampour, Mehrdad Halaji, Jamshid Faghri

Overnight identification of imipenem-resistant Acinetobacter baumannii carriage in hospitalized patients

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Acinetobacter Outbreaks: Experience from a Neurosurgery Critical Care Unit. Jumoke Sule Consultant Microbiologist 19 May 2010

Available online at Scholars Research Library. Der Pharmacia Lettre, 2017, 9 (1):85-92

INCIDENCE OF BACTERIAL COLONISATION IN HOSPITALISED PATIENTS WITH DRUG-RESISTANT TUBERCULOSIS

JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH

Antimicrobial Cycling. Donald E Low University of Toronto

What does multiresistance actually mean? Yohei Doi, MD, PhD University of Pittsburgh

Supplemental Information. Discovery of Reactive Microbiota-Derived. Metabolites that Inhibit Host Proteases

Presence of extended spectrum β-lactamase producing Escherichia coli in

Hospital ID: 831. Bourguiba Hospital. Tertiary hospital

UDC: : :579.22/ :615.28

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

EUCAST Subcommitee for Detection of Resistance Mechanisms (ESDReM)

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

2015 Antimicrobial Susceptibility Report

THE NAC CHALLENGE PANEL OF ISOLATES FOR VERIFICATION OF ANTIBIOTIC SUSCEPTIBILITY TESTING METHODS

Identification of Multidrug-Resistant Genes in Acinetobacter baumannii in Sulaimani City-Kurdistan Regional Government of Iraq

Antibiotic Therapy for ESBL and NDM producing Escherichia coli and Klebsiella pneumoniae isolates in a Tertiary Care Center

Fighting MDR Pathogens in the ICU

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

The impact of antimicrobial resistance on enteric infections in Vietnam Dr Stephen Baker

APPENDIX III - DOUBLE DISK TEST FOR ESBL

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU

Microbiology Unit, Hua Hin Hospital, Prachuap Khiri Khan, Thailand

Background and Plan of Analysis

Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

WHO laboratory-based global survey on multidrug-resistant organisms (MDROs) in health care interim analysis

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

β-lactams resistance among Enterobacteriaceae in Morocco 1 st ICREID Addis Ababa March 2018

Microbiology. Multi-Drug-Resistant bacteria / MDR: laboratory diagnostics and prevention. Antimicrobial resistance / MDR:

ETX2514: Responding to the global threat of nosocomial multidrug and extremely drug resistant Gram-negative pathogens

Dr Vivien CHUANG Associate Consultant Infection Control Branch, Centre for Health Protection/ Infectious Disease Control and Training Center,

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

Comparison of Antibiotic Resistance and Sensitivity with Reference to Ages of Elders

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

Detecting / Reporting Resistance in Nonfastidious GNR Part #2. Janet A. Hindler, MCLS MT(ASCP)

CONTAGIOUS COMMENTS Department of Epidemiology

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002

Assessment of antibiotic resistance pattern in Acinetobacter baumannii carrying bla oxa type genes isolated from hospitalized patients

Other β-lactamase Inhibitor (BLI) Combinations: Focus on VNRX-5133, WCK 5222 and ETX2514SUL

Prevalence of Extended-spectrum β-lactamase Producing Enterobacteriaceae Strains in Latvia

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

Management of Hospital-acquired Pneumonia

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

Transcription:

Pathogens Volume 2015, Article ID 957259, 7 pages http://dx.doi.org/10.1155/2015/957259 Research Article Susceptibility Pattern and Distribution of Oxacillinases and bla PER-1 Genes among Multidrug Resistant Acinetobacter baumannii in a Teaching Hospital in Iran Sareh Bagheri Josheghani, 1 Rezvan Moniri, 1,2 Farzaneh Firoozeh, 1 Mojtaba Sehat, 3 and Yasaman Dasteh Goli 4 1 Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 87159 85191, Iran 2 Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan 87159 85191, Iran 3 Trauma Research Center, Kashan University of Medical Sciences, Kashan 87159 85191, Iran 4 UniversityofMaryland,CollegePark,MD20742,USA Correspondence should be addressed to Rezvan Moniri; moniri@kaums.ac.ir Received 9 September 2015; Revised 25 November 2015; Accepted 10 December 2015 Academic Editor: Abhijit M. Bal Copyright 2015 Sareh Bagheri Josheghani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acinetobacter baumannii (A. baumannii) is an important nosocomial pathogen in healthcare institutions. β-lactamase-mediated resistance is the most common mechanism for carbapenem resistance in A. baumannii. The aim of this study was to determine the antibiotic resistance pattern, to detect OXA encoding genes, class A, bla PER-1, and to detect the presence of ISAba1. A total of 124 A. baumannii isolates were collected from hospitalized patients in a teaching hospital in Kashan, Iran. The susceptibility of isolates to different antibiotics was determined by disk-diffusion method. PCR was used to detect bla PER-1, bla OXA-23, bla OXA-24, bla OXA-51, bla OXA-58,andISAba1 genes. All isolates were resistant to ceftazidime, ceftriaxone, and cefotaxime. All of the isolates revealed susceptibility to polymyxin B and colistin. Ninety-six percent of the isolates were extensive drug resistance (XDR), 5.6% extended spectrum beta-lactamase (ESBL), and 54.8% metallo-beta-lactamase (MBL). All isolates were positive for bla OXA-51 and ISAba1. bla OXA-23, bla OXA-24,andbla OXA-58 were found in 79.8%, 25%, and 3.2%, respectively. The frequency rate of bla PER-1 gene was 52.4%. Multidrug resistant A. baumannii isolates are increasing in our setting and extensively limit therapeutic options. The high rate presence of class D carbapenemase-encoding genes, mainly bla OXA-23 carbapenemases, is worrying and alarming as an emerging threat in our hospital. 1. Introduction Multidrug resistant A. baumannii is a main cause of hospital acquired infections and recognized to cause a wide spectrum of life-threatening diseases. This organism is resistant to almost all frequently accessible antibiotics which limits treatment options [1]. Emergence of resistance during medication for A. baumannii infections may occur and yields increasing rates of morbidity, mortality, and therapeutic costs [2]. A. baumannii is capable of accumulating multiple antibiotic resistance genes, leading to development of multidrug resistant or extensively drug resistant strains. Acquired resistance characteristics occur as consequences from mutation or acquisition of exogenous resistance determinants and can be mediated by different mechanisms, including beta-lactamases, alterations in cell-wall channels, and efflux pumps. The most worrying clinical resistance mechanism has been acquisition of serine and metallo-beta-lactamases, which present resistance to carbapenems [3]. Therefore, this study was performed to identify the prevalence of betalactamases producing multidrug resistant A. baumannii and the molecular characterization of prevalent genes among them,withthepurposeofimprovingthetherapeuticoptions

2 Pathogens and decreasing the morbidity and mortality in Beheshti Hospital in Kashan, Iran. 2. Materials and Methods 2.1. Sample Collection. From June 2013 to November 2014, a descriptive study was conducted with various clinical samples collected from a tertiary care hospital in Kashan, Iran. A total of 124 A. baumannii isolates were collected from clinical samples including tracheal tube 63 (50.8%), blood, 28 (22.6%), sputum, 10 (8.1%), pleural fluid, 7 (5.6%), urine, 7 (5.6%), cerebrospinal fluids, 4 (3.2%), urine catheter, 3 (2.4%), and wounds, 2 (1.6%), from hospitalized patients. The Ethics Committee of Kashan University of Medical Sciences approved the study protocol. Bacterial Isolates. A. baumannii isolates were identified by using MICROGEN GNA+B (Microgen Bioproducts Co., UK). 2.2. Determination of Antibiotic Resistance Patterns of A. baumannii. Antibiotic sensitivity test of the isolates was determined using the Kirby-Bauer disk-diffusion breakpoint assay on Mueller-Hinton agar (Merck, Germany); and the cultures were incubated for 24 h at 37 C. Bacteria were classified as susceptible, intermediate, or resistant to antibiotics in accordance with the current Clinical Laboratory Standard Institute recommendations [4]. Piperacillin (100 μg), ampicillin-sulbactam (10/10 μg), piperacillin-tazobactam (100/10 μg), cefotaxime (30 μg), ceftazidime (30 μg), ceftriaxone (30 μg), cefepime (30 μg), imipenem (10 μg), meropenem (10 μg), amikacin (30 μg), gentamicin (10μg), ciprofloxacin (5 μg), levofloxacin (5 μg), tetracycline (30 μg), trimethoprim-sulfamethoxazole (1.25/23.75 mg), colistin (10 μg), and polymyxin B (300 IU) disks were purchased from MAST, Merseyside, UK. Escherichia coli ATCC 25922 were used as the quality control strain in every susceptibility test. MDR, XDR, and PDR Definitions. Multidrug resistant (MDR) was applied when the isolate is nonsusceptible to at least one antibacterial agent in 3 of the following classes of antibiotics including quinolones, broad-spectrum cephalosporins, betalactamaseinhibitor/beta-lactams, aminoglycosides, tetracyclines, trimethoprim-sulfamethoxazole, and carbapenems. Extensive drug resistance (XDR) is defined as bacterial isolates remaining susceptible to only one or two categories. Pan-drug resistant (PDR) is defined as bacterial isolates with nonsusceptibility to all agents in all of the antimicrobial categories (i.e., no agents tested as susceptible for the organism). Thus, a bacterial isolate that is characterized as XDR will also be categorized as MDR. Similarly, a bacterial isolate would have to be XDR in order for it to be further defined as PDR [5]. 2.3. Phenotypic Tests for Detection of ESBLs. ESBL was detected by double-disk-diffusion test using cefotaxime (30 μg) and with cefotaxime/clavulanic acid (CTX 30 μg+ca 10 μg per disk) (MAST, Merseyside, UK). In accordance with the Clinical and Laboratory Standards Institute (CLSI) recommended guidelines, an increase in zone diameter 5 mm inthepresenceofclavulanicacidindicatedpresenceofthe extended spectrum-β-lactamases (ESBLs) in test organism [6]. 2.4. Phenotypic Tests for the Detection of MBL. Imipenemresistant isolates were screened for producing metallo-betalactamase (MBL). The double-disk synergy test (DDST) was performed for identification of MBL by imipenem (10 μg), alone and in combination with EDTA (750 μg/disk) (ROSCO, Denmark). An increase in the zone diameter of 7mm around imipenem plus EDTA disk compared to that of imipenem disk alone was considered as positive for MBL production [6]. 2.5. PCR Amplification of the Beta-Lactamase-Encoding Genes. A series of PCR reactions were performed to detect the different Ambler class bla genes. Primers were designed to amplify the following carbapenemase-encoding genes using a multiplex PCR: class D: bla OXA-23, bla OXA-24, bla OXA-51, and bla OXA-58 ;classa:bla PER-1 [7, 9]. IS elements (ISAba1) were amplified by PCR using previously described methods [8]. All isolates were subjected to the multiplex PCR to detect bla OXA-23, bla OXA-24, bla OXA-51,andbla OXA-58 genes. TheprimersusedfortheanalysisarelistedinTable1. PCR products run on 1.0% agarose gel, stained with ethidium bromide, and photographed by UV illumination (Ingenius, Syngene). The size of the PCR product was compared with 100 bp DNA ladder (Bioneer, Korea). A. baumannii ATCC 19606 was used as reference strain. Sequencing Method. Sequencing was done by Sanger s method (Applied Biosystems 3730/3730xl DNA Analyzers Sequencing; Bioneer). The sequences were analyzed using ChromasPro version 1.7.5 Technelysium (http://www.technelysium.com.au/). GenBank accession numbers for bla OXA-23, bla OXA-24, bla OXA-51,andbla PER-1 are KP462887, KP462888, KP462889, and KP462892. 2.6. Statistical Analysis. Statistical data analysis was conducted using SPSS software version 19 (SPSS Inc., Chicago, IL). The chi-square test was used to compare antibiotic resistance rates in this study. P < 0.05 was considered statistically significant. 3. Results The mean age of the studied patients was 54.2 ± 18.1 years, whichrangedfrom23to95years.themajorityofpatients (61.3%) were male, 76 versus 48 female. The number and rates of isolates from different wards of the hospital were as follows: ICU, 69 (55.6%); Internal Medicine, 26 (21%); Emergency Room,23(18.5%);andPediatrics,6(4.8%). Antimicrobial Resistance Pattern. All strains were resistant to ceftazidime, ceftriaxone, and cefotaxime, while they were

Pathogens 3 Table 1: Primers used in this study for amplification of genes from Acinetobacter baumannii isolates. Primer Nucleotide sequence (5 to 3 ) Amplicon size (bp) Reference OXA51LF TAA TGC TTT GAT CGG CCT TG OXA51LR TGG ATT GCA CTT CAT CTT GG 353 Feizabadi et al. (2008) [7] OXA23LF GAT CGG ATT GGA GAA CCA GA OXA23LR ATT TCT GAC CGC ATT TCC AT 501 Feizabadi et al. (2008) [7] OXA24LF GGT TAG TTG GCC CCC TTA AA OXA24LR AGT TGA GCG AAA AGG GGA TT 246 Feizabadi et al. (2008) [7] OXA58LF AAGTATTGGGGCTTGTGCTG OXA58LR CCCCTCTGCGCTCTACATAC 599 Feizabadi et al. (2008) [7] ISAba1F CACGAATGCAGAAGTTG ISAba1R CGACGAATACTATGACAC 549 Segal et al. (2005) [8] PER-1 F ATGAATGTCATTATAAAAGC PER-1 R AATTTGGGCTTAGGGCAGAA 925 Vahaboglu et al. (2001) [9] susceptible to colistin and polymyxin B. The resistance patterns of all A. baumannii isolates are shown in Figure 1. All ofthe A. baumannii isolates were considered as multidrug resistance (MDR), and 81 (96%) isolates were extensively drug resistant (XDR). Fortunately, none of the isolates were pan-drug resistant (PDR). Seven (5.6%) of isolates were ESBL positive and 68 (54.8%) isolates produced metallo-βlactamases (MBLs). In our study, all of the A. baumannii isolates were positive for bla OXA-51 and ISAba1. Analysis of incidence for OXA encoding genes of isolates demonstrated that 79.8% of them were positive for bla OXA-23,25%for bla OXA-24, and 3.2% for bla OXA-58. The coexistence of different bla OXA genesinisolateswasobserved,andtheirrelative amounts were as follows: bla OXA-51 +bla OXA-23 in 75 (60.5%); bla OXA-51 +bla OXA-24 in 7 (5.6%); bla OXA-51 +bla OXA-58 in 3(2.4%);bla OXA-51 +bla OXA-23 +bla OXA-24 in 23 (18.5%), and bla OXA-51 +bla OXA-23 +bla OXA-24 +bla OXA-58 in 1 isolate (0.8%). Amplification for the presence of oxacillinases genes isshowninfigure2.bla PER-1 of Ambler class A β-lactamaseencoding gene was identified in 65 (52.4%) of the isolates. Table 2 presents genetic and phenotypic analyses of isolates. Figure3showsthevarianceinthesizeofampliconproducts of the multiplex PCR assay for different OXA genes. (%) 100 90 80 70 60 50 40 30 20 10 0 PRL SAM PTZ CAZ CPM Intermediate Sensitive Resistance CTX CRO MEM IMI AK GM LEV CIP T TS CO PB Figure 1: Antimicrobial susceptibility test of 124 A. baumannii isolates in Iran. PRL: piperacillin; SAM: ampicillin-sulbactam; PTZ: piperacillin-tazobactam; CAZ: ceftazidime; CPM: cefepime; CTX: cefotaxime; CRO: ceftriaxone; MEM: meropenem; IMI: imipenem; AK: amikacin; GM: gentamicin; LEV: levofloxacin; CIP: ciprofloxacin; T: tetracycline; TS: trimethoprim-sulfamethoxazole; CO: colistin; PB: polymyxin B. 4. Discussion Theresultsofthisstudyshowedthatthe124A. baumannii isolates were extremely resistant to most common antibiotics, surprisingly, 100% to ceftazidime, ceftriaxone, and cefotaxime. In addition, 100% of isolates were MDR, 96% XDR, and54.8%mblproducers.incomparison,thefrequencyrate of ESBL producing A. baumannii (5.6%) was not notable in the present study. According to the previous reports, high resistance rates to carbapenems have been reported in Iran, ranging from 25% to 96.1% [10 15]. Carbapenems have been the drugs of choice for the treatment of nosocomial infectionscausedby A. baumannii; however carbapenem-resistant strains of A. baumannii have been reported worldwide [16]. The extensive prescription of carbapenems in our hospitals in order to treat A. baumannii infections has led to occurrences of carbapenem-resistant isolates. Extreme use of thirdgeneration cephalosporins and aztreonam has exacerbated the problem of carbapenem resistance rate. In hospitals with high rates of resistance to the broad-spectrum cephalosporin, a combination of beta-lactam/beta-lactamase inhibitors, or a carbapenem, selection of appropriate antibiotics is critical. Production of carbapenem-hydrolyzing β-lactamases which is distributed worldwide is the major mechanism of resistance to carbapenems [17]. Polymyxin B and colistin are the most commonly used agents for Acinetobacter isolates which are resistant to first-line agents. The results of this study showed that 100% of the isolates were sensitive to polymyxins. It was found that 100% of A. baumannii weresensitivetocolistinin

4 Pathogens Table 2: Summary of resistance: phenotypic and genetic characteristics of the isolates a. Pattern Resistance phenotype b bla genes No PRL SAM PTZ CAZ CPM CTX CRO MEM IMI AK GM LEV CIP T TS CO PB OXA-23 OXA-24 OXA-51 OXA-58 PER-1 ISAab1 1 25 + + + + + + + + + + + + + + + + + + 2 16 + + + + + + + + + + + + + + + + + + + 3 10 + + + + + + + + + + + + + + + + + + + + 4 9 + + + + + + + + + + + + + + + + + + + 5 8 + + + + + + + + + + + + + + + + + + + 6 5 + + + + + + + + + + + + + + + + + + 7 4 + + + + + + + + + + + + + + + 8 3 + + + + + + + + + + + + + + + + 9 3 + + + + + + + + + + + + + + + + + 10 2 + + + + + + + + + + + + + + + + + 11 2 + + + + + + + + + + + + + + + + 12 2 + + + + + + + + + + + + + + + + + 13 2 + + + + + + + + + + + + + + + + + + 14 1 + + + + + + + + + + + + + + + + + + 15 1 + + + + + + + + + + + + + + + + + + + 16 1 + + + + + + + + + + + + + + + + + + + 17 1 + + + + + + + + + + + + + + + + + 18 1 + + + + + + + + + + + + + + + + + 19 1 + + + + + + + + + + + + + + + + + + 20 1 + + + + + + + + + + + + + + + 21 1 + + + + + + + + + + + 22 1 + + + + + + + + + + + + + + + + + + 23 1 + + + + + + + + + + + + + + + + + 24 1 + + + + + + + + + + + + + + + + + 25 1 + + + + + + + + + + + + + + + + + 26 1 + + + + + + + + + + + + + + + + 27 1 + + + + + + + + + + + + + + + + + + + + 28 1 + + + + + + + + + + 29 1 + + + + + + + + + + + + + + + 30 1 + + + + + + + + + 31 1 + + + + + + + + + + + + 32 1 + + + + + + + + + + + + + + + + 33 1 + + + + + + + + + + + + + + 34 1 + + + + + + + + + + + + + + + + 35 1 + + + + + + + + + + + + 36 1 + + + + + + + + + + + + + + + + 37 1 + + + + + + + + + + + + + + + + + 38 1 + + + + + + + + + + + + + + + + +

Pathogens 5 Pattern Table 2: Continued. Resistance phenotype b bla genes No PRL SAM PTZ CAZ CPM CTX CRO MEM IMI AK GM LEV CIP T TS CO PB OXA-23 OXA-24 OXA-51 OXA-58 PER-1 ISAab1 39 1 + + + + + + + + + + + + + + + + + + 40 1 + + + + + + + + + + + + + + + 41 1 + + + + + + + + + + + + + + + + 42 1 + + + + + + + + + + + + + + + + 43 1 + + + + + + + + + + + + + + + + + 44 1 + + + + + + + + + + + + + + + + + 45 1 + + + + + + + + + + + + + + + 46 1 + + + + + + + + + + + + + + + a+ Presence of indicated gene or resistance phenotype. b PRL: piperacillin; SAM: ampicillin-sulbactam; PTZ: piperacillin-tazobactam; CAZ: ceftazidime; CPM: cefepime; CTX: cefotaxime; CRO: ceftriaxone; MEM: meropenem; IMI: imipenem; AK: amikacin; GM: gentamicin; LEV: levofloxacin; CIP: ciprofloxacin; T: tetracycline, TS: trimethoprim-sulfamethoxazole; CO: colistin; PB: polymyxin B.

6 Pathogens (%) 120 100 80 60 40 20 0 Tehran/2008 Tehran/2009 OXA-23 OXA-51 Tabriz/2011 Tehran/2011 Northwest of Iran/2012 Kermanshah/2013 OXA-58 OXA-24 Figure 2: Frequency rates of bla OXA genes in A. baumannii isolates in Iran (2008 2014). Ahvaz/2013 Kashan/2014 [7,12,13,21 23].bla PER-1 was detected in 52.4% of the A. baumannii isolates. It was also found in Acinetobacter isolates from Argentina, Belgium, Egypt, France, India, Iran, Saudi Arabia, and South Korea [18, 24]. In addition, 48 isolates (48.5%) simultaneously were positive for both bla OXA-23 and bla PER-1 genes. Empiric antibiotic therapy for Acinetobacter isolates should be selected based on local susceptibility patterns, which consists of a broad-spectrum cephalosporin, a combination of beta-lactam/beta-lactamase inhibitors, or a carbapenem. In infectious cases with occurrence of highly antibacterial resistance rates, it is recommended to use a combination of the above agents with an antipseudomonal fluoroquinolone, an aminoglycoside, or colistin to impede the chance of treatment failure. With consideration of resistance rates to the first-line antibacterial agents, therapeutic choices are mandatory limited to polymyxins, minocycline, and tigecycline. 5. Conclusions The results of the present study indicated the occurrence of high prevalence of MDR A. baumannii and signifies the alarming spreads of bla OXA-23 carbapenemase in our setting. On the whole, these findings recommend that screening can provide helpful information for comparisons of MDR genetic collection between different populations and countries and potentially support more infection control strategies and chemotherapeutic treatment programs. Disclosure Figure 3: Amplification for presence of oxacillinases genes by multiplex PCR in A. baumannii isolates in Iran. Algeria,70.9%inSaudiArabia,92.5%inKuwait,and95%in Egypt [18]. Epidemics of isolates harboring genes encoding OXA-type carbapenemase (bla OXA-23, bla OXA-24, bla OXA-51, and bla OXA-58 groups) have increasingly been described worldwide [19]. In the present study, 79.8% of A. baumannii isolates were positive for bla OXA-23 geneandmorethan80% of them were resistant to both imipenem and meropenem. There are also studies on susceptibility test to carbapenems, in which an isolate is susceptible to meropenem but resistant to imipenem and vice versa; some studies have recently reported that bla OXA-23 isthemostfrequenttypeofcarbapenemase identified among carbapenem-resistant A. baumannii [20]. The prevalence rate of bla OXA-23 has been detected from 0 to 98.4%; bla OXA-51 and ISAba1 were observed in all isolates. The prevalence rate of bla OXA-24/40 has been detected from 0 to 85.43%, while the rate for bla OXA-58 has been reported from 0% to 96.9% in Colombia, Greece, Korea, Poland, Taiwan, and Turkey [13, 18]. The comparative frequency rates for bla OXA genes in A. baumannii isolates in Iran are shown in Figure 2 The paper is based on the thesis of M.S. degree and financially was supported by Kashan University of Medical Sciences Research Fund (Grant no. 92149). The funder s had no role in study design, data collection and analysis, decision to publish, or preparation of the paper. Conflict of Interests The authors declare that there is no conflict of interests. References [1] R. Zarrilli, S. Pournaras, M. Giannouli, and A. Tsakris, Global evolution of multi-drug resistant Acinetobacter baumannii clonal lineages, International Antimicrobial Agents, vol. 41, pp. 11 19, 2013. [2] F. Perez, A. M. Hujer, K. M. Hujer, B. K. Decker, P. N. Rather, and R. A. Bonomo, Global challenge of multidrug-resistant Acinetobacter baumanni, Antimicrobial Agents and Chemotherapy,vol.51,no.10,pp.3471 3484,2007. [3] J. Vila, S. Martí, and J. Sánchez-Céspedes, Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii, Journal of Antimicrobial Chemotherapy, vol.59,no.6,pp.1210 1215, 2007. [4] Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing. Twenty-First Informational Supplement, CLSI, Wayne, Pa, USA, 2011.

Pathogens 7 [5]M.E.FalagasandD.E.Karageorgopoulos, Pandrugresistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among gram-negative bacilli: need for international harmonization in terminology, Clinical Infectious Diseases,vol.46,no.7,pp.1121 1122,2008. [6]P.Owlia,L.Azimi,A.Gholami,B.Asghari,andA.R.Lari, ESBL-andMBL-mediatedresistanceinAcinetobacter baumannii:aglobalthreattoburnpatients, Infezioni in Medicina, vol. 20, no. 3, pp. 182 187, 2012. [7] M. M. Feizabadi, B. Fathollahzadeh, M. Taherikalani et al., Antimicrobial susceptibility patterns and distribution of BlaAXA genes among Acinetobacter spp. isolated from patients at Tehran hospitals, Japanese Infectious Diseases,vol. 61, no. 4, pp. 274 278, 2008. [8] H.Segal,S.Garny,andB.G.Elisha, IsIS ABA 1 customized for Acinetobacter? FEMS Microbiology Letters, vol.243,pp.425 442, 2005. [9] H. Vahaboglu, F. Coskunkan, O. Tansel et al., Clinical importance of extended-spectrum β-lactamase (PER-1-type)-producing Acinetobacter spp. andpseudomonas aeruginosa strains, Medical Microbiology,vol.50,no.7,pp.642 645,2001. [10] M. Safari, M. Saidijam, A. Bahador, R. Jafari, and M. Y. Alikhani, High prevalence of multi-drug resistance and metallo-betalactamase (MβL) producing Acinetobacter baumannii isolated from patients in ICU wards, Hamadan, JournalofResearchin Health Sciences,vol.13,no.2,pp.162 167,2013. [11] R. Moniri, R. K. Farahani, G. Shajari, M. H. N. Shirazi, and A. Ghasemi, Molecular epidemiology of aminoglycosides resistance in Acinetobacter spp. with emergence of multidrugresistant strains, Iranian Public Health, vol. 39, no. 2, pp.63 68,2010. [12] P. Mohajeri, A. Farahani, MM. Feizabadi, H. Ketabi, R. Abiri, and F. Najafi, Antimicrobial susceptibility profiling and genomic diversity of acinetobacter baumannii isolates: a study in western Iran, Iranian Microbiology, vol. 5, no. 3, pp. 5195 5202, 2013. [13]S.Shoja,M.Moosavian,A.Peymani,M.A.Tabatabaiefar, S. Rostami, and N. Ebrahimi, Genotyping of carbapenem resistant Acinetobacter baumannii isolated from tracheal tube discharge of hospitalized patients in intensive care units, Ahvaz, Iran, Iranian Microbiology, vol. 5, no. 4, pp. 315 322, 2013. [14]S.Japoni,S.Farshad,A.A.Ali,andA.Japoni, Antibacterial susceptibility patterns and cross-resistance of acinetobacter, isolated from hospitalized patients, Southern Iran, Iranian Red Crescent Medical Journal, vol. 13, no. 11, pp. 832 836, 2011. [15]M.Rahbar,H.Mehrgan,andN.H.Aliakbari, Prevalenceof antibiotic-resistant Acinetobacter baumannii in a 1000-bed tertiary care hospital in Tehran, Iran, Indian Pathology and Microbiology, vol. 53, no. 2, pp. 290 293, 2010. [16] K. M. Hujer, A. M. Hujer, E. A. Hulten et al., Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center, Antimicrobial Agents and Chemotherapy, vol. 50, no. 12, pp. 4114 4123, 2006. [17] Y.-C. Lin, W.-H. Sheng, Y.-C. Chen, S.-C. Chang, K.-C. Hsia, and S.-Y. Li, Differences in carbapenem resistance genes among Acinetobacter baumannii, Acinetobacter genospecies 3 and Acinetobacter genospecies 13TU in Taiwan, International Antimicrobial Agents,vol.35,no.5,pp.439 443,2010. [18] M. H. Al-Agamy, N. G. Khalaf, M. M. Tawfick, A. M. Shibl, and A. E. Kholy, Molecular characterization of carbapeneminsensitive Acinetobacter baumannii in Egypt, International Infectious Diseases,vol.22,pp.49 54,2014. [19] B. A. Evans and S. G. B. Amyes, OXA β-lactamases, Clinical Microbiology Reviews,vol.27,no.2,pp.241 263,2014. [20] P. D. Mugnier, L. Poirel, T. Naas, and P. Nordmann, Worldwide dissemination of the blaoxa-23 carbapenemase gene of Acinetobacter baumannii, Emerging Infectious Diseases, vol. 16, pp. 35 40, 2010. [21] M.Taherikalani,B.Fatolahzadeh,M.Emaneini,S.Soroush,and M. M. Feizabadi, Distribution of different carbapenem resistant clones of Acinetobacter baumannii in Tehran Hospitals, New Microbiologica,vol.32,no.3,pp.265 271,2009. [22] N. Sohrabi, S. Farajnia, M. T. Akhi et al., Prevalence of oxa-type β-lactamases among Acinetobacter baumannii isolates from northwest of Iran, Microbial Drug Resistance, vol. 18, no. 4, pp. 385 389, 2012. [23] A. Peymani, P. G. Higgins, M.-R. Nahaei, S. Farajnia, and H. Seifert, Characterisation and clonal dissemination of OXA-23- producing Acinetobacter baumannii in Tabriz, Northwest Iran, International Antimicrobial Agents,vol.39,no.6,pp. 526 528, 2012. [24] D. Yong, J. H. Shin, S. Kim et al., High prevalence of PER-1 extended-spectrum β-lactamase-producing Acinetobacter spp. in Korea, Antimicrobial Agents and Chemotherapy, vol. 47, no. 5,pp.1749 1751,2003.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity