Received 17 December 2003; accepted 22 December 2003

Similar documents
PDF hosted at the Radboud Repository of the Radboud University Nijmegen

European Committee on Antimicrobial Susceptibility Testing

EUCAST recommended strains for internal quality control

Journal of Antimicrobial Chemotherapy Advance Access published August 26, 2006

Help with moving disc diffusion methods from BSAC to EUCAST. Media BSAC EUCAST

Annual Report: Table 1. Antimicrobial Susceptibility Results for 2,488 Isolates of S. pneumoniae Collected Nationally, 2005 MIC (µg/ml)

Tel: Fax:

Antimicrobial Pharmacodynamics

What s new in EUCAST methods?

European Committee on Antimicrobial Susceptibility Testing

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Antibiotics in vitro : Which properties do we need to consider for optimizing our therapeutic choice?

Introduction to Pharmacokinetics and Pharmacodynamics

Alasdair P. MacGowan*, Mandy Wootton and H. Alan Holt

The pharmacological and microbiological basis of PK/PD : why did we need to invent PK/PD in the first place? Paul M. Tulkens

MICHAEL J. RYBAK,* ELLIE HERSHBERGER, TABITHA MOLDOVAN, AND RICHARD G. GRUCZ

Compliance of manufacturers of AST materials and devices with EUCAST guidelines

56 Clinical and Laboratory Standards Institute. All rights reserved.

January 2014 Vol. 34 No. 1

Influence of ph on Adaptive Resistance of Pseudomonas aeruginosa to Aminoglycosides and Their Postantibiotic Effects

National Clinical Guideline Centre Pneumonia Diagnosis and management of community- and hospital-acquired pneumonia in adults

JAC Bactericidal index: a new way to assess quinolone bactericidal activity in vitro

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

Advance Access published September 16, 2004

مادة االدوية المرحلة الثالثة م. غدير حاتم محمد

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Does the Dose Matter?

Postantibiotic effect of aminoglycosides on Gram-negative bacteria evaluated by a new method

DETERMINING CORRECT DOSING REGIMENS OF ANTIBIOTICS BASED ON THE THEIR BACTERICIDAL ACTIVITY*

Compliance of manufacturers of AST materials and devices with EUCAST guidelines

Principles of Antimicrobial therapy

Defining Resistance and Susceptibility: What S, I, and R Mean to You

Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent

ICAAC. Key words: antibacterial agent development approval. linezolid β. chloramphenicol tetracycline colistin mupirocin teicoplanin

Is erythromycin bactericidal

Intrinsic, implied and default resistance

and Health Sciences, Wayne State University and Detroit Receiving Hospital, Detroit, MI, USA

2 0 hr. 2 hr. 4 hr. 8 hr. 10 hr. 12 hr.14 hr. 16 hr. 18 hr. 20 hr. 22 hr. 24 hr. (time)

Contribution of pharmacokinetic and pharmacodynamic parameters of antibiotics in the treatment of resistant bacterial infections

Marc Decramer 3. Respiratory Division, University Hospitals Leuven, Leuven, Belgium

Einheit für pädiatrische Infektiologie Antibiotics - what, why, when and how?

CHSPSC, LLC Antimicrobial Stewardship Education Series

Should we test Clostridium difficile for antimicrobial resistance? by author

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

Chapter 51. Clinical Use of Antimicrobial Agents

Brief reports. Decreased susceptibility to imipenem among penicillin-resistant Streptococcus pneumoniae

International Journal of Advances in Pharmacy and Biotechnology Vol.3, Issue-2, 2017, 1-7 Research Article Open Access.

6.0 ANTIBACTERIAL ACTIVITY OF CAROTENOID FROM HALOMONAS SPECIES AGAINST CHOSEN HUMAN BACTERIAL PATHOGENS

JAC Linezolid against penicillin-sensitive and -resistant pneumococci in the rabbit meningitis model

Antimicrobial susceptibility

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Appropriate antimicrobial therapy in HAP: What does this mean?

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

Background and Plan of Analysis

GeNei TM. Antibiotic Sensitivity. Teaching Kit Manual KT Revision No.: Bangalore Genei, 2007 Bangalore Genei, 2007

Impact of Spores on the Comparative Efficacies of Five Antibiotics. Pharmacodynamic Model

Keywords: amoxicillin/clavulanate, respiratory tract infection, antimicrobial resistance, pharmacokinetics/pharmacodynamics, appropriate prescribing

ANTIBIOTICS USED FOR RESISTACE BACTERIA. 1. Vancomicin

Resistance Among Streptococcus pneumoniae: Patterns, Mechanisms, Interpreting the Breakpoints

EUCAST Expert Rules for Staphylococcus spp IF resistant to isoxazolylpenicillins

Christine E. Thorburn and David I. Edwards*

Advanced Practice Education Associates. Antibiotics

Selective toxicity. Antimicrobial Drugs. Alexander Fleming 10/17/2016

Antimicrobial Susceptibility Testing: The Basics

Test Method Modified Association of Analytical Communities Test Method Modified Germicidal Spray Products as Disinfectants

2015 Antibiotic Susceptibility Report

EUCAST-and CLSI potency NEO-SENSITABS

Brief reports. Heat stability of the antimicrobial activity of sixty-two antibacterial agents

J. W. Mouton, H. P. Endtz, J. G. den Hollander, N. van den Braak and H. A. Verbrugh

There are two international organisations that set up guidelines and interpretive breakpoints for bacteriology and susceptibility

The Disinfecting Effect of Electrolyzed Water Produced by GEN-X-3. Laboratory of Diagnostic Medicine, College of Medicine, Soonchunhyang University

Antibiotic Kinetic and Dynamic Attributes for Community-Acquired Respiratory Tract Infections

Jan A. Jacobs* and Ellen E. Stobberingh

Antimicrobial Stewardship Strategy: Antibiograms

TOLYPOMYCIN, A NEW ANTIBIOTIC. V IN VITRO AND IN VIVO ANTIMICROBIAL ACTIVITY. Masahiro Kondo, Tokiko Oishi and Kanji Tsuchiya

Treatment of Respiratory Tract Infections Prof. Mohammad Alhumayyd Dr. Aliah Alshanwani

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

Michael T. Sweeney* and Gary E. Zurenko. Infectious Diseases Biology, Pharmacia Corporation, Kalamazoo, Michigan 49007

Principles of Antimicrobial Therapy

Other Beta - lactam Antibiotics

ANTIMICROBIAL SUSCEPTIBILITY DETECTION OF ELEVATED MICs TO PENICILLINS IN β- HAEMOLYTIC STREPTOCOCCI

ORIGINAL ARTICLE. Focus Technologies, Inc., 1 Hilversum, The Netherlands, 2 Herndon, Virginia and 3 Franklin, Tennessee, USA

Performance Information. Vet use only

Antibiotics. Antimicrobial Drugs. Alexander Fleming 10/18/2017

parameters were enhanced to develop new antimicrobial formulations CONSIDERATIONS IN ANTIMICROBIAL SELECTION Using animal models and human data, PK an

Concise Antibiogram Toolkit Background

Title: N-Acetylcysteine (NAC) Mediated Modulation of Bacterial Antibiotic

Challenges Emerging resistance Fewer new drugs MRSA and other resistant pathogens are major problems

General Approach to Infectious Diseases

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents

Received 27 August 2002; returned 26 November 2002; revised 8 January 2003; accepted 11 January 2003

AUC/MIC relationships to different endpoints of the antimicrobial effect: multiple-dose in vitro simulations with moxifloxacin and levofloxacin

Antibacterial susceptibility testing

A Norazah, M D*, V K E Lim, FRCPath**, MY Rohani, MPath*, A G M Kamel, MD**,

Understanding the Hospital Antibiogram

CF WELL Pharmacology: Microbiology & Antibiotics

Antibiotic. Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting

Alasdair P. MacGowan,* Chris A. Rogers, H. Alan Holt, and Karen E. Bowker

Transcription:

Journal of Antimicrobial Chemotherapy (2004) 53, 609 615 DOI: 10.1093/jac/dkh130 Advance Access publication 3 March 2004 In vitro post-antibiotic effect of fluoroquinolones, macrolides, β-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis A. Athamna 1,2, M. Athamna 1, B. Medlej 1,2, D. J. Bast 3 and E. Rubinstein 2,4 * 1 The Triangle Research and Development Center, Kfar-Qaraa; 2 Department of Human Microbiology, Tel-Aviv University, School of Medicine, Tel-Aviv; 4 Infectious Diseases Unit, Sheba Medical Center, Tel-Aviv University, School of Medicine, Tel Hashomer 52621, Israel; 3 Toronto Centre for Antimicrobial Research & Evaluation (ToCARE), Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada Introduction Received 17 December 2003; accepted 22 December 2003 Objectives: The aim of this study was to investigate in vitro the post-antibiotic effect (PAE) of 19 antibacterial agents against two strains of Bacillus anthracis (ST-1 and Sterne strains). Methods: PAE was determined by calculating the time required for the viable counts of antibiotic-exposed bacteria (at concentrations of 10 MIC and exposure for 2 h) at 37 C to increase by 1 log 10 above the counts observed immediately after antibiotic removal compared with the corresponding time for controls not exposed to antibiotics. Results: The PAEs of the fluoroquinolones (ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin and garenoxacin) were 2 5 h. The macrolide (erythromycin, clarithromycin and telithromycin) PAEs were 1 4 h, and that of clindamycin was 2 h. The PAEs induced by tetracycline and minocycline were 1 3 h. The PAEs induced by the β-lactams (penicillin G, amoxicillin and ceftriaxone), vancomycin, linezolid and chloramphenicol were 1 2 h. The PAE induced by rifampicin was 4 5 h. Quinupristin/dalfopristin had the longest PAE, lasting for 7 8 h. Conclusions: Our results indicate that the PAE is unrelated to the MIC but may be related to the rapidity of bacterial kill. These observations may bear importance on treatment regimens of human anthrax. Keywords: anthrax, PAE, susceptibility Post-antibiotic effect (PAE) is a well-established pharmacodynamic parameter that reflects an arrested bacterial growth following the removal of the active antibacterial agent from the growth medium. 1 4 The duration of the PAE is mainly influenced by the bacterial species, and the nature of the antibacterial drug and its concentration, but also by environmental factors such as temperature, ph, po 2, growth medium, the kind of body fluid, etc. 5 8 The clinical significance of the PAE pertains primarily to the impact it may have on the design of antimicrobial dosing regimens in clinical practice. 6 Antimicrobials that induce long PAEs may be administered at longer dosing intervals than determined by their pharmacokinetic properties such as t 1/2 values. The benefit of a prolonged PAE may thus allow for fewer daily drug administrations without reduced efficacy, and possibly a lower frequency of adverse events. 9,10 Since post-exposure prophylaxis and therapy of anthrax require prolonged antibiotic therapy extending to 60 days or more, 11 a reduction in the frequency of dosings by an increase in the administration intervals might be more efficient than the current recommended regimen. We have therefore examined the PAEs of 19 antibacterials belonging to different antibiotic classes against two strains of Bacillus anthracis (the Sterne strain and the Russian vaccine strain ST-1). Materials and methods Antibacterial agents The antibiotics tested in this study were: ofloxacin and levofloxacin (gifts from Aventis, Netanya, Israel, and Aventis, Paris, France, respectively), ciprofloxacin and moxifloxacin (a gift from Bayer Leverkusen, Germany), garenoxacin (a gift from Bristol-Myers Squibb, Waterloo, Belgium), minocycline (Dexxon, Haifa, Israel), tetracycline (Sigma,... *Corresponding author. Tel: +972-3-5345-389; Fax: +972-3-5347-081; E-mail: erubins@yahoo.com... 609 JAC vol.53 no.4 The British Society for Antimicrobial Chemotherapy 2004; all rights reserved.

A. Athamna et al. Table 1. MICs of 19 antibiotics against B. anthracis strains MIC (mg/l) Antibiotic B. anthracis ST-1 B. anthracis Sterne Ofloxacin 0.25 0.25 Ciprofloxacin 0.03 0.03 Moxifloxacin 0.125 0.06 Levofloxacin 0.125 0.125 Garenoxacin 0.03 0.03 Amoxicillin 0.06 0.125 Penicillin G 0.03 0.25 Ceftriaxone 8.0 8.0 Vancomycin 1.25 2.5 Tetracycline 0.125 0.125 Minocycline 0.03 0.03 Clarithromycin 0.125 0.125 Clindamycin 0.25 0.125 Erythromycin 1.0 0.5 Telithromycin 0.125 0.125 Quinupristin/dalfopristin 0.06 0.125 Rifampicin 0.25 0.125 Linezolid 2.0 2.0 Chloramphenicol 512 256 Rehovot, Israel), penicillin G (Rafa Laboratories, Jerusalem, Israel), amoxicillin (GSK, Petach-Tikva, Israel), ceftriaxone (Roche, Tel-Aviv, Israel), vancomycin (E. Lilly, Italy), erythromycin (Sigma, Rehovot, Israel), clarithromycin [Abbott (Promedico, Petach-Tikva, Israel)], telithromycin and quinupristin/dalfopristin (Aventis, Paris, France), clindamycin and linezolid [Pharmacia (Agis), Bnei-Braq, Israel and Pharmacia, Kalamazoo, USA], rifampicin (Sigma, Rehovot, Israel) and chloramphenicol (Teva, Petach-Tikva, Israel). Penicillin G, minocycline, vancomycin, erythromycin, rifampicin, clindamycin, linezolid, ceftriaxone, garenoxacin and quinupristin/dalfopristin were each received as a dry laboratory powder and were dissolved in phosphate-buffered saline (ph 7.2). Amoxicillin was dissolved in distilled water. Clarithromycin was dissolved in analytical acetone, and telithromycin and tetracycline were dissolved initially in two drops of acetic acid and ethanol (100%), respectively, and subsequently diluted in distilled water to the required concentration. The antibiotics were sterilized through 0.45 µm pore-size filters (Millipore S.A., Paris, France). Ofloxacin, levofloxacin, moxifloxacin, ciprofloxacin and chloramphenicol were obtained in a liquid form (as injectables). Bacterial strains and growth conditions Bacteria used in this study were two strains of B. anthracis, the Sterne veterinary vaccine strain (a gift from the Colorado Serum Institute, Denver, Figure 1. Induction of PAE by ofloxacin (a), ciprofloxacin (b), levofloxacin (c) and moxifloxacin (d) against B. anthracis ST-1 (control, filled circles; antibioticexposed, open circles) and Sterne (control, filled triangles; 610

Post-antibiotic effect against B. anthracis Figure 2. Induction of PAE by clarithromycin (a), erythromycin (b) and telithromycin (c) against B. anthracis ST-1 (control, filled circles; antibiotic-exposed, open circles) and Sterne (control, filled triangles; Table 2. PAEs of various antibiotics against B. anthracis strains ST-1 and Sterne Antibiotic ST-1 (h) Sterne (h) Ciprofloxacin 2 3 2 3 Moxifloxacin 3 3 Ofloxacin 4 5 3 Levofloxacin 4 5 2 3 Garenoxacin 4 5 2 3 Erythromycin 1 2 1 Clarithromycin 2 2 Telithromycin 4 4 Clindamycin 2 2 Linezolid 1 1 Penicillin G 2 1 Amoxicillin 1 1 Ceftriaxone 1 1 Vancomycin 1 2 1 Tetracycline 1 1 Minocycline 2 3 2 Chloramphenicol 1 2 1 2 Rifampicin 5 4 5 Quinupristin/dalfopristin 7 8 7 8 CO, USA) and the Russian anthrax vaccine strain Sanitary Technical Institute (ST-1) purchased commercially from a veterinary supply store in Moscow, Russia. Both strains are not human pathogens, as both lack a plasmid necessary to produce the capsule of the vegetative cells. Bacterial spores were stored in sterile 30% glycerol in PBS, and were spread on brain heart infusion (BHI) agar (Difco Laboratories, USA) and incubated for 18 24 h at 37 C to obtain single colonies (vegetative form). A single colony was inoculated into 20 ml of BHI broth and incubated overnight at 37 C. The grown bacteria were used in the experiments. Determination of minimum inhibitory concentrations (MICs) MICs were determined according to the National Committee for Clinical Laboratory Standards (NCCLS) criteria for Staphylococcus aureus. 12,13 Figure 3. Induction of PAE by clindamycin against B. anthracis ST-1 (control, Determination of the PAE Twenty millilitres of 1:20 diluted overnight culture (OD of 0.1 at 600 nm = 10 6 cfu) in BHI broth was incubated for 2 h at 37 C with or without the antibiotics to be tested, at concentrations of 10 MIC. In order to remove the antibiotics, exposed bacteria were washed twice with phosphate-buffered saline (ph 7.2) by centrifugation for 10 min at 7000 rpm; controls were handled similarly. The pellets were resuspended in 20 ml of BHI broth followed by incubation at 37 C and samples (1 ml) were obtained at 2 h (2 h of exposure to antibiotics) for corrections that were made to ensure that all the cultures would start with the same bacterial count. Samples were obtained at time 0 (immediately after washing and after correction) and then hourly up to 7 h and OD values determined (reflecting bacterial growth). The OD values were converted into cfu (bacterial growth) by using a standard curve which was constructed relating the number of bacteria to the OD. The PAE was defined according to Craig & Gudmundsson 6 as PAE = T C, where T is 611

A. Athamna et al. the time required for the viable counts of the exposed bacteria to increase by 1 log 10 above the counts observed immediately after washing and C is the corresponding time for the antibiotic unexposed controls. Results MICs The MICs of the 19 antibacterial agents tested against the two strains of B. anthracis, reported previously, are shown in Table 1. 14 PAEs All five fluoroquinolones tested exhibited similar PAE patterns for both strains (Figure 1). Ciprofloxacin and moxifloxacin had PAE durations of 2 3 h for both strains, whereas ofloxacin and levofloxacin had PAE durations ranging from 2 to 5 h, with the Sterne Figure 4. Induction of PAE by linezolid against B. anthracis ST-1 (control, filled circles; antibiotic-exposed, open circles) and Sterne (control, filled triangles; strain having PAEs of 2 3 h and the ST-1 strain having PAEs of 4 5 h (Table 2). The PAE durations of the macrolides erythromycin and clarithromycin and the ketolide telithromycin ranged from 1 to 4 h (Figure 2 and Table 2). The longest PAE in this group was observed with telithromycin (4 h for both strains), and the shortest with erythromycin (1 2 h), whereas clarithromycin had a PAE of 2 h for both strains. Clindamycin exhibited a PAE equal to clarithromycin (2 h for both strains) (Figure 3 and Table 2). Linezolid PAE was found to be 1 h for both strains (Figure 4 and Table 2). The PAE induced by the three β-lactams (penicillin G, amoxicillin and ceftriaxone) was similar and short (1 2 h against both strains) (Figure 5). Vancomycin exhibited a similar effect to the β-lactams with a PAE of 1 2 h (Figure 6 and Table 2). The tetracyclines (tetracycline and minocycline) exhibited somewhat divergent PAEs with tetracycline having a short PAE of Figure 6. Induction of PAE by vancomycin against B. anthracis ST-1 (control, Figure 5. Induction of PAE by penicillin G (a), amoxicillin (b) and ceftriaxone (c) against B. anthracis ST-1 (control, filled circles; antibiotic-exposed, open circles) and Sterne (control, filled triangles; 612

Post-antibiotic effect against B. anthracis Figure 7. Induction of PAE by tetracycline (a) and minocycline (b) against B. anthracis ST-1 (control, filled circles; antibiotic-exposed, open circles) and Sterne (control, filled triangles; Figure 8. Induction of PAE by chloramphenicol against B. anthracis ST-1 (control, 1 h, whereas minocycline had a somewhat longer PAE of 2 3 h for both strains (Figure 7 and Table 2). Chloramphenicol exhibited a PAE of 1 2 h for both strains (Figure 8 and Table 2). Rifampicin exhibited a PAE ranging from 4 to 5 h (Figure 9 and Table 2) and quinupristin/dalfopristin exhibited the longest PAE amongst all the antibacterials tested, ranging from 7 to 8 h (Figure 10 and Table 2). Discussion The dosage and frequency of administration of an antibacterial agent are determined by bacterial susceptibility expressed as the MIC, and by the pharmacokinetic and pharmacodynamic properties of the agent. The MICs of the antibiotics tested in this study were determined previously (Table 1). 14 All antibiotics tested except chloramphenicol and possibly ceftriaxone were active against the tested B. anthracis strains according to NCCLS breakpoints for S. aureus. 13 Figure 9. Induction of PAE by rifampicin against B. anthracis ST-1 (control, The PAE refers to the time period after complete removal of an antibiotic, during which there is delayed regrowth of the bacteria. Although this phenomenon was first described by Bigger in 1944, it was only many years thereafter that the PAE was recognized as an important pharmacodynamic parameter. 6 In our study, the exposure of the tested B. anthracis organisms to the antibiotics was at concentrations of 10 MIC, the MICs having been determined in a previous study. The exposure lasted for 2 h. In an earlier publication, 14 we have found that the rapidity of kill of most antibiotics against these strains is rather slow. Indeed, only moxifloxacin, rifampicin and quinupristin/dalfopristin were able to reduce the initial inoculum substantially within the first 2 h of exposure. It was therefore necessary to carry out the necessary corrections after 2 h of exposure. The PAEs induced by the fluoroquinolones ranged between 2 and 5 h, in accordance with PAEs induced by this class of agents in other bacteria, e.g. Streptococcus pneumoniae showed a PAE of 0.5 6.5 h in response to fluoroquinolones and a PAE of 2.3 h 613

A. Athamna et al. Acknowledgements This study was supported by a grant from Aventis France and Bayer AG, and by partial support from the Israeli Ministry of Science and Technology. References Figure 10. Induction of PAE by quinupristin/dalfopristin against B. anthracis ST- 1 (control, filled circles; antibiotic-exposed, open circles) and Sterne (control, filled triangles; following exposure to ciprofloxacin. 15,16 Against S. aureus, the PAE of fluoroquinolones ranged between 1.13 h for ciprofloxacin, 1.75 h for levofloxacin and 1.1 2.4 h for trovafloxacin. 17,18 The macrolides, in this study, showed slightly shorter PAEs compared with the fluoroquinolones (1 4 h), similarly to PAEs described for S. pneumoniae (2.9 h for clarithromycin and 2.5 h for erythromycin). 19 The shortest PAEs (1 2 h) were found with the β-lactams, vancomycin, linezolid and chloramphenicol. Similarly short PAEs were found for β-lactams and vancomycin against S. aureus. 20,21 Quinupristin/dalfopristin was found to possess the longest PAE, lasting 7 8 h. A similar PAE (7.4 h) with quinupristin/dalfopristin was demonstrated with S. pneumoniae. 22 All antibiotics tested in this study appeared to induce in vitro a similar PAE in both strains of B. anthracis, suggesting that pathogenic B. anthracis may also show the same phenomenon. In a previous study, 14 we have demonstrated that moxifloxacin, quinupristin/ dalfopristin and rifampicin caused the most rapid bacterial killing, achieving a complete kill within 2 4 h. The β-lactams and vancomycin demonstrated a 2 4 log 10 bacterial kill within 4 6 h. The macrolides, tetracyclines and linezolid demonstrated a slower kill rate, whereas chloramphenicol did not kill at all. Thus, it appears that the PAE is unrelated to the MIC but may bear some relationship to the rapidity of bacterial kill. For example, quinupristin/dalfopristin had the most rapid kill and the longest PAE. Rifampicin had a 2 4 log 10 bacterial kill within 4 6 h and a PAE of 5 h. In contrast, chloramphenicol was a poor killer of B. anthracis and had a short PAE of 1 2 h. However, a linear relationship between the rapidity of kill and the length of the PAE could not be established, R=0.54 and 0.35 for the Stern and ST-1 strains, respectively. The clinical implication of long PAEs lies in the possibility of increasing the intervals between drug administrations thus allowing for fewer daily dosages, thereby potentially reducing treatment costs, increasing patient compliance and decreasing drug exposure. 23 In addition to the possible therapeutically beneficial long PAE caused by some antibiotics, the patients who will receive these agents may potentially benefit also from a rapid bacterial kill caused by these antibiotics, possibly allowing for shorter therapeutic regimens. 1. Bigger, J. W. (1944). The bactericidal action of penicillin on Streptococcus pyogenes. Journal of Medical Science 227, 553 68. 2. Eagle, H. & Musselman, A. D. (1949). The slow recovery of bacteria from the toxic effect of penicillin. Journal of Bacteriology 58, 475 90. 3. Gengo, F. M., Mannion, T. W., Nightingale, C. H. et al. (1984). Integration of pharmacokinetics and pharmacodynamics of methicillin in curative treatment of experimental endocarditis. Journal of Antimicrobial Chemotherapy 14, 619 31. 4. Parker, R. F. & Marsh, H. C. (1946). The action of penicillin on Staphylococcus. Journal of Bacteriology 51, 181 6. 5. Bustamante, C. I., Drusano, G. L., Tatem, B. A. et al. (1984). Postantibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 5, 678 82. 6. Craig, W. A. & Gudmundsson, S. (1999). The postantibiotic effect. In Antibiotics in Laboratory Medicine, 3rd edn (Lorian, V., Ed.), pp. 403 31. Williams & Wilkins, Baltimore, MD, USA. 7. Cozens, R. M., Tuomanen, E., Tosch, W. et al. (1986). Evaluation of the bactericidal activity of β-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrobial Agents and Chemotherapy 29, 797 802. 8. Eagle, H. (1952). Experimental approach to the problem of treatment failure with penicillin. American Journal of Medicine 13, 389 99. 9. ter Braak, E. W., de Vries, P. J., Bouter, K. P. et al. (1990). Oncedaily dosing regimen for aminoglycoside plus β-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. American Journal of Medicine 89, 58 66. 10. Gilbert, D. N. (1991). Once-daily aminoglycoside therapy. Antimicrobial Agents and Chemotherapy 35, 399 405. 11. Inglesby, T. V., O Toole, T., Henderson, D. A. et al. (2002). Anthrax as a biological weapon, 2002: updated recommendations for management. Journal of the American Medical Association 287, 2236 52. 12. Mohammed, M. J., Marston, C. K., Popovic, T. et al. (2002). Antimicrobial susceptibility testing of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and Etest agar gradient diffusion methods. Journal of Clinical Microbiology 40, 1902 7. 13. National Committee for Clinical Laboratory Standards. (1997). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Fourth Edition: Approved Standard M7-A4. NCCLS, Wayne, PA, USA. 14. Athamna, A., Massalha, M., Athamna, M. et al. (2004). In vitro susceptibility of Bacillus anthracis to various antibacterial agents and their time kill activity. Journal of Antimicrobial Chemotherapy 53, 247 51. 15. Odenholt, I. (2001). Pharmacodynamic effects of subinhibitory antibiotic concentrations. International Journal of Antimicrobial Agents 17, 1 8. 16. Spangler, S. K., Lin, G., Jacobs, M. R. et al. (1998). Postantibiotic effect and postantibiotic sub-mic effect of levofloxacin compared to those of ofloxacin, ciprofloxacin, erythromycin, azithromycin, and clarithromycin against 20 pneumococci. Antimicrobial Agents and Chemotherapy 42, 1253 5. 17. Licata, L., Smith, C. E., Goldschmidt, R. M. et al. (1997). Comparison of the postantibiotic sub-mic effects of levofloxacin and ciprofloxacin on Staphylococcus aureus and Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy 41, 950 5. 614

Post-antibiotic effect against B. anthracis 18. Pankuch, G. A., Jacobs, M. R. & Appelbaum, P. C. (1998). Postantibiotic effect of trovafloxacin against Gram-positive and -negative organisms. Antimicrobial Agents and Chemotherapy 42, 1503 5. 19. Odenholt-Tornqvist, I., Löwdin, E. & Cars, O. (1995). Postantibiotic effects and postantibiotic sub-mic effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens. Antimicrobial Agents and Chemotherapy 39, 221 6. 20. Odenholt-Tornqvist, I., Löwdin, E. & Cars, O. (1998). In vitro pharmacodynamic studies of L-749,345 in comparison with imipenem and ceftriaxone against Gram-positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy 42, 2365 70. 21. Löwdin, E., Odenholt, I. & Cars, O. (1998). In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy 42, 2739 44. 22. Pankuch, G. A., Jacobs, M. R. & Appelbaum, P. C. (1998). Postantibiotic effect and postantibiotic sub-mic effect of quinupristin dalfopristin against Gram-positive and -negative organisms. Antimicrobial Agents and Chemotherapy 42, 3028 31. 23. Kardas, P. (2002). Patient compliance with antibiotic treatment for respiratory tract infections. Journal of Antimicrobial Chemotherapy 49, 897 903. 615