Canine Lyme disease, also called canine Lyme borreliosis,

Similar documents
Suggested vector-borne disease screening guidelines

Tick-Borne Disease Diagnosis: Moving from 3Dx to 4Dx AND it s MUCH more than Blue Dots! indications implications

Steven A. Levy, VMD. Durham Veterinary Hospital PC 178 Parmelee Hill Road Durham, CT 06422

TICK-BORNE DISEASE Ehrlichia-Lyme borreliosis-anaplasmosis

Annual Screening for Vector-borne Disease. The SNAP 4Dx Plus Test Clinical Reference Guide

Lyme Disease in Dogs Borreliosis is a Bit of a Bugger!

Topics. Ticks on dogs in North America. Ticks and tick-borne diseases: emerging problems? Andrew S. Peregrine

Effect of Passive Immunoglobulin Transfer on Results of Diagnostic Tests for Antibodies against Borrelia burgdorferi

Screening for vector-borne disease. SNAP 4Dx Plus Test clinical reference guide

Screening for vector-borne disease. SNAP 4Dx Plus Test clinical reference guide

Tick-borne Disease Testing in Shelters What Does that Blue Dot Really Mean?

Is Talking About Ticks Disease.

Lyme Disease. Lyme disease is a bacterial infection spread by tick bites from infected blacklegged

CANINE LEPTOSPIROSIS. (Still) an Emerging Infection? In reviewing numerous publications,

Canine Anaplasmosis Anaplasma phagocytophilum Anaplasma platys

Doug Carithers 1 William Russell Everett 2 Sheila Gross 3 Jordan Crawford 1

The War on Lyme Patients

Author - Dr. Josie Traub-Dargatz

PETCARE IMMUNIZATION SUPPORT GUARANTEE

How to talk to clients about heartworm disease

Lyme Disease in Brattleboro, VT: Office Triage and Community Education

Update on Lyme disease and other tick-borne disease in North Central US and Canada

Changing Trends and Issues in Canine and Feline Heartworm Infections

Lyme Disease (Borrelia burgdorferi)

MERIAL VACCINES LYME MANAGEMENT TECHNICAL UPDATE

S. ll IN THE SENATE OF THE UNITED STATES A BILL

Ip - Infectious & Parasitic Diseases

RABIES PROPHYLAXIS REQUIREMENT FOR DVM STUDENTS

Veterinary Immunology and Immunopathology

Lyme disease is the most important arthropod-borne bacterial infection in. Lyme Disease in Horses KEY FACTS

Trends in Canine Lyme Disease on the Eastern Shore of Virginia,

Vaccines for Cats. 2. Feline viral rhinotracheitis, FVR caused by FVR virus, also known as herpes virus type 1, FHV-1

Providing links to additional websites for more information:

ENVIRACOR J-5 aids in the control of clinical signs associated with Escherichia coli (E. coli) mastitis

Canine vector-borne diseases prevalence and prevention

Three-Year Serologic Immunity against Canine Parvovirus Type 2 and Canine Adenovirus Type 2 in Dogs Vaccinated with a Canine Combination Vaccine*

Heartworm Disease in Dogs

Ehrlichia and Anaplasma: What Do We Need to Know in NY State Richard E Goldstein DVM DACVIM DECVIM-CA The Animal Medical Center New York, NY

Lyme Disease in Vermont. An Occupational Hazard for Birders

Blood protozoan: Plasmodium

Lyme disease: diagnosis and management

Effectiveness of doxycycline for lyme disease

Canine Distemper Virus

INFECTIOUS DISEASE Symposium Proceedings

Ehrlichiosis, Anaplasmosis and other Vector Borne Diseases You May Not Be Thinking About Richard E Goldstein Cornell University Ithaca NY

Ticks and Lyme Disease

What causes heartworm disease?

EHRLICHIOSIS IN DOGS IMPORTANCE OF TESTING FOR CONTRIBUTING AUTHORS CASE 1: SWIGGLES INTRODUCTION WITH PERSISTENT LYMPHOCYTOSIS

Zoonoses - Current & Emerging Issues

AUSTRALIAN AND NEW ZEALAND COLLEGE OF VETERINARY SCIENTISTS. Sample Exam Questions. Veterinary Practice (Small Animal)

American Association of Feline Practitioners American Animal Hospital Association

11-ID-10. Committee: Infectious Disease. Title: Creation of a National Campylobacteriosis Case Definition

Tick-Borne Disease Research Program

Blood protozoan: Plasmodium

Clinical Manifestations and Treatment of Plague Dr. Jacky Chan. Associate Consultant Infectious Disease Centre, PMH

Accidental Exposure to Cattle Brucellosis Vaccines in Wyoming, Montana, and Idaho Veterinarians

The Essentials of Ticks and Tick-borne Diseases

Please distribute a copy of this information to each provider in your organization.

OIE international standards on Rabies:

Borreliae. Today s topics. Overview of Important Tick-Borne Diseases in California. Surveillance for Lyme and Other Tickborne

Optimizing Antimicrobial Stewardship Activities Based on Institutional Resources

About Ticks and Lyme Disease

Feline Vaccines: Benefits and Risks

Treatment of septic peritonitis

Wes Watson and Charles Apperson

Ticks and Tick-borne Diseases: More than just Lyme

Practice Guidelines for the Treatment of Lyme Disease

however, the mild weather and moisture we have had these past couple of weeks have been

Indicated for the treatment of pruritus associated with allergic dermatitis and the clinical manifestations of atopic dermatitis in dogs.

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

FELINE INFECTIOUS PERITONITIS Visions Beyond the Tip of the Iceberg!

Urban Landscape Epidemiology - Ticks and the City -

Vaccinations and boarding

Brucellosis in Kyrgyzstan

Canine Vector-Borne Diseases

The Threat of Multidrug Resistant Neisseria gonorrhoeae

29 JANUARY 2014 CHAPTER 129 CHAPTER 132 RABIES TICK-BORNE ILLNESSES

On People. On Pets In the Yard

Curricular Components for Infectious Diseases EPA

Welcome to Pathogen Group 9

RABIES CONTROL INTRODUCTION

Environment and Public Health: Climate, climate change and zoonoses. Nick Ogden Centre for Food-borne, Environmental and Zoonotic Infectious Diseases

Holistic Veterinary Center, PLLC 1404 Route 9 Clifton Park, NY Phone: (518) Fax: (518) Website:

Surveillance of animal brucellosis

Critical Appraisal Topic. Antibiotic Duration in Acute Otitis Media in Children. Carissa Schatz, BSN, RN, FNP-s. University of Mary

Lyme Disease Treatment Antibiotic Treatment

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see:

Acute Hemorrhagic Diarrhea Syndrome (AHDS) A Cause of Bloody Feces in Dogs

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update


Australian and New Zealand College of Veterinary Scientists. Fellowship Examination. Small Animal Medicine Paper 1

Vector Hazard Report: Ticks of the Continental United States

COMMITTEE ON LYME DISEASE AND OTHER TICK-BORNE DISEASES: THE STATE OF THE SCIENCE

Updated recommended treatment regimens for gonococcal infections and associated conditions United States, April 2007

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

Challenge to the Recommendation on the Prophylaxis of Lyme Disease

Bartonella infection is a potential zoonotic threat to

DRUG & DISEASE INFORMATION ALERT

Compendium of Animal Rabies Prevention and Control, 2015 Briefing

Vector Borne and Animal Associated Infections. Kimberly Martin, DO, MPH Assistant Professor of Pediatrics Pediatric Infectious Diseases

Transcription:

Peer Reviewed VITAL VACCINATION SERIES CANINE LYME DISEASE How Real the Threat? Richard B. Ford, DVM, MS, Diplomate ACVIM & ACVPM (Hon) North Carolina State University Andrew Eschner, DVM Senior Technical Service Veterinarian, Merial Canine Lyme disease, also called canine Lyme borreliosis, is among the most familiar tick (Ixodes species) transmitted infections known to occur in humans and dogs residing in North America. Despite being the subject of review articles, 1,2 research studies, scientific proceedings, and symposia, canine Lyme borreliosis continues to generate considerable controversy in clinical practice, particularly as it pertains to exposure risk, diagnosis, consequences of infection, and even prevention. This article addresses key controversies and current recommendations regarding management of dogs at risk for canine Lyme borreliosis. TRANSMISSION Host & Reservoirs The host-associated bacteria Borrelia burgdorferi, a spirochete is maintained in a variety of wild animal reservoirs, ranging from rodents (principally the white-footed mouse), other small mammals (eg, chipmunks), and ground feeding birds (eg, American robin). Vector The black-legged tick, or deer tick, which parasitizes the mammalian and avian hosts, unwittingly serves as a vector of B burgdorferi to other mammals, including dogs and humans. Food Source White-tailed deer often associated with Lyme disease are not reservoirs for B burgdorferi. They are, instead, blood-feeding stations (and transport vehicles) for adult black-legged ticks. In recent years, increased deer tick populations are believed to be a result of similarly increased deer populations. PREVALANCE & DISTRIBUTION Human Prevalence In August 2013, preliminary results from 3 complementary studies conducted through the Centers for Disease Control and Prevention (CDC) suggested that approximately 300,000 people in the U.S. are diagnosed with Lyme disease, a significant increase from 2012 estimates of 30,000 reported cases. Of reported cases, 96% occurred in 13 states, particularly the northeastern U.S. and Upper Midwest; this distribution did not change from 2012 to 2013. 3 Canine Prevalence Canine Lyme borreliosis is not a reportable disease; therefore, precise estimates of disease prevalence are unavailable. However, compared with humans, dogs in endemic regions are at substantially greater risk for exposure to infected ticks. Surveillance reports of dogs with positive antibody test results suggest that up to 85% of dogs living in endemic areas are at risk for B burgdorferi infection. Geographic Distribution Today, risk extends beyond the traditional geographic boundaries defined the New England states, Wisconsin, and Minnesota, with a relatively high number of infected dogs reported annually in northern California, Oregon, and parts of Washington State (Figure). 4 Anecdotal reports from veterinarians practicing in western Pennsylvania, Ohio, Michigan, and central Illinois state that, over the past 5 years, risk for exposure to infected ticks is spreading. Results of surveillance studies in the U.S., Canada, and Europe designed to monitor the spread of infected ticks indicate that both climate change and migratory ground-feeding birds contribute to movement of infected ticks and increased risk for human and animal exposure. 4-6 These stud- 70 Today s Veterinary Practice March/April 2014

Vital Vaccination Diagnosis of Lyme Disease in Humans In human medicine, diagnosis of Lyme disease centers on: 1. Manifestation of signs and symptoms consistent with Lyme disease 2. History of possible exposure to Ixodes ticks 3. Positive test result on both an enzyme immunoassay (or immunofluorescence assay [IFA]) and an immunoblot test (Western blot). Treatment is indicated only when all 3 criteria have been documented. ies highlight the importance of continued surveillance through routine testing of dogs living in regions where the risk for exposure to Ixodes species ticks is high. The concept of surveillance testing of healthy dogs for Lyme borreliosis, however, raises a series of important questions: What does a positive test result really mean? Does a dog infected with Lyme borreliosis derive longlasting natural immunity to it? Should a dog with a positive test result, but no clinical signs be treated for Lyme borreliosis? Should a dog with a positive test result be vaccinated for Lyme disease? These questions, and others, are addressed in the sections that follow. DIAGNOSIS OF LYME BORRELIOSIS In 2006, a consensus statement on Lyme disease in dogs, which addressed a series of questions on the diagnosis, treatment, and prevention of the disease, was published by the American College of Veterinary Internal Medicine. 1 However, that document failed to provide a clear definition of what constitutes a diagnosis of canine Lyme borreliosis. Figure. Map of canine Lyme disease prevalence in the U.S. Map reprinted with permission for the Companion Animal Parasite Council (capc.org); data provided by IDEXX Laboratories (idexx.com) and ANTECH Diagnostics (antechdiagnostics.com). The recent introduction of laboratory-based and point-ofcare testing technologies has added to the confusion over whether treatment is indicated when a serologic test result is positive in a dog. Serologic Testing In veterinary medicine, it must be emphasized that there is no single pathognomonic diagnostic test for canine Lyme borreliosis. 2 Point-of-Care Tests. For over 10 years, point-of-care tests (SNAP 4 and SNAP 4D Plus, idexx.com) have been available to detect antibodies to the highly conserved C 6 peptide of B burgdorferi. With high sensitivity and specificity, this rapid assay is an excellent surveillance tool for identifying dogs that are infected with B burgdorferi, and is particularly valuable to screen dogs within areas where Lyme disease is emerging. None of the commercial Lyme disease vaccines cause false positive C6 test results. A positive test, however, cannot be used to predict the clinical outcome of an infected dog. Laboratory-Based Tests. Because the majority of dogs infected with B burgdorferi have no clinical signs at time of testing, use of the laboratory-based, quantitative C 6 assay (Lyme Quantitative C 6 Antibody Test, idexx.com) has been proposed as a way to monitor response to treatment of nonclinical seropositive dogs (see TREATMENT). 7-9 Another laboratory-based diagnostic test (AccuPlex4, antechdiagnostics.com), introduced in 2012, has the ability to detect 5 different antibody responses to B burgdorferi infection (OspA, OspC, Ospf, p39, and OspF). The test also reportedly differentiates between natural exposure and vaccination as well as distinguishing early from chronic infection. However, there are some limitations, which include inability to: Identify acute infection in dogs vaccinated with a wholecell (inactivated) bacterin Reliably distinguish between dogs with a positive test result for chronic infection (OspF) and those that have been treated and re-infected Consistently and reliably detect vaccine-induced antibody (OspA); therefore, at this time, these results should not be considered when interpreting a report. Clinical & Laboratory Assessment Simply identifying antibodies to B burgdorferi in a dog does not constitute a clinical diagnosis of Lyme borreliosis. Before establishing a diagnosis of Lyme borreliosis, the clinician must: 1. Consider physical and laboratory findings (Table 1) 2. Determine whether the dog resides in, or has traveled to, a region inhabited by the Ixodes tick. Laboratory Assessment. The laboratory assessment of any patient found to have serum antibodies against B burgdorferi should include: Hematology Serum biochemistry profile Urinalysis Urine protein:creatinine ratio (UP:UC), if proteinuria is deemed significant. March/April 2014 Today s Veterinary Practice 71

ViTal VaccinaTion TaBlE 1. clinical FinDinGS consistent WiTH lyme BoRRElioSiS Positive Antibody Test Result (C6, OspC, OspF) CLINICAL FINDINGS Physical Findings Laboratory Findings ONSET Early Late articular swelling Dehydration Fever Peripheral edema lymphadenomegaly Polydipsia Malaise Polyuria Myalgia oligoarthropathy (nonerosive), with shifting leg lameness neutrophilic inflammation noted on synovial cytology anemia (nonregenerative) azotemia Hypoalbuminemia Proteinuria Thrombocytopenia Progressive renal failure has been documented in < 1% of dogs with positive Lyme borreliosis serology; signs associated with renal failure may appear to be acute, and include proteinuria, hypoalbuminemia, and kidney failure. Rare physical findings associated with early onset include:» circular red rash at site of tick bite; present about 1 week» Myocarditis-associated arrhythmia. With uncomplicated Lyme borreliosis, hematologic and biochemical abnormalities are unlikely. However, seropositive dogs are at risk for co-infection with other vector-borne pathogens and may have underlying laboratory abnormalities (eg, thrombocytopenia, anemia, hypoalbuminemia). Significant laboratory abnormalities, revealing serious underlying renal disease (see Lyme Nephropathy), can exist in the absence of expected physical abnormalities (eg, lameness). LYME NEPHROPATHY lyme nephropathy is a rare, but often fatal, syndrome associated with B burgdorferi infection in dogs. This rapidly progressive renal disease is characterized by glomerulonephritis, tubular necrosis, and lymphocytic plasmacytic interstitial nephritis. 1,2,10 Believed to be an immune-mediated disease, the pathogenesis of lyme nephropathy remains unknown. The most commonly affected breeds include labrador retrievers, golden retrievers, and Shetland sheepdogs; however, any breed or mixed-breed may be affected. a critical factor in diagnosis of lyme nephropathy is proteinuria, and assessing every seropositive patient for proteinuria (including a UP:Uc) is an important component of laboratory evaluation. Studies have shown that approximately 30% of dogs with lyme nephropathy manifest clinical signs of arthritis, and approximately 30% of affected dogs had been vaccinated for lyme borreliosis. 1 TREATMENT Diagnosis of Lyme borreliosis is based on the presence of all 3 following factors: 1. Positive serology results (C6, OspC, or OspF) + 2. Clinical and/or laboratory findings consistent with Lyme borreliosis (Table 1) + 3. A reasonable history of exposure to Ixodes species ticks. Therapy for Patients with:» Positive Serology» Findings Consistent with Lyme Borreliosis» History of Ixodes Species Tick Exposure Treatment with an oral antimicrobial is indicated in any patient meeting the above criteria, and oral doxycycline is the preferred therapeutic approach to Lyme borreliosis (Table 2). Most authors agree that dogs exhibiting lameness and/or myalgia resulting from B burgdorferi infection will rapidly improve within 3 to 5 days. However, due to the current difficulty in obtaining doxycycline and its high cost, 2 other antibiotics may be considered: Cefovecin (Convenia, zoetis.com):<need dose> Minocycline: 12 Minocycline: mg/kg Q 12 mg/kg H or Q 2512 mg/kg H or 25 Q mg/kg 24 H Q 24 H An advantage of using these drugs is that they are effective against other tick-borne agents frequently carried by ticks, and patient co-infection with more than one agent is common, with signs mimicking Lyme borreliosis. The other alternative treatments listed in Table 2 are not effective against these other tick-borne agents. It is important not to discontinue treatment earlier than recommended, even if clinical signs rapidly resolve. Also, although clinical signs may rapidly resolve with treatment, none of the antimicrobials outlined in Table 2 are known to clear B burgdorferi from tissue. Therapy for Patients with:» Positive Serology» No Clinical Signs» No Laboratory Abnormalities Indications for treating the seropositive patient with no clinical signs or laboratory abnormalities are less clear than those for treating patients clearly affected by Lyme disease (see above). While treatment guidelines for healthy but antibody-positive dogs have not been published, anecdotally: Veterinarians in the northeastern U.S. tend to support empirical treatment with doxycycline considered a relatively common approach to these patients In contrast, veterinarians practicing in nonendemic areas of the U.S. tend to avoid treatment unless clinical signs are present at time of testing. 72 Today s Veterinary Practice March/April 2014

ViTal VaccinaTion TaBlE 2. TREaTMEnT WiTH MEDicaTion ANTIMICROBIALS DOSAGE RECOMMENDED TREATMENT PERIOD PREFERRED TREATMENT Doxycycline 10 mg/kg Po Q 24 H 4 6 weeks (1-month minimum) ALTERNATIVE TREATMENTS: Effective Against Other Tick-Borne Agents Cefovecin 12 mg/kg Q 12 H or 25 mg/kg Q 24 H Minocycline ALTERNATIVE TREATMENTS: Ineffective Against Other Tick-Borne Agents Amoxicillin 20 mg/kg Po Q 8 H 1 month (minimum) Azithromycin 25 mg/kg Po Q 24 H 1 month (minimum) Ceftriaxone 25 mg/kg iv Q 24 H 1 month (minimum) Monitoring is often recommended for seropositive, healthy dogs that are (1) receiving antimicrobial therapy or (2) being observed for development of clinical signs because they did not receive treatment. However, difficulties arise because, for these uses: Monitoring is not defined and has no process outlined Intervals for monitoring have not been stipulated Lack of clinical signs makes it difficult to evaluate response to antimicrobial therapy. Response to Therapy. One option for monitoring these dogs is to perform the laboratory-based quantitative C 6 test. In addition to monitoring changes in C 6 following antimicrobial treatment, a quantitative titer can also provide information on re-infection. Dogs with pretreatment quantitative titers 30 U/mL can be monitored for response to treatment by measuring reduction in C6 antibody concentration 6 months LYME BORRELIOSIS IS A DISEASE TO PREVENT NOT TO TREAT The reasons are clear: cost of treatment and post treatment monitoring can be significant for the pet owner. antimicrobial treatment, regardless of the drug used, is not expected to clear bacteria from tissue, and therapy is not entirely free of adverse consequences. Health consequences of long-term infection, particularly dogs subject to re-infection, are unknown. natural immunity to B burgdorferi is short-lived and does not provide significant or sustained protection for pets re-exposed to infected ticks. after treatment. Dogs that experience reductions in antibody 50% have responded to treatment. Observe Nontreated Dogs. Because laboratorybased antibody tests cannot predict clinical disease, conducting routine or quantitative serology is generally not useful in seropositive patients with no clinical signs or laboratory abnormalities. PREVENTION Despite the fact that infection with B burgdorferi does not consistently cause clinical illness, canine Lyme borreliosis is a disease to prevent not to treat. Prevention consists of 3 components: 1. Limit Exposure to Ticks Reducing or eliminating exposure to infected ticks is the core strategy to prevent canine Lyme borreliosis. Even in regions where tick exposure is considered minimal, appropriate administration of tick preventive is critical. 2. Vaccinate At-Risk Dogs In regions In regions of the U.S. of the and U.S. Canada and Canada known known to be endemic to be for endemic ticks infected for ticks with infected B burgdorferi, with B burgdorferi, vaccinate vaccinate dogs these dogs in areas these annually. areas annually. Vaccination Vaccination is not routinely is not routinely recommended recommended for dogs for living dogs in living nonendemic in nonendemic regions regions (eg, Colorado, (eg, Colorado, Utah, Utah, New New Mexico, Mexico, western western Canada). Canada). Instead, appropriate Instead, appropriate use of tick use preventives of tick preventives reasonably reasonably manages any manages exposure any exposure risk. risk. CANINE LYME DISEASE VACCINATION PROTOCOL Initial Administration: Puppies & Adult Dogs conventional vaccination protocol involves administering 2 initial doses, 2 to 4 weeks apart. in puppies, the first dose can be administered at 12 weeks of age; however, in endemic areas, where risk of tick exposure is high, the first dose can be administered as early as 8 weeks of age. 1,11 The second dose is administered 2 to 4 weeks later. Booster Administration: Adult Dogs after the initial 2-dose series, annual boosters are recommended if the risk for exposure is sustained. Some authors recommend an early booster dose administered 6 months following completion of the initial 2-dose series for dogs living in known endemic regions. Dogs Overdue for Vaccination compared to most virus vaccines, the immunologic memory subsequent to lyme disease vaccination is relatively short-lived. Therefore, the initial 2-dose series should be repeated if a dog with reasonable risk for exposure has not received a booster dose in over 2 years. March/April 2014 Today s Veterinary Practice 73

Vital Vaccination LYME DISEASE VACCINE CONTROVERSY The article Vaccinating Dogs Against Lyme Disease: Two Points of View (January/February 2014) addressed 2 different viewpoints regarding controversies surrounding Lyme disease vaccination (available at http://todaysveterinarypractice.com/article.as p?articleid=t1401c06#article). This sidebar addresses 2 common concerns both regarding safety that contribute to the vaccine controversy. 1. Acute-Onset Adverse Reactions Acute-onset adverse reactions (eg, angioedema) tend to occur most often in small breed dogs (< 10 kg body weight) that receive multiple doses of vaccine at the same appointment. 12 For small breed dogs, current vaccine guidelines 11 recommend administering noncore vaccines, such as Lyme disease vaccine, 2 weeks (or longer) after administration of core vaccine(s). This practice may not be feasible, though, for young dogs at high risk for exposure within endemic regions. Whole-cell bacterins may be more likely to cause acute reactions (associated with excipient proteins) compared with the recombinant vaccine. 2,12-14 If young or small breed dogs must be vaccinated, the recombinant Lyme disease vaccine may minimize risk for acute adverse reaction, particularly when other vaccines are administered during the same appointment. 2. Renal Injury Some speculate that Lyme disease vaccination contributes to renal injury (ie, Lyme nephropathy). The reasoning for this concern stems from Lyme nephropathy s association with Lymespecific circulating immune complexes (CICs), and the fact that Lyme disease vaccination can cause a transient increase in CICs. However, to date, a link between vaccination and Lyme nephropathy has not been established, and additional studies are indicated. In addition, a number of points argue against the association between vaccination and renal injury: Hundreds of thousands of doses of Lyme disease vaccine are sold and administered to dogs throughout North America every year, yet cases of Lyme nephropathy are uncommon. 70% of dogs with confirmed Lyme nephropathy had never been vaccinated for Lyme disease. 1 In unvaccinated dogs, the rise in CICs following vaccination is transient (days), yet Lyme nephropathy appears to be a delayed manifestation of B burgdorferi infection. The role of co-infections (Anaplasma species) in the pathogenesis of Lyme nephropathy has been raised. All vaccines immunize by stimulating antibody to the OspA antigen ingested by ticks while they feed (on the dog), binding to spirochetes in tick mid-guts and preventing transmission of B burgdorferi. Currently, two types of Lyme disease vaccine are available: Inactivated (killed) whole-cell bacterins Recombinant, plasmid-derived OspA vaccine. Based on results of in vitro studies, some products (wholecell bacterins) claim provision of expanded protection due to the addition of OspC antigen. However, OspC antibody has not yet demonstrated in vivo protection against infection when independent from the OspA antibody. 3. Avoid At-Risk Regions Encourage owners to avoid traveling with their dogs to regions inhabited by the Ixodes tick. However, if dogs must travel to, or reside within or in the periphery of, Lyme endemic regions, especially during period of increased tick activity (spring/summer/fall) highly recommend application of a tick preventive as well as vaccination. SUMMARY Serologic testing for antibody to B burgdorferi is an established, valuable tool for identification of infected dogs. Routine, or surveillance, testing of healthy dogs living in areas of the U.S. and Canada adjacent to known endemic areas are key in assessment of emerging infection risk. Canine Lyme borreliosis is a disease to prevent not treat. Implementation of preventive measures in dogs considered at risk for exposure to Ixodes species is justified by the inability of:»» Serologic tests to predict clinical outcomes in infected dogs»» Antimicrobial treatment to clear B burgdorferi from the tissues of infected dogs. Ideally, preventive measures include early and compliant vaccination and year-round tick control for all residing in endemic regions. Serologic surveillance testing of healthy dogs, combined with vaccination and tick control, offer the most comprehensive approach to reduce risk for infection and disease caused by B burgdorferi. CDC = Centers for Disease Control and Prevention; CIC = circulating immune complexes; IFA = immunofluorescence assay; UP:UC = protein:creatinine ratio References 1. Littman MP, Goldstein RE, Labato MA, et al. ACVIM small animal consensus statement on Lyme disease in dogs: Diagnosis, treatment, and prevention. J Vet Intern Med 2006; 20(2):422-434. 2. Greene CE, Straubinger RK, Levy SA. Borreliosis. In CE Greene (ed): Infectious Diseases of the Dog and Cat, 4th ed. Philadelphia: Elsevier Saunders, 2012, pp 447-465. 3. Available at www.cdc.gov/lyme/stats/humancases.html. 4. Available at www.capcvet.org; search Parasite Prevalence Maps. 5. Ogden NH, Maarouf A, Barker IK, et al. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 2006; 36(1):63-70. 6. Lindgren E, Jaenson TGT. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology, ecology and adaptation measures. World Health Organization Europe, 2006; available at www.euro.who.int/ data/ assets/pdf_file/0006/96819/e89522.pdf. 7. Liang FT, Jacobson RH, Straubinger RK, et al. Characterization of a Borrelia burgdorferi VlsE invariable region useful in canine Lyme disease serodiagnosis by enzyme-linked immunosorbent assay. J Clin Microbiol 74 Today s Veterinary Practice March/April 2014

Vital Vaccination 2000; 38(11):4160-4166. 8. Levy SA, O Conner TP, Hanscom JL, et al. Quantitative measurement of C6 antibody following antibiotic treatment of Borrelia burgdorferi antibodypositive non-clinical dogs. Clin Vaccine Immunol 2008; 15(1): 115-119. 9. Philipp MT, Bowers LC, Fawcett PT, et al. Antibody response to IR6, a conserved immunodominant region of the VlsE lipoprotein, wanes rapidly after antibiotic treatment of Borrelia burgdorferi infection in experimental animals and in humans. J Infect Dis 2001; 184(7):870-878. 10. Grauer GF, Burgess EC, Cooley AJ, Hagee, JH. Renal lesions associated with Borrelia burgdorferi infection in a dog. JAVMA 1988; 193(2):237-239. 11. Welborn LV, DeVries JG, Ford RB, et al. 2011 AAHA canine vaccination guidelines. JAAHA 2011; 47:1-42; available at www.jaaha.org. 12. Moore GE, Guptill LF, Ward MP, et al. Adverse events diagnosed within three days of vaccine administration in dogs. JAVMA 2005; 227(7):1102-1108. 13. Appel M, Jacobson R. CVT update: Canine Lyme disease. Kirk s Current Veterinary Therapy XII: Small Animal Practice. Philadelphia: WB Saunders, 1995, pp 303-308. 14. Littman MP. Lyme nephritis. J Vet Emerg Crit Care 2013; 23(2):163-173. Richard B. Ford, DVM, MS, Diplomate ACVIM & ACVPM (Hon), is Emeritus Professor of Medicine at North Carolina State University s College of Veterinary Medicine. He is a past president of the NAVC Conference and is a member of the scientific program committee. He serves on the AAHA Canine Vaccination Task Force and AAFP Feline Vaccination Advisory Panel. He received his DVM from Ohio State University and completed an internal medicine residency at Michigan State University. Andrew Eschner, DVM, is the Senior Technical Services veterinarian for Merial and serves the New England area. Dr. Eschner works regularly with the field sales group and customers, interfaces with marketing, and consults with practicing veterinarians and institutions of higher learning. He has worked as a veterinarian in small animal practice as well as authored and co-author many publications on canine Lyme borreliosis. Dr. Eschner received his DVM from Cornell University. March/April 2014 Today s Veterinary Practice 75