Efficacy of sarolaner (Simparic ) against induced infestations of Amblyomma cajennense on dogs

Similar documents
Comparative speed of kill of sarolaner (Simparica ) and afoxolaner (NexGard ) against induced infestations of Rhipicephalus sanguineus s.l.

Doug Carithers 1 William Russell Everett 2 Sheila Gross 3 Jordan Crawford 1

Michael W Dryden DVM, PhD a Vicki Smith RVT a Bruce Kunkle, DVM, PhD b Doug Carithers DVM b

Nadja Rohdich *, Rainer KA Roepke and Eva Zschiesche

Repellency and acaricidal efficacy of a new combination of fipronil and permethrin against Ixodes ricinus and Rhipicephalus

A randomized, blinded, controlled USA field study to assess the use of fluralaner topical solution in controlling canine flea infestations

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

NEW CLAIM: Simparica: Key Benefits. (sarolaner) chewable tablets ROCK-SOLID FLEA AND TICK PROTECTION FOR DOGS. The only oral product licensed to treat

Incredible. xng237353_techdetailer4thtick9x12_rsg.indd 1

A single topical fluralaner application to cats and to dogs controls fleas for 12 weeks in a simulated home environment

Doug Carithers 1 Jordan Crawford 1 William Russell Everett 2 Sheila Gross 3

Heike Williams 1*, Janina Demeler 2, Janina Taenzler 1, Rainer K.A. Roepke 1, Eva Zschiesche 1 and Anja R. Heckeroth 1

COMMITTEE FOR MEDICINAL PRODUCTS FOR VETERINARY USE (CVMP)

Lénaïg Halos a * Josephus Fourie b Ina Bester b Matthias, Pollmeier a Frédéric Beugnet a

Assessment of the speed of flea kill of lotilaner (Credelio ) throughout the month following oral administration to dogs

PETCARE IMMUNIZATION SUPPORT GUARANTEE

Rickettsial infections of dogs, horses and ticks in Juiz de Fora, southeastern Brazil, and isolation of Rickettsia rickettsii

Ticks Ticks: what you don't know

Comparative Curative Efficacy of Two Spot On Formulations, Fipronil/Amitraz/ (S)-Methoprene and Imidacloprid/ Permethrin, on Two Tick Species in Dogs

Journal of Medical Entomology, Lanham, v. 45, n. 6, p ,

SATISFACTION GUARANTEED.

Efficacy of fluralaner flavored chews (Bravecto ) administered to dogs against the adult cat flea,

Topics. Ticks on dogs in North America. Ticks and tick-borne diseases: emerging problems? Andrew S. Peregrine

Wes Watson and Charles Apperson

UNDERSTANDING THE TRANSMISSION OF TICK-BORNE PATHOGENS WITH PUBLIC HEALTH IMPLICATIONS

Ecology of RMSF on Arizona Tribal Lands

We re resetting the clock on flea and tick protection.

BRAVECTO HOW TO GET THE BEST RESULTS FOR YOUR DOG

THE ONLY FLEA AND TICK PROTECTION THAT LASTS UP TO 12 WEEKS * WITH A SINGLE CHEW

Systemically and cutaneously distributed ectoparasiticides: a review of the efficacy against ticks and fleas on dogs

Geographic and Seasonal Characterization of Tick Populations in Maryland. Lauren DiMiceli, MSPH, MT(ASCP)

Fluralaner, a novel isoxazoline, prevents flea (Ctenocephalides felis) reproduction in vitro and in a simulated home environment

Ticks (Acari: Ixodidae) associated with domestic dogs in Franca region, São Paulo, Brazil

The Essentials of Ticks and Tick-borne Diseases

A randomized, blinded, controlled USA field study to assess the use of fluralaner tablets in controlling canine flea infestations

Topical or oral fluralaner efficacy against flea (Ctenocephalides felis) transmission of Dipylidium caninum infection to dogs

Colorado s Tickled Pink Campaign

Evaluation of the Speed of Kill of Fleas and Ticks with Frontline Top Spot in Dogs*

stronghold PLUS ROCK-SOLID FLEA AND TICK PROTECTION

Revista Brasileira de Parasitologia Veterinária ISSN: X Colégio Brasileiro de Parasitologia Veterinária.

The latest research on vector-borne diseases in dogs. A roundtable discussion

EXPECT THE EXTRAORDINARY 1 DOSE. 12 EXTRAORDINARY WEEKS OF FLEA AND TICK PROTECTION.

On People. On Pets In the Yard

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

discover the nextgeneration of flea & tick protection NEW TASTY CHEW ONE CHEW ONCE A MONTH

sanguineus, in a population of

About Ticks and Lyme Disease

THE POWER OF 3 IN ACTION READY TO SHINE. The Flea and Tick Control with the POWER OF 3.

Vector-Borne Disease Status and Trends

EXHIBIT E. Minimizing tick bite exposure: tick biology, management and personal protection

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

b Bayer Animal Health

Technical Monograph A SANOFI COMPANY

Efficacy of fluralaner against Otodectes cynotis infestations in dogs and cats

Efficacy of Moxidectin 6-Month Injectable and Milbemycin Oxime/Lufenuron Tablets Against Naturally Acquired Toxocara canis Infections in Dogs*

Efficacy of selamectin, spinosad, and spinosad/milbemycin oxime against the KS1 Ctenocephalides felis flea strain infesting dogs

In-home assessment of either topical fluralaner or topical selamectin for flea control in naturally infested cats in West Central Florida, USA

VICH Topic GL20 EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR FELINE

soft ticks hard ticks

Evaluation of Three Commercial Tick Removal Tools

Product Performance Test Guidelines OPPTS Treatments to Control Pests of Humans and Pets

EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR PORCINES

Fall 2017 Tick-Borne Disease Lab and DOD Human Tick Test Kit Program Update

Ecology of Rickettsia in South America

Abstract. Josephus J Fourie1*, Ivan G Horak1,2, Christa de Vos1, Katrin Deuster3, Bettina Schunack3. *

Rickettsial Infection in Animals and Brazilian Spotted Fever Endemicity

VICH Topic GL19 EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR CANINES

Efficacy of oral moxidectin against susceptible and resistant isolates of Dirofilaria immitis in dogs

742 Vol. 25, No. 10 October North Carolina State University Raleigh, North Carolina L. Kidd, DVM, DACVIM E. B. Breitschwerdt, DVM, DACVIM

Elizabeth Gleim, PhD. North Atlantic Fire Science Exchange April 2018

Learning objectives. Case: tick-borne disease. Case: tick-borne disease. Ticks. Tick life cycle 9/25/2017

UPDATE ON THE DIAGNOSIS AND MANAGEMENT OF DEMODICOSIS

Daniela Karadzovska 1, Kimberly Chappell 2, Shane Coble 2, Martin Murphy 3, Daniela Cavalleri 3, Scott Wiseman 4, Jason Drake 2* and Steve Nanchen 3

McKeever Dermatology Clinics

Rickettsia infection in five areas of the state of São Paulo, Brazil

Characterization and reproductive control program of pet population in São Paulo, Brazil.

Comparison of Lufenuron and Nitenpyram Versus Imidacloprid for Integrated Flea Control*

A field trial of spinosad for the treatment and prevention of flea infestation in shepherd dogs living in close proximity to flea-infested sheep

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Suggested vector-borne disease screening guidelines

Kathryn Rook, VMD DACVD Clinical Assistant Professor of Dermatology University of Pennsylvania, School of Veterinary Medicine.

Dermacentor tick species are present worldwide. Comparative acaricidal efficacy of the topically applied combinations INTRODUCTION

EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR CANINES

Research Article Efficacy of a Novel Topical Combination of Fipronil 9.8% and (S)-Methoprene 8.8% against Ticks and Fleas in Naturally Infested Dogs

Spot-on for Dogs and Cats

F. A. Nieri-Bastos, 1 M. P. J. Szabó, 2 R. C. Pacheco, 3 J. F. Soares, 1 H. S. Soares, 1 J. Moraes-Filho, 1 R. A. Dias, 1 and M. B.

Midsouth Entomologist 2: ISSN:

Texas Center Research Fellows Grant Program

Comparative Evaluation of the Speed of Flea Kill of Imidacloprid and Selamectin on Dogs*

Name: David L. Beck, Assistant Professor of Microbiology, Department of Biology and Chemistry, COAS.

Introduction. Ticks and Tick-Borne Diseases. Emerging diseases. Tick Biology and Tick-borne Diseases: Overview and Trends

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Ticks and Tick-borne Diseases: More than just Lyme

TICKS AND TICKBORNE DISEASES. Presented by Nicole Chinnici, MS, C.W.F.S East Stroudsburg University Northeast Wildlife DNA Laboratory

Clinical Protocol for Ticks

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Manolis K. Chatzis 1, Dimitris Psemmas 1, Elias Papadopoulos 2, Christelle Navarro 3 and Manolis N. Saridomichelakis 1*

Lyme Disease (Borrelia burgdorferi)

Transcription:

Scott et al. Parasites & Vectors (2017) 10:390 DOI 10.1186/s13071-017-2324-0 RESEARCH Open Access Efficacy of sarolaner (Simparic ) against induced infestations of Amblyomma cajennense on dogs Fabio Scott 1, Lilian Franz 2*, Diefrey Ribeiro Campos 1, Thaís Ribeiro Correia Azevedo 1, Daise Cunha 2, Robert H. Six 3, Steven Maeder 3 and Travis Cree 3 Abstract Background: Amblyomma cajennense is the main vector of Rickettsia rickettsii which causes Brazilian spotted fever. This adult tick preferably infests horses and capybaras, but has low host specificity during its immature stages, thus posing a threat to humans and dogs. In this study, the efficacy of sarolaner (Simparic /Simparica, Zoetis) when administered once orally to dogs at 2 mg/kg was evaluated against induced infestations of A. cajennense nymphs for up to 35 days after treatment. Methods: Based on pretreatment tick counts, 20 dogs were randomly allocated to treatment with sarolaner (Simparic ) dosed at 2 mg/kg of body weight or a placebo on Day 0 of the study. Artificial infestations were performed using laboratory raised A. cajennense nymphs on study days -2, 5, 12, 19, 26 and 33. Efficacy was determined at 48 h post-treatment or post-infestation at each time point relative to the counts for dogs that received placebo. Results: There were no adverse reactions to treatment. A single dose of sarolaner (Simparic ) provided 100% efficacy on study days 2, 7 and 14; and 99.6% on days 21, 28 and 35. Geometric mean live tick counts for sarolaner were significantly lower than those for placebo on all days (P < 0.0001). Conclusions: Under the conditions of the present study, sarolaner (Simparic ) administered once orally at 2 mg/kg provided 100% efficacy against existing infestations and 99.6% efficacy within 48 h against weekly challenges of A. cajennense for at least 35 days after treatment. Keywords: Amblyomma cajennense, Brazilian spotted fever, Dog, Efficacy, Isoxazoline, Oral, Rickettsia rickettsii, Sarolaner, Simparic, Simparica, Tick Background Amblyomma cajennense or the Cayenne tick is a threehost ixodid tick species of low host specificity during its immature stages. This species is the main vector of Rickettsia rickettsii which causes Brazilian spotted fever, also known as Rocky Mountain spotted fever (RMSF) [1]. Other tick species, such as Rhipicephalus sanguineus (sensu lato) [2] and Amblyomma aureolatum [3], have been identified as potentially involved in the transmission cycle, although to a lesser extent. The agent of * Correspondence: lilian.franz@zoetis.com 2 Zoetis, Veterinary Medicine Research and Development, Rua Luiz Fernando Rodriguez, Campinas, SP 1701, Brazil Full list of author information is available at the end of the article RMSF, R. rickettsii, is highly virulent to both humans and dogs [4]. Several cases of human infections have been preceded by RMSF in dogs in the United States [4 6], while four human deaths were reported in the State of Espírito Santo, Brazil in 1991 [7]. Serology of healthy dogs in Brazil has indicated past infection by R. rickettsii [3, 8] and has helped identify several endemic areas in the country. The estimated prevalence of antibodies against R. rickettsii in dogs ranged from 4.1 to 64% [9] and was demonstrated to increase with age [10]. Low specificity of the serological test hinders a more accurate epidemiological estimate. Some of the endemic areas in Brazil, from which the R. rickettsii has been isolated from the A. cajennense tick, The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Scott et al. Parasites & Vectors (2017) 10:390 Page 2 of 5 include the states of Minas Gerais [1], São Paulo [11], Bahia, Goias, Rio Grande do Sul [12] and Espírito Santo [7]. Dogs infected with R. rickettsii may show nonspecific clinical signs including fever, depression, anorexia, ocular lesions, hemorrhagic petechiae, anemia and thrombocytopenia [13]. All of these signs are also present in canine monocytic ehrlichiosis (CME) caused by another agent (Ehrlichia canis). Therefore, many clinical cases of Brazilian spotted fever are potentially being misdiagnosed as CME [4]. The adult stage of A. cajennense preferably feeds on horses and capybaras (Hydrochoerus hydrochaeris) [14]. With rapid urbanization these wild animals are seen in several non-rural settings, adapting easily and impacting the biology and ecology of the arthropod vectors, increasing the risk of exposure of dogs to vector-borne pathogens [15]. The life-cycle of A. cajennense lasts a year with population peaks in distinct seasons in Brazil with larvae most commonly found from March to July. The nymphal stage is found frequently during the months of July to October while adult forms are more common during the warmer months between September and March [16]. Larvae of A. cajennense can fast for 6 months in the environment and when attached to a host they feed for about 5 days, detach to search for shelters on the ground to then become nymphs. This can take 25 days, but might last as long as 1 year. After finding its second host, this stage feeds for 5 to 7 days and then detaches to undergo its second molt. After another 25 days, a young adult emerges ready to feed and breed on the third host. The adult stays on the host for about 10 days, and when the engorged female detaches to lay 5000 to 8000 eggs and start a new generation [17]. The transmission of R. rickettsii can be transovarian and transstadial. This allows the tick to remain infected with the bacterium for its whole life and to transfer it to the next generation [1]. The effective control of A. cajennense in dogs is vital due to several aspects of its biological cycle and its role in life-threatening diseases such as Brazilian spotted fever. Most tick control products for dogs are available as topical formulations, either as collars, shampoos, immersion baths or spot-on applications. Recently, some oral alternatives have also become available which can add convenience for the dog owner, leading to a higher compliance with administration. Sarolaner is an acaricide and insecticide belonging to the novel isoxazoline group, which is available in a chewable tablet formulation (Simparic, São Paulo, Brazil). It inhibits the function of the neurotransmitter gamma aminobutyric acid (GABA) receptor and glutamate receptor, acting in the neuromuscular junction in ticks and fleas, and thus, providing excellent control of fleas and ticks for at least 1 month after a single oral dose [18]. Simparic has proven to be effective against a wide range of ticks around the world [18 23]. No studies have previously been conducted to evaluate the efficacy of sarolaner against infestations of A. cajannense on dogs. The objective of this study was to evaluate the efficacy of sarolaner against existing A. cajannense infestations and weekly re-infestations for a period of 5 weeks following treatment with a single dose. Methods The study was a masked, negative controlled, randomized, laboratory comparative efficacy study conducted at the Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV) of the Federal Rural University of Rio de Janeiro, Brazil. Study procedures were in accordance with the World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines for evaluating the efficacy of parasiticides for the treatment, prevention and control of flea and tick infestation on dogs and cats [24], and complied with the principles of Good Clinical Practices [25]. Masking of the study was assured through the separation of functions. All personnel conducting observations or animal care or performing infestations and counts were masked to treatment allocation. Animals Twenty beagle dogs (10 males and 10 females) from 10 months to 7 years of age and weighing from 8 to 15 kg were included in the study. Each dog was identified with an electronic transponder and had undergone a minimum of 60 days washout period to ensure that no residual ectoparasiticide efficacy remained from any previous treatment. Dogs were housed in individual outdoor kennels with cement walls and flooring that conformed to accepted animal welfare guidelines and ensured no direct contact between dogs. Dogs were acclimatized to these conditions for at least 14 days prior to treatment. Dogs were fed an appropriate maintenance ration of a commercial dry canine feed for the duration of the study. Water was available ad libitum. All dogs were given a physical exam to ensure that they were in good health at enrollment and suitable for inclusion in the study. General health observations were performed at least once daily throughout the study. Design The study followed a randomized complete block design. Twenty dogs were ranked according to pre-treatment tick counts on Day -5 into blocks of 2, and within each block dogs were randomly allocated to treatment with either placebo or sarolaner, resulting in 10 dogs in each treatment group. Dogs were infested with ticks 2 days prior to treatment and then weekly on days 5, 12, 19, 26

Scott et al. Parasites & Vectors (2017) 10:390 Page 3 of 5 and 33. Tick counts were conducted 48 h after treatment or re-infestation by counting live ticks present on Days 2, 7, 14, 21, 28 and 35. Treatment Body weights taken on Day -2 were used to determine the appropriate dose to be administered. On Day 0, dogs allocated to T01 received placebo, while dogs of treatment group T02 received sarolaner. Each dose was calculated to provide the recommended dose of 2 mg/kg (range 2 to 4 mg/kg). Placebo and sarolaner tablet presentations were similar to maintain blinding. All doses were administered by hand pilling to ensure accurate and complete dosing. Each dog was observed for several minutes after dosing for evidence that the dose was swallowed, and for general health at 1, 3, 6 and 24 h after treatment administration. Tick infestation and assessment Adult engorged females of A. cajennense were collected directly from pastured horses in Rio de Janeiro and were raised in the laboratory to reach adequate numbers of nymphs for artificial infestation throughout the study. Infestations were performed using the nymphal stage, because of its low host-specificity. Each dog was infested with approximately 200 A. cajennense nymphs. Dogs were restrained for about 5 min while the contents of the vial containing the live non-fed nymphs were deposited on their dorsum. For host suitability and allocation of the dogs into the study group this procedure was performed on Day -7 and tick counts conducted on Day -5. To assess efficacy against existing infestations, dogs were challenged on Day -2 (2 days before treatment). Subsequent weekly infestations occurred on study Days 5, 12, 19, 26 and 33. Tick counts were conducted 48 h after treatment and 48 h after each infestation (i.e. on study days 7, 14, 21, 28 and 35). For tick removal and counts, dogs were systematically inspected so that the whole body surface was examined by hand and with the aid of a fine toothed comb. Each tick was manually removed and counted. If no ticks were found, systematic searching continued for an additional 5 min. Statistical analysis The individual dog was the experimental unit and the primary endpoint was the live tick count. Data for posttreatment live (free plus attached) tick counts were summarized with arithmetic (AM) and geometric (GM) means by treatment group and time point. Tick counts were transformed by the log e (count + 1) transformation prior to analysis in order to stabilize the variance and normalize the data. Using the PROC MIXED procedure (SAS 9.3, Cary NC), transformed counts were analyzed using a mixed linear model. The fixed effects were treatment, time point and the interaction between time point and treatment by time point. The random effects included block, block by treatment interaction and error. Testing was two-sided at the significance level α = 0.05. The assessment of efficacy for live ticks was based on the percent reduction in the arithmetic and geometric mean live tick counts relative to placebo, as suggested by the most recent guidelines of the WAAVP for systemic acaricides [24], and was calculated using Abbott s formula: %reduction ¼ 100 ½mean count ðplaceboþ mean count ðtreatedþ =mean count ðplaceboþ Results and discussion There were no treatment-related adverse events during the study. Placebo-treated dogs maintained adequate tick infestations throughout the study with tick counts ranging from 24 to 83 (Table 1). For the sarolaner treated group, no live ticks were found on any dog on Days 2, 7 and 14. On Day 21, one tick was found on one dog, on Day 28, two of the 10 dogs had one tick each, and on Day 35 three of the ten dogs had one tick each. Therefore, the percent reduction in arithmetic mean live tick count compared to placebo Table 1 Geometric (arithmetic) mean live A. cajennense counts and ranges for placebo and treated dogs and percent efficacy relative to placebo for dogs treated once orally with sarolaner chewable tables at 2 mg/kg on day 0 for evaluations performed at 48 h after treatment and post-treatment re-infestations Placebo Sarolaner % Efficacy Day Mean Range Dogs with ticks Mean Range Dogs with ticks 48 h post-treatment 2 47.0 (49.2) 27 73 0/10 0.0 a (0.0) 0 0 0/10 100 48 h post-infestation 7 50.5 (51.8) 32 68 0/10 0.0 a (0.0) 0 0 0/10 100 14 48.2 (50.6) 28 73 0/10 0.0 a (0.0) 0 0 0/10 100 21 54.0 (56.2) 34 83 0/10 0.1 a (0.1) 0 1 1/10 9.99 28 53.2 (56.4) 27 80 0/10 0.1 a (0.2) 0 1 2/10 7.99 35 51.5 (54.8) 24 78 0/10 0.2 a (0.3) 0 1 3/10 6.99 a Geometric mean live tick count significantly lower than placebo (P < 0.0001)

Scott et al. Parasites & Vectors (2017) 10:390 Page 4 of 5 was 100% on Days 2, 7 and 14; 99.9% on Day 21; 99.7% on Day 28; and 99.6% on Day 35. Geometric mean counts for dogs in the sarolaner group were significantly lower (t (14.9) = 38.71, P<0.0001) than the placebo group at all the time points (Table 1). To our knowledge this the first reported study evaluating efficacy of an oral acaricidal product against A. cajennense on dogs. The efficacy observed against A. cajennense in this study, 100% within 48 h of treatment of an existing infestation, and 99.6% within 48 h of weekly re-infestation for 35 days, is comparable with the efficacies reported for sarolaner against other tick species commonly found on dogs. Six et al. [21] showed that sarolaner provided 99.6% efficacy within 48 h of treatment and 99.6% efficacy within 48 h after weekly re-infestation for 35 days against Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, Ixodes scapularis and Rhipicephalus sanguineus. Similarly, Geurden et al. [23] showed that sarolaner provided 99.7% efficacy within 48 h of treatment and 97.5% efficacy within 48 h after weekly re-infestation for 35 days against Dermacentor reticulaus, Ixodes hexagonus, I. ricinus and R. sanguineus. The present study evaluated efficacy against nymphal ticks, as that is the stage of A. cajennense most commonly infesting dogs. The studies reported by Six et al. [18 22] and Geurden et al. [22, 23] evaluated efficacy against adult ticks. It is interesting to note that the efficacy of sarolaner demonstrated against adult ticks was similar to that observed against nymphal A. cajennense, given that the immature stages are generally considered to be more susceptible than adults [26]. An initial attachment and feeding period of at least 24 to 48 h is required before transmission of many tick-borne pathogens can occur [27, 28], and if ticks are killed within that time, transmission may be prevented [29]. Pathogen transmission times reported from studies that have specifically evaluated R. rickettsii transmission from tick vectors to mammalian hosts vary considerably [30]. The variation in transmission times reported in these studies is most likely due to the variability in specific study conditions, such as the number of infected ticks applied, rate of infection in applied ticks, and the previous feeding status of ticks. However, Hayes et al. [31] showed that D. andersonii infected with R. rickettsii required warming at elevated temperatures (37 C) for 24 to 48 h, or blood-feeding of greater than 10 h for the R. rickettsii to become virulent. Although specific pathogen transmission model studies would be needed for confirmation, existing data seem to support that killing A. cajennense within 48 h should reduce the risk of R. rickettsii transmission to dogs. Conclusions This study confirms the acaricidal efficacy of sarolaner (Simparic ) against an existing A. cajennense infestation after a single oral dose of 2 mg/kg and the sustained control for up to 35 days post-treatment. The convenient chewable oral formulation offers a valuable tool for the treatment of tick infestations and potentially for the prevention of tick-borne diseases in dogs. Abbreviations AM: Arithmetic mean; CME: Canine monocytic ehrlichiosis; GABA: Gamma aminobutyric acid; GM: Geometric mean; RMSF: Rocky Mountain spotted fever Acknowledgements The authors would like to thank Fundação de Apoio a Pesquisa Científica e Tecnológica da Universidade Federal Rural do Rio de Janeiro (UFRRJ), CNPq and CAPES for providing funds to support the Departamento de Parasitologia Animal do Instituto de Veterinária (DPA-IV) da UFRRJ. Funding This study was funded by Zoetis, VMRD- Brazil. Availability of data and materials The dataset supporting the conclusions of this article is included within the article. Authors contributions LF, DC, RHS and SM developed the study protocol, data interpretation and writing this paper. TC was the biometrician responsible for the study design and statistical analysis. FS was the study investigator. DRC and TRCA were part of the investigators team and were the responsible veterinarian for the conduction of the study. All authors read and approved the final manuscript. Ethics approval The protocol was reviewed and approved by the Universidade Federal Rural do Rio de Janeiro Institutional Animal Care and Use Committee prior to implementation. Consent for publication Not applicable. Competing interests This study was funded by Zoetis, VMRD -Brazil. LF, RHS and TC are current employees of Zoetis. DC is a contractor employee of Zoetis. FS was an investigator contracted for this study. DRC and TRCA are part of the investigators team and were the responsible veterinarians for the conduction of the study. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Programa de Pós-graduação em Ciências Veterinárias do Instituto de Veterinária da Universidade Federal Rural do Rio de Janeiro, DPA-IV-UFRRJ Br 467, Km 7, Seropédica, Rio de Janeiro, Brazil. 2 Zoetis, Veterinary Medicine Research and Development, Rua Luiz Fernando Rodriguez, Campinas, SP 1701, Brazil. 3 Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007, USA. Received: 24 March 2017 Accepted: 4 August 2017 References 1. Guedes E, Leite RC, Prata MC, Pacheco RC, Walker DH, Labruna MB. Detection of Rickettsia rickettsii in the tick Amblyomma cajennense in a new Brazilian spotted fever-endemic area in the state of Minas Gerais. Mem Inst Oswaldo Cruz. 2005;100(8):841 5.

Scott et al. Parasites & Vectors (2017) 10:390 Page 5 of 5 2. Dantas-Torres F. Rocky Mountain spotted fever. Lancet Infect Dis. 2007;7(11): 724 32. 3. Pinter A, Labruna MB. Isolation of Rickettsia rickettsii and Rickettsia bellii in cell culture from the tick Amblyomma aureolatum in Brazil. Ann NY Acad Sci. 2006;1078:523 9. 4. Labruna MB, Kamakura O, Moraes-Filho J, Horta MC, Pacheco RC. Rocky Mountain spotted fever in dogs, Brazil. Emerg Infect Dis. 2009;15(3):458 60. 5. Paddock CD, Brenner O, Vaid C, Boyd DB, Berg JM, Joseph RJ, et al. Short report: concurrent Rocky Mountain spotted fever in a dog and its owner. Am J Trop Med Hyg. 2002;66(2):197 9. 6. Elchos BN, Goddard J. Implications of presumptive fatal Rocky Mountain spotted fever in two dogs and their owner. J Am Vet Med Assoc. 2003; 223(10):1450. -1452, 1433 7. Sexton DJ, Muniz M, Corey GR, Breitschwerdt EB, Hegarty BC, Dumler S, et al. Brazilian spotted fever in Espirito Santo, Brazil: description of a focus of infection in a new endemic region. Am J Trop Med Hyg. 1993;49(2):222 6. 8. Horta MC, Labruna MB, Pinter A, Linardi PM, Schumaker TT. Rickettsia infection in five areas of the state of Sao Paulo, Brazil. Mem Inst Oswaldo Cruz. 2007;102(7):793 801. 9. Dantas-Torres F. Canine vector-borne diseases in Brazil. Parasit Vectors. 2008; 1(1):25. 10. Pinter A, Horta MC, Pacheco RC, Moraes-Filho J, Labruna MB. Serosurvey of Rickettsia spp. in dogs and humans from an endemic area for Brazilian spotted fever in the state of Sao Paulo, Brazil. Cad Saude Publica. 2008;24(2): 247 52. 11. de Lemos ER, Alvarenga FB, Cintra ML, Ramos MC, Paddock CD, Ferebee TL, et al. Spotted fever in Brazil: a seroepidemiological study and description of clinical cases in an endemic area in the state of Sao Paulo. Am J Trop Med Hyg. 2001;65(4):329 34. 12. Oliveira PR. Biologia e controle de Amblyomma cajennense. In: XIII Congresso Brasileiro de Parasitologia Veterinária & I Simpósio Latino-Americano de Ricketisioses; Ouro Preto. Rev Bras Parasitol Vet. 2004;13:118 22. 13. Silva FF, Dutra LH, Biondo AW, Molento MB. Brazilian spotted fever in dogs. Semin-Cienc Agrar. 2011;32(1):16. 14. Barci LAG: Febre maculosa brasileira, vol. 2016. Secretaria de Agricultura e Abastecimento. Instituto Biológico; 2005. http://www.biologico.agricultura. sp.gov.br/artigos_ok.php?id_artigo=37. Accessed 17 May 2017. 15. Otranto D, Dantas-Torres F, Breitschwerdt EB. Managing canine vectorborne diseases of zoonotic concern: part one. Trends Parasitol. 2009;25(4): 157 63. 16. Labruna MB, Kasai N, Ferreira F, Faccini JL, Gennari SM. Seasonal dynamics of ticks (Acari: Ixodidae) on horses in the state of Sao Paulo, Brazil. Vet Parasitol. 2002;105(1):65 77. 17. Leite RCO, Lopes PR, Freitas CMV. Alguns aspectos epidemiológicos das infestações por Amblyomma cajennense: uma proposta de controle estratégico. vol. 2. São Paulo: Colina. 1997: 9 14. 18. McTier TL, Six RH, Fourie JJ, Pullins A, Hedges L, Mahabir SP, Myers MR. Determination of the effective dose of a novel oral formulation of sarolaner (Simparica) for the treatment and month-long control of fleas and ticks on dogs. Vet Parasitol. 2016;222:12 7. 19. Six RH, Young DR, Myers MR, Mahabir SP. Comparative speed of kill of sarolaner (Simparica Chewables) and fluralaner (Bravecto ) against induced infestations of Amblyomma americanum on dogs. Parasit Vectors. 2016;9(1):399. 20. Six RH, Geurden T, Carter L, Everett WR, McLoughlin A, Mahabir SP, et al. Evaluation of the speed of kill of sarolaner (Simparica) against induced infestations of three species of ticks (Amblyomma maculatum, Ixodes scapularis, Ixodes ricinus) on dogs. Vet Parasitol. 2016;222:37 42. 21. Six RH, Everett WR, Young DR, Carter L, Mahabir SP, Honsberger NA, et al. Efficacy of a novel oral formulation of sarolaner (Simparica) against five common tick species infesting dogs in the United States. Vet Parasitol. 2016;222:28 32. 22. Becskei C, Geurden T, Liebenberg J, Cuppens O, Mahabir SP, Six RH. Comparative speed of kill of oral treatments with Simparica (sarolaner) and Bravecto (fluralaner) against induced infestations of Rhipicephalus sanguineus on dogs. Parasit Vectors. 2016;9:103. 23. Geurden T, Becskei C, Grace S, Strube C, Doherty P, Liebenberg J, et al. Efficacy of a novel oral formulation of sarolaner (Simparica) against four common tick species infesting dogs in Europe. Vet Parasitol. 2016;222:33 6. 24. Marchiondo AA, Holdsworth PA, Fourie LJ, Rugg D, Hellmann K, Snyder DE, et al. World Association for the Advancement of veterinary Parasitology (W. A.A.V.P.) second edition: guidelines for evaluating the efficacy of parasiticides for the treatment, prevention and control of flea and tick infestations on dogs and cats. Vet Parasitol. 2013;194(1):84 97. 25. EMEA. Good clinical practices. VICH GL9. EMEA: London; 2000. 26. Williams H, Zoller H, Rainer, Roepke KA, Zschiesche E, Heckeroth AR. Fluralaner activity against life stages of ticks using Rhipicephalus sanguineus and Ornithodoros moubata in in vitro contact and feeding assays. Parasit Vectors. 2015;8:90. 27. Little SE. Changing paradigms in understanding transmission of canine tickborne diseases: the role of interrupted feeding and intrastadial transmission. In: 2nd Canine Vector-Borne Disease (CVBD) Symposium. Mezara del Vallo, Sicily, Italy. 2007; pp. 30 4. http://www.cvbd.org/fileadmin/media/cvbd/ Proceedings_CVBD_2007_FINAL23042007.pdf. 28. Salinas LJ, Greenfield RA, Little SE, Voskuhl GW. Tick-borne infections in the southern United States. Am J Med Sci. 2010;340:194 201. 29. Wengenmayer C, Williams H, Zschiesche E, Moritz A, Langenstein J, Roepke RK, Heckeroth AR. The speed of kill of fluralaner (Bravecto ) against Ixodes ricinus ticks on dogs. Parasit Vectors. 2014;7:525 9. 30. Richards SL, Langley R, Apperson CS, Watson E. Do tick attachment times vary between different tick-pathogen systems? Environments. 2017;4:37. 31. Hayes SF, Burgdorfer W. Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis. Infect Immun. 1982;37-2:779 85. Submit your next manuscript to BioMed Central and we will help you at every step: We accept pre-submission inquiries Our selector tool helps you to find the most relevant journal We provide round the clock customer support Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit