Design of 64-bit hybrid carry select adder using CMOS 32nm Technology

Similar documents
Design of Low Power and High Speed Carry Select Adder Using Brent Kung Adder

Design of High Speed Vedic Multiplier Using Carry Select Adder with Brent Kung Adder

Design of Carry Select Adder with Binary Excess Converter and Brent Kung Adder Using Verilog HDL

Australian Journal of Basic and Applied Sciences. Performance Analysis of Different Types of Adder Using 3-Transistor XOR Gate

16-BIT CARRY SELECT ADDER. Anushree Garg B.Tech Scholar, JVW, University, Rajasthan, India

Design of 16-Bit Adder Structures - Performance Comparison

Design of Modified Low Power and High Speed Carry Select Adder Using Brent Kung Adder

REVIEW OF CARRY SELECT ADDER BY USING BRENT KUNG ADDER

Design of Carry Select Adder Using Brent Kung Adder and BEC Adder

Design of a High Speed Adder

Implementation of 16-Bit Area Efficient Ling Carry Select Adder

Design of 32 bit Parallel Prefix Adders

Implementation and Estimation of Delay, Power and Area for Parallel Prefix Adders

Design of Low Power and High Speed Carry Select Adder Using Brent Kung Adder

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Design and Estimation of delay, power and area for Parallel prefix adders

Comparative Analysis of Adders Parallel-Prefix Adder for Their Area, Delay and Power Consumption

DESIGN AND SIMULATION OF 4-BIT ADDERS USING LT-SPICE

Comparison of Parallel Prefix Adders Performance in an FPGA

FPGA Implementation of Efficient 16-Bit Parallel Prefix Kogge Stone Architecture for Convolution Applications Geetha.B 1 Ramachandra.A.

A Novel Approach For Error Detection And Correction Using Prefix-Adders

Pareto Points in SRAM Design Using the Sleepy Stack Approach

DEVISE AND INFERENCE OF DELAY, POWER AND AREA FOR ANALOGOUS PREFIX ADDERS

A COMPREHENSIVE SURVEY ON VARIOUS ADDERS AND ITS COMPACTION RESULT

Designing, simulation and layout of 6bit full adder in cadence software

Pareto Points in SRAM Design Using the Sleepy Stack Approach

Pareto Points in SRAM Design Using the Sleepy Stack Approach. Abstract

Sleepy stack: a New Approach to Low Power VLSI Logic and Memory

FPGA-based Emotional Behavior Design for Pet Robot

Modeling and Control of Trawl Systems

Pet Selective Automated Food Dispenser

IQ Range. Electrical Data 3-Phase Power Supplies. Keeping the World Flowing

Lecture 2: Challenges and Opportunities in System LSI (1) Devices and Circuits

Optimal Efficient Meta Heauristic Based Approch for Radial Distribution Network

Simulation of the ASFA system in an ERTMS simulator

5 State of the Turtles

MGL Avionics EFIS G2 and iefis. Guide to using the MGL RDAC CAN interface with the UL Power engines

Effects of Cage Stocking Density on Feeding Behaviors of Group-Housed Laying Hens

Application of Fuzzy Logic in Automated Cow Status Monitoring

Status of Electronics Upgrades to the LANL Green is Clean Phoswich Detector Systems 16419

We recommend you cite the published version. The publisher s URL is

COMP Intro to Logic for Computer Scientists. Lecture 9

Applicability of Earn Value Management in Sri Lankan Construction Projects

EVM analysis of an Interference Limited SIMO-SC System With Independent and Correlated Channels

Raised Without Antibiotics Analyzing the Impact to Biologic and Economic Performance

Improving RLP Performance by Differential Treatment of Frames

Pixie-7P. Battery Connector Pixie-7P Fuse* Motor. 2.2 Attaching the Motor Leads. 1.0 Features of the Pixie-7P: Pixie-7P Batt Motor

Identity Management with Petname Systems. Md. Sadek Ferdous 28th May, 2009

288 Seymour River Place North Vancouver, BC V7H 1W6

Drive More Efficient Clinical Action by Streamlining the Interpretation of Test Results

Cat Swarm Optimization

Representation, Visualization and Querying of Sea Turtle Migrations Using the MLPQ Constraint Database System

utca mother board for FMC ADC daughter cards

A Flexible natural gas membrane Reformer for m- CHP applications FERRET

An Esterel Virtual Machine (EVM) Aruchunan Vaseekaran

User s Guide. High Performance Linear Products SLOU119

AUTOMATIC MILKING SYSTEMS AND MASTITIS

INTRODUCTORY ANIMAL SCIENCE

Subdomain Entry Vocabulary Modules Evaluation

Available online at ScienceDirect. Procedia Computer Science 102 (2016 )

STUDY BEHAVIOR OF CERTAIN PARAMETERS AFFECTING ASSESSMENT OF THE QUALITY OF QUAIL EGGS BY COMPUTER VISION SYSTEM

University of Pennsylvania. From Perception and Reasoning to Grasping

Dog s best friend. Case study: Kuopion Eläinlääkärikeskus Kuopio, Finland

Effective Vaccine Management Initiative

PUNJAB TECHNICAL UNIVERSITY, JALANDHAR Jalandhar-Kapurthala Highway, Jalandhar

Analysis of the economics of poultry egg production in Khartoum State, Sudan

S Fault Indicators. S.T.A.R. Type CR Faulted Circuit Indicator Installation Instructions. Contents PRODUCT INFORMATION

Venezuela. Poultry and Products Annual. Poultry Annual Report

DYNAMIC ANAYSIS OF BUNDLED TUBE STEEL STRUCTURE WITH BELT-TRUSS AND MEGA BRACINGS

RESPONSIBLE ANTIMICROBIAL USE

PRODUCT FAMILY DATASHEET LED SUPERSTAR CLASSIC B DIM

TPS204xB/TPS205xB Current-Limited, Power-Distribution Switches data sheet (SLVS514)

Information note regarding the Danish and EU restrictions of non-therapeutical use of antibiotics for growth promotion

Chapter 2 Cat Swarm Optimization (CSO) Algorithm

ANTIBIOTICS AND ANTIMICROBIAL RESISTANCE: CAUSES AND POSSIBLE SOLUTIONS

Interstate-5, Exit 260 Slater Road. Corridor Report and Preliminary Interchange Justification Evaluation

Complete Solutions for BROILER BREEDERS

The Veterinary Epidemiology and Risk Analysis Unit (VERAU)

Earned Value Management Practitioners Symposium

Mathematical models for dog rabies that include the curtailing effect of human intervention

Microchipping Works: Best Practices

ULTRAVIOL. UltraViol is a dynamically developing. We invite you to become our business partner.

HaloGLS, HaloCandle and HaloSpherical lamps

A Flexible natural gas membrane Reformer for m- CHP applications FERRET

Detail Bio-data: Mr. Vijay K. YAdav

HCM 6: Highway Capacity Manual: A Guide for Multimodal Mobility Analysis

LIO ENTSO-E (10) ENERGY IDENTIFICATION CODE (EIC) MANAGEMENT

HaloGLS, HaloCandle and HaloSpherical lamps

Alco Controls. Components for R407A / R407F. Electronic Expansion Valves: Q n = Q o x K t x K p. Technical Bulletin

40GBASE-T / Category 8 Update. Ing. Davide Badiali, RCDD Technical Manager CommScope Athens, 11 November 2013

Performance Analysis of HOM in LTE Small Cell

Should you need any further information or require any veterinary advice please do not hesitate to contact a member of staff.

Comparative evaluation of dahlem red and desi crosses chicken reared under intensive system of poultry management

Public Key Directory: What is the PKD and How to Make Best Use of It

Genotypic and phenotypic relationships between gain, feed efficiency and backfat probe in swine

ICAO WCO Joint Conference on Enhancing Air Cargo Security and Facilitation

6.836 Embodied Intelligence Final Project: Tom and Jerry. Gleb Chuvpilo, Jessica Howe chuvpilo, May 15, 2002

REPORT ON SCOTTISH EID TRIALS

Development of the New Zealand strategy for local eradication of tuberculosis from wildlife and livestock

ANTIBIOTIC SENSITIVITY PATTERN OF YERSINIA ENTEROCOLITICA ISOLATED FROM MILK AND DAIRY PRODUCTS*

Transcription:

Design of 64-bit hybrid carry select adder using CMOS 32nm Technology Gurdeep Kaur 1, Candy Goyal 2, Kuldeep Singh 3 1 M.Tech Student, Yadwindra College of Engineering, Talwandi Sabo, India 2Assistant Professor, E.C.E Deptt. of Yadwindra College of Engineering, Talwandi Sabo, India 3 Lecturer, E.C.E Department of Guru Ram Dass Institute of Engineering and Technology, Bathinda, India 1gurdeepnoor@gmail.com, 2 engg_candy@gmail.com, 3 kuldeep649@gmail.com ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper presents low leakage carry select adder (CSA). CSA is one of the fastest adders used in many data-processing systems to perform fast arithmetic operations. In this paper Carry Select Adder uses single RCA and binary to excess-1 converter (BEC) are used instead of dual RCAs to optimize average and leakage power dissipation. The reason for leakage power reduction is that, the number of logic gates used to design a BEC is less than the number of logic gates used for a RCA design. Thus, importance of BEC logic comes from the large silicon area reduction when designing CSA for large number of bits. 64-bit CSA adder using hybrid architecture is analyzed in this paper. The circuit design is simulated at 32nm Technology using Tanner EDA v(13.0). Results shows that 64bit CSA has better performance parameter as compared to the conventional CSA. Key Words: Conventional carry select adder (CSA), Binary to excess-1 converter (BEC), Ripple carry adder (RCA) 1.INTRODUCTION ( Size 11, cambria font) Performance of modern digital system is dependent on the performance of individual circuits that form various functional units. Adders are one of the widely used block in digital integrated circuits. High speed adder is the necessary component in a data path of microprocessors and a DSP processor. Among the performance parameter, leakage power is critical as the technology improves. Because of threshold voltage reduction leakage current increases exponentially with the gate source voltage [1].As adder is critical part of almost all the modern digital system.optimization of leakage power in adder can optimize overall leakage power of the circuits. In this paper two 64bit carry select adder with hybrid adder is designed and analyzed. We have used 10T and 14T full [11] adder because these two adders is having lesser leakage power as compared to the other design styles presented in the literature. The simple type of parallel adder is a ripple carry adder, which uses a chain of one bit full adder to generate its output. The Ripple Carry Adder (RCA) [1] gives the most compact design but takes longer computation time. The time critical applications use Carry Look-ahead scheme (CLA) to derive fast results but lead to increase in area. The Carry Select Adder (CSA) provides a compromise between small area but longer delay than Ripple Carry Adder (RCA) and having larger area with shorter delay than Carry Look-Ahead Adder (CLA) [1].Hybrid adder architecture is improved in terms of performance parameters. For the global carry generation in hybrid adder, a simple parallel scheme is used to relieve the fan-out load at the final multiplexer stage. The parallelism does not require intermediate outputs in the carry select scheme in hybrid architecture. In hybrid adder, internal carry generation logic is shared to minimize area of adder. 2. Review of Adder Architectures To add multiple inputs various types of Adder Architecture are presented in literature which is explained as given below:- 2.1 Ripple Carry Adder (RCA) Two binary words, each with n-bits, can be added using a ripple carry adder. Fig-1 shows the circuit for a 4-bit ripple carry adder. The carry input to the least significant bit is normally set to 0(c0), and the carry output of each full adder is connected to the carry input of the next most significant (MSB) of full adder [3] 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2450

possible to skip carry over group of n-bits in case of Carry Skip Adder [4].Carry skip adder has large delay as compared to CLA but less than RCA. Carry Propagate: Pi=Ai Bi Sum: Si=Pi Ci Carry Out: Ci+1= Ai Bi+ Pi Ci Fig: 1.Block diagram of RCA [8] RCA design occupies the small area but takes longer computing time. The delay of RCA is linearly proportional to number of input bits. 2.2 Carry Look ahead adder (CLA) Carry Look ahead adder speed up the operation of addition, because in this scheme carry for the next stages is calculated in advance, based on input signals.the CLA offers a way to eliminate the ripple effect in RCA.CLA is faster than RCA but consumes large area [4]. Pi = Xi XOR Yi --- Carry Propagation Gi = Xi AND Yi --- Carry Generate S = P i C i Fig:-3. 16-Bit Carry-Skip Adder [4] 2.4 Carry save adder Basically, carry save adder is used to compute sum of three or more n-bit binary numbers. Carry save adder is same as a full adder [5].Boolean equations for sum and carry signals are given below:- Si = Xi XOR Yi Ci = Xi AND Yi Ci+1 = Gi or (Pi AND Ci)--Next Carry Fig:-4. N-bit Carry save adder [4] Carry save adder reduces the leakage. 2.5 Conventional Carry Select Adder (CSA) Fig:-2.Block diagram of 16-bit carry look ahead adder [4] 2.3 Carry Skip Adder (CSKA) In case of N-bit Ripple carry adder, carry has to propagate through all N stages, which results in large delay in performing binary addition. In contrast, it is Carry select adder is based on the principle to calculate sum that is based on assuming input carry from previous stage. One of the adder calculates the sum assuming input carry 0 while the other calculates the sum assuming input carry 1. Then, the actual carry triggers a multiplexer that selects the appropriate sum. Carry output of each block is given to next block as input carry [6]. 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2451

Fig:-5.Block diagram of 16-bit Carry select adder [4] Performance of CSA adder is intermediate between longer delay of RCA and large area of CLA. But designing of CSA is more complex. 3. HYBRID CARRY SELECT ADDER A Hybrid Carry Select-Adder is proposed. The modification is done by replacing lower 32bit LSB and upper 32bit MSB with different full adder circuits. In first architecture, 14T full adder is used for 32bit MSB and 10T full adder is used for 32bit LSB. In second architecture, 10T full adder is used for 32bit MSB and 14T full adder is used for 32bit LSB. Thus, importance of BEC logic comes from the large silicon area reduction when designing hybrid CSA for large number of bits. As to replace the N bit RCA, an N+1 bit BEC is used [1]. So in hybrid architecture of CSA, the 4-bit RCA is used in each block and thus the BEC used is of 5-bit wide. The MUX s are used to select either BEC output or the direct inputs according to the control singal.10 bit to 5 bit multiplexer are used to select the final output. Fig: -7. Block diagram of 64-bit hybrid Carry select adder using (10T 14T) SIMULATION RESULTS Conventional carry select adder and Modified carry select adder using different types of adders are simulated using TANNER EDA v (13.0). All the simulations are performed at 32nm CMOS technology. 64-bit Conventional carry select adder has 1.77mw leakage power, 2.35mw average power consumption. The number of transistors of 64-bit conventional CSA is 3698. TABLE 1: Leakage power, Average power consumption and number of gates of 1-bit full adders at 500MHz frequency. Types of adders Conv 10T 12T 14T BV2 Leakage power 460 10 200 2 230 (nw) Average power 10.1 1.95 3.43 0.56 5.6 (uw) Fig: -6. Block diagram of 64-bit hybrid Carry select adder using (14T 10T) Number of transistor 28 10 12 14 24 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2452

TABLE 2: Leakage power, Average power consumption and number of gates of 64-bit hybrid carry select adders at 500MHz frequency. Types of adders 64bit hybrid CSA using 10T(32bit MSB) and 14T(32bit LSB) 64bit hybrid CSA using 14T(32bit MSB) and 10T(32bit LSB) Leakage power (mw) 0.44 0.47 Average power (mw) Number of transistors 0.74 0.72 2120 2120 Fig:10.Comparison of Leakage power of 64-bit hybrid CSA using 14T and 10T adders Fig:11.Comparison of average power consumption of 64- Fig:8.Comparison of Leakage power of 1-bit full adders bit hybrid CSA using 14T and 10T adders at 500Mhz frequency 3. CONCLUSIONS Fig:9.Comparison of average power comsumption of 1-bit full adders at 500Mhz frequency 64-bit hybrid carry select adder shows better performance than conventional carry select adder. The basic idea behind of implementing various design units of carry select adder is to compare them with reference to the average power consumed leakage power. Simulation result shows the leakage power and average power of each carry select adder. From results it is concluded that 64bit hybrid CSA using 14T of a (32bit MSB) and 10T of a (32bit LSB) adder has better performance. The leakage power reduced 75% as compared to conventional carry select adder and average power 68% at 500MHz frequency. REFERENCES [1].Shivani Parmar,Kirat Pal Singh, Design of high speed hybrid carry select adder, Advanced Computing Conference 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2453

(IACC), IEEE 3 rd international,pp:165 1663,2013. 294, Dec. 2001, pp. 2127-2130, doi:10.1126/science.1065467. [2].Ohsang Kwon, Earl E. Swartzlander, Kevin Nowka, A Fast Hybrid Carry-Look ahead/carry-select Adder Design,IEEE International Symposium on Circuits andsystems,2006. [3].Mohammad Reza Bagheri, Ultra Low Power Subthreshold Bridge Style Adder in Nanometer Technologies, Canadian Journal on Electrical and Electronics Engineering, Vol. 2, No. 7, 2011. [4].R.P.P.Singh,Parveen Kumar, Balwinder Singh, Performance Analysis Of Fast Adders Using VHDL International Conference on Advances in Recent Technologies in Communication and Computing,pp-189-193,2009. [13].Subodh Wairya, Rajendra Kumar Nagaria, Sudarshan Tiwari, Comparative Performance Analysis of XOR-XNOR function Based High Speed CMOS Full Adder Circuits For Low Voltage VLSI Design,(VLSICS)Vol.3,No.2.2012. [14]. N.Weste,A.Eshragian, Principal of CMOS VLSI:system perceptive, Pearson/ Addision Wesley publisher,2005 [15]. Jun Cheol Park, Vincent J. Mooney, Sleepy Stack Leakage Reduction, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 14, No. 11, 2006. [5].B.Ram kumar, Harish M Kittur, P.Mahesh Kannan, ASIC Implementation of Modified Faster Carry Save Adder, European Journal of Scientific Research ISSN 1450-216X Vol.42,No.1, pp.53-58,2010. [6].T.RantaMala,R.VijayKumar,T.ChandraKala, Design and Varification of Area Efficient High-Speed carry select adder, International Journal of Research in Computer and Communcition technology (IJRCCT), ISSN 2278-5841,Vol. 1,Issue6,2012. [7].Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan,Kaushik Roy, Low power digital signal processing using approximate adders,ieee Transactions on computer Aided design of integrated circuits and systems,vol.32,2013 [8]. D. Garg and M. K. Rai, CMOS Based 1-Bit Full Adder Cell for Low-Power Delay Product, IJECCT, Vol. 2 (4), 2012. [9].Padma Devi, Ashima Girdher, Balwinder Singh, Improved Carry Select adder with Reduced Area and Low Power Consumption, International Journal of Computer Applications, Vol.3, No.4, 2010. [10].K.Saranya, Low Power and Area-Efficient Carry Select Adder, International Journal of Soft Computing and Engineering (IJSCE), ISSN: 2231-2307, Vol-2, Issue-6, 2013. [11].Arvind Kumar, Anil Kumar Goyal, Study of Various Full Adders using Tanner EDA Tool, International Journal of Science Technology (IJCST) Vol. 3, Issue 1, 2012. [12].Saradindu Panda, A.Banerjee, B.Maji, Dr.A.K.Mukhopadhyay, Power and Delay Comparison in between Different types of Full Adder Circuits,International Journalof Advanced Research in Electrical, Electronics and Instrumentation Engineering,Vol. 1, Issue 3, 2012. 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2454