Screening for Plasmid-Mediated Multidrug Resistant Bacteria in Ikpoba River Water Samples

Similar documents
Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

Isolation of antibiotic producing Actinomycetes from soil of Kathmandu valley and assessment of their antimicrobial activities

Evaluation of antimicrobial activity of Salmonella species from various antibiotic

Detection of Methicillin Resistant Strains of Staphylococcus aureus Using Phenotypic and Genotypic Methods in a Tertiary Care Hospital

Bacteria in chicken rolls sold by fast food restaurant and their public health significance

Lab Exercise: Antibiotics- Evaluation using Kirby Bauer method.

6.0 ANTIBACTERIAL ACTIVITY OF CAROTENOID FROM HALOMONAS SPECIES AGAINST CHOSEN HUMAN BACTERIAL PATHOGENS

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

Antibiotic Resistance in Pseudomonas aeruginosa Strains Isolated from Various Clinical Specimens

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

Antimicrobial Resistance

Antimicrobial Resistance Acquisition of Foreign DNA

Int.J.Curr.Microbiol.App.Sci (2018) 7(8):

Asome strains of Escherichia coli isolated from abattoir wastewater was carried

Antibiotic Susceptibility Pattern of Vibrio cholerae Causing Diarrohea Outbreaks in Bidar, North Karnataka, India

Mechanisms and Pathways of AMR in the environment

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Understanding and prevention of transmission of antibiotic resistance between bacterial populations and One Health reservoirs

Antibiotic resistance of bacteria along the food chain: A global challenge for food safety

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents

Antibiotic Susceptibility of Common Bacterial Pathogens in Canine Urinary Tract Infections

GeNei TM. Antibiotic Sensitivity. Teaching Kit Manual KT Revision No.: Bangalore Genei, 2007 Bangalore Genei, 2007

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

UJMR, Volume 2 Number 2 December, 2017 ISSN:

Fluoroquinolones resistant Gram-positive cocci isolated from University of Calabar Teaching Hospital, Nigeria

Study of Bacteriological Profile of Corneal Ulcers in Patients Attending VIMS, Ballari, India

Antibiotic and Disinfectant Resistant Bacteria in Rivers of the United States

Inhibiting Microbial Growth in vivo. CLS 212: Medical Microbiology Zeina Alkudmani

Plasmid Profile and Antimicrobial Resistance Ratings of Escherichia coli Isolates from Pigs and Poultry Birds in Abia State, Nigeria

Application of sewage in pisciculture in order to augment fish production has been an

Antimicrobial Resistance

Ophthalmology Research: An International Journal 2(6): , 2014, Article no. OR SCIENCEDOMAIN international

Isolation, identification and antimicrobial susceptibility pattern of uropathogens isolated at a tertiary care centre

ANTIBIOGRAM OF MEATBORNE PATHOGENS ISOLATED FROM INTERMEDIATE MOISTURE GOAT MEAT

Incidence and susceptibility pattern of clinical isolates from pus producing infection to antibiotics and Carica papaya seed extract

Antimicrobial Resistance: Do we know everything? Dr. Sid Thakur Assistant Professor Swine Health & Production CVM, NCSU

Enterobacter aerogenes

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

Recommended for Implementation at Step 7 of the VICH Process on 15 December 2004 by the VICH Steering Committee

Available online at Scholars Research Library. Der Pharmacia Lettre, 2017, 9 (1):85-92

The antibiogram types of Staphylococcus aureus isolated from nasal carriers from irrua Specialist teaching hospital, Edo state, Nigeria

Antibiotic Susceptibility of Bacterial Strains Isolated from Diabetic Patients

Antimicrobial Susceptibility Patterns of Salmonella Typhi From Kigali,

European Committee on Antimicrobial Susceptibility Testing

β-lactams resistance among Enterobacteriaceae in Morocco 1 st ICREID Addis Ababa March 2018

Department of Biology, Microbiology and Biotechnology, Faculty of Science, Federal University, Ndufu-Alike, Ikwo, Nigeria

The role of the environment in the selection and spread of antimicrobial resistance

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

From Wastewater to Your Tap Water: The Vicious Cycle of Antibiotic Resistance

BACTERIAL ASSOCIATED WITH SURGICAL WOUND INFECTIONS IN UNIVERSITY OF BENIN TEACHING HOSPITAL, BENIN CITY, EDO STATE NIGERIA

Antimicrobial Susceptibility Pattern of Salmonella Isolates at Tertiary Care Hospital, Ahmedabad, India

Dr. C. MANIKANDAN, Director,

APPENDIX III - DOUBLE DISK TEST FOR ESBL

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

BACTERIOLOGICALL STUDY OF MICROORGANISMS ON MOBILES AND STETHOSCOPES USED BY HEALTH CARE WORKERS IN EMERGENCY AND ICU S

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

Kathmandu University Medical Journal (2010), Vol. 8, No. 1, Issue 29, 40-44

Chemotherapy of bacterial infections. Part II. Mechanisms of Resistance. evolution of antimicrobial resistance

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Detection of inducible clindamycin resistance among clinical isolates of Staphylococcus aureus in a tertiary care hospital

Antimicrobial susceptibility of Salmonella, 2016

Comparison of Antibiotic Resistance and Sensitivity with Reference to Ages of Elders

Int.J.Curr.Microbiol.App.Sci (2016) 5(12):

Testimony of the Natural Resources Defense Council on Senate Bill 785

MRSA surveillance 2014: Poultry

Antimicrobial use in poultry: Emerging public health problem

DETECTION OF ANTHROPOGENIC ANTIBIOTIC RESISTANCE INTRODUCED INTO THE GALLINAS RIVER OF LAS VEGAS, NEW MEXICO. Las Vegas, NM, USA

Nova Journal of Medical and Biological Sciences Page: 1

Urban Water Security Research Alliance

Antibiotic Resistance in Bacteria

OCCURRENCE OF PSEUDOMONAS AERUGINOSA IN POST-OPERATIVE WOUND INFECTION

Q1. (a) Clostridium difficile is a bacterium that is present in the gut of up to 3% of healthy adults and 66% of healthy infants.

WHY IS THIS IMPORTANT?

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

The Search For Antibiotics BY: ASLEY, ELIANA, ISABELLA AND LUNISCHA BSC1005 LAB 4/18/2018

Risk analysis of antimicrobial use in aquaculture Peter Smith

Antibiotic Resistance Profile of Staphylococci Isolated From Hospital Out-Patients in Accident and Emergency Unit Abstract: Keywords Introduction

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

RELIABLE AND REALISTIC APPROACH TO SENSITIVITY TESTING

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

EVALUATION OF THE QUALITY OF LOCALLY MANUFACTURED ANTIMICROBIAL SUSCEPTIBILITY TESTING DISCS USED IN SOUTH EASTERN NIGERIA

ANTIBIOTIC SENSITIVITY PATTERN OF YERSINIA ENTEROCOLITICA ISOLATED FROM MILK AND DAIRY PRODUCTS*

Intrinsic, implied and default resistance

UPDATE ON DEMONSTRATED RISKS IN HUMAN MEDICINE FROM RESISTANT PATHOGENS OF ANIMAL ORIGINS

Selective toxicity. Antimicrobial Drugs. Alexander Fleming 10/17/2016

Microbiology : antimicrobial drugs. Sheet 11. Ali abualhija

Changing Practices to Reduce Antibiotic Resistance

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

Antimicrobial susceptibility of bacterial species identified from mastitic milk samples of camel

MICRO-ORGANISMS by COMPANY PROFILE

Pharm 262: Antibiotics. 1 Pharmaceutical Microbiology II DR. C. AGYARE

Antimicrobial Susceptibility of Community-associated Staphylococcus aureus Isolates from Healthy Women in Zaria, Nigeria

BMR Microbiology. Research Article

Susceptibility Pattern of Some Clinical Bacterial Isolates to Selected Antibiotics and Disinfectants

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Aerobic bacteriological profile of urinary tract infections in a tertiary care hospital

Do clinical microbiology laboratory data distort the picture of antibiotic resistance in humans and domestic animals?

Interactive session: adapting to antibiogram. Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe

Transcription:

International Journal of Microbiology and Biotechnology 2018; 3(2): 31-35 http://www.sciencepublishinggroup.com/j/ijmb doi: 10.11648/j.ijmb.20180302.11 Screening for Plasmid-Mediated Multidrug Resistant Bacteria in Ikpoba River Water Samples Akpe Azuka Romanus *, Okwu Grace Ifeoma, Esumeh Frederick Ikechukwu, Femi, Imah Justus Department of Microbiology, Ambrose Alli University, Ekpoma, Nigeria Email address: * Corresponding author To cite this article: Akpe Azuka Romanus, Okwu Grace Ifeoma, Esumeh Frederick Ikechukwu, Femi, Imah Justus. Screening for Plasmid-Mediated Multidrug Resistant Bacteria in Ikpoba River Water Samples. International Journal of Microbiology and Biotechnology. Vol. 3, No. 2, 2018, pp. 31-35. doi: 10.11648/j.ijmb.20180302.11 Received: March 30, 2018; Accepted: April 16, 2018; Published: May 7, 2018 Abstract: The abuse and extensive use of antimicrobial agents by humans may increase resistant bacteria populations in the aquatic environment. The discharge of untreated wastewater into rivers and other non-point sources of pollution have led to the antibiotic resistant bacteria in the environment, particularly in surface waters. Studies on river water pollution and their implication to public health has been ongoing. Screening for multi-drug resistant bacterial status of Ikpoba River in Benin City, Nigeria was carried out using standard microbiological and physicochemical procedures. The bacteria isolated from the river water samples were E. coli, Salmonella sp, Vibrio sp, Staphylococcus aureus, and Streptococcus faecalis. The antibiotics susceptibility testing of the isolates revealed a multi-drug resistant status for Staphylococcus aureus and Streptococcus faecalis. The plasmid profile of these multi-drug resistant isolates was determined and results revealed that both isolates harboured plasmid of size 4.5kb. Antibiotic susceptibility of the isolates when cured of plasmid revealed loss of resistance to over 75% of the antibiotics they were originally resistant to. The microbial and physicochemical properties of the river showed that it is unfit for human consumption. The Plasmid mediated multidrug resistant status of some of the isolates is a threat to chemotherapy and is a cause for public health concern. Keywords: River Water, Antibiotics, Pollution, Multi-drug Resistance, Plasmid 1. Introduction Plasmid is a small DNA molecule located within a cell that is capable of independent replication. They are separated from the chromosomal DNA. Plasmid often carries genes that may benefit the survival of the host organism in antibiotic resistance. Chromosomes are big and contain all the essential genetic information for the survival of an organism under normal conditions. Plasmids, besides their small sizes, contain additional genes that are beneficial to the organisms under certain situations or conditions [1]. The abuse and extensive use of antimicrobial agents by humans may increase resistant bacteria populations in the aquatic environment. The discharge of untreated wastewater into rivers and other non-point sources of pollution have led to the antibiotic resistant bacteria in the environment, particularly in surface waters [2].Water constitutes not only a way of dissemination of antibiotic resistant organisms among human and animal population, but also the route by which resistance genes are introduced in natural bacterial ecosystem. Many of these bacteria harbour antibiotic resistance genes mainly inserted in plasmid, transposant or integron able to be transferred among water and soil bacteria community via horizontal gene transfer [3]. Due to indiscriminate use of broad spectrum antibiotic against infections in clinical setting, agriculture, and fish hatcheries, antibiotic resistance has dramatically increased among Staphylococcus aureus and Streptococcus species. In particular, Staphylococcus aureus has acquired resistance against the commonly abused broad spectrum antibiotic such as augmentin, ofloxacin, streptomycin, amoxicillin and ciprofloxacin that are used alone or in combination for treatment of common infections through self medications. Some of these drugs are being excreted during treatment mostly as active compounds, therefore their biological action is not limited to the therapeutic site, but it is further moved into the environment. Water environment is the ideal medium

32 Akpe Azuka Romanus et al.: Screening for Plasmid-Mediated Multidrug Resistant Bacteria in Ikpoba River Water Samples for the aggregation and dissemination of antibiotics, antibiotic resistant bacteria and antibiotic resistance genes, which poses a serious threat to human health if ingested by the user [4]. Water is one of the most bacterial habitats on earth, a major way of disseminating microorganisms in nature and has been recognized as a significant reservoir of antibiotic resistant microorganisms [5, 6]. Numerous studies have demonstrated the importance of the environmental setting, e.g. water or soil on the cycling of antibiotic resistance in nature, either because antibiotic resistance mechanism can originate in environmental bacteria or because human and animal commensals and pathogens can contaminate the environment [7]. Ikpoba River is a fourth order stream located in Benin City, Edo State, Nigeria. Ikpoba River receives a variety of waste ranging from agriculture, domestic, industrial and from other sources and these wastes introduce foreign microorganisms into the river. Some of these organisms have serious medical and economic implications. The threat is further compounded by the increasing incidence of isolates with drug resistance [8]. The implication of the picture painted above is that, antibiotics resistance organisms are not only distributed in hospital wastewaters but also in animal production wastewaters, sewage, wastewater treatment plants, surface water, groundwater, and even drinking water [9]. This has further complicated the treatment of infections. Other sources of pollution of Ikpoba River include wastes from abattoir, faecal matter from people living within the vicinity, pollution from laundry activity such as washing and bathing etc. all these are implicated in the introduction of antibiotic resistant isolates in Ikpoba River. A lot of research works have been undertaken on Ikpoba River, some of which include the effects of brewery effluents on the water quality and rotifers of Ikpoba River [10]. The effects of brewery effluents on the microbiological quality of Ikpoba River, and the surrounding borehole water in Benin City have also been reported [11].Also worked on was the influence of brewery discharge on the microbiological and physicochemical quality of Ikpoba River [12], but no work has been conducted on plasmid mediated multidrug resistant bacteria in Ikpoba River water samples. 2. Methods 2.1. Sample Collection, Bacterial Isolation, Characterisation and Identification Water samples were collected from the waste discharge point, upstream and down stream portions of Ikpoba River and inoculated in duplicates onto sterile MacConkey agar, nutrient agar and Salmonella Shigella agar plates. The plates were then incubated for 24-48 h at a temperature of 37 C. Thereafter emerging colonies were characterized and identified. The phenotypic and biochemical characteristics used to characterize and identify bacterial isolates included Gram staining, colonial appearance, motility, urease, catalase, indole, oxidase, citrate, methyl red, voges proskaeur and sugar fermentation. These tests were performed and emerging colonies identified using standard methods [13]. 2.2. Antibiotic Susceptibility Testing Antibiotics susceptibility testing was carried out on the isolates using the disc diffusion method [14,15]. Mueller Hinton (MH) agar was prepared according to the instructions of the manufacturer. The commercially prepared antibiotic disc (Lab M) was used for the study. The disc consisted of the following antibiotics with their concentrations: pefloxacin, 10µg; gentamycin, 10µg, amoxicillin, 30µg; ciprofloxacin, 10µg; streptomycin, 30µg; cotrimoxazole, 30µg; ofloxacin, 30µg; chloramphenicol, 30µg, and augmentin, 25µg. The antibiotics discs were placed on MH agar plates earlier seeded with cell suspension of the isolates with a turbidity of 0.5 McFarland standards and incubated at 37 C for 24 h. The zones of inhibition were measured and recorded. The antibiotic sensitivity test was termed susceptible when the recorded zones of inhibition (mm) were 11 and resistant when the zones of inhibition to the antibiotic was 9 [16]. 2.3. Plasmid Profile Analysis Plasmid curing was carried out on the multi-drug resistant isolates using the methods earlier described by [17] and used by [18]. The curing agent used was sodium dodecyl sulphate (SDS). Physical evidence for the presence or loss of plasmid(s) in cured and non-cured isolates was obtained by alkaline phosphate method of rapid DNA isolation technique [19,20]. This involved four basic steps cell harvest, lysis, deproteination and decontamination. The plasmids were characterized using agarose gel electrophoresis [21]. The molecular weights of plasmids were visualized using UV transilluminator (AlphaImager TM 2200) at 302-365nm. Thereafter the susceptibility patterns of the plasmid cured isolates was performed and compared with the original isolates. 3. Results and Discussions 3.1. Bacterial Isolates and Their Antibiotics Susceptibility Patterns The bacterial isolates from this study were Escherichia coli, Salmonella sp, Vibrio sp, Streptococcus faecalis and Staphylococcus aureus. Escherichia coli was the most predominant bacterial isolate followed by Salmonella sp. These and their corresponding antibiotics susceptibility patterns are shown in Table 1. It was observed that two of the isolates (Streptococcus faecalis and Staphylococcus aureus) were multidrug resistant. These two isolates were resistant to the commonly abused broad spectrum antibiotics such as augmentin, gentamicin, perfloxcin, ofloxacin, streptomycin, amoxicillin, chloramphenicol used for treatment of common infections such as urinary tract infections (UTI), typhoid fever and other sexually transmitted diseases (STDs).The presence of multi-drug resistant bacteria agrees with the report [22] that

International Journal of Microbiology and Biotechnology 2018; 3(2): 31-35 33 freshwater environment represent a potential reservoir of antibiotic resistant bacteria. The presence of antibiotic resistant bacterial isolates in environmental samples is attributed to the massive exposure of the environment to antibiotics through the use and misuse of antibiotics by human and in veterinary medicine [23]. This implies that in near future organisms would begin to acquire resistance against the newly synthesized antibiotics and it poses a serious threat to the future generation if no measures are put in place. 3.2. Plasmid Profiling The plasmid profile analysis revealed that two of the isolates (Streptococcus faecalis and Staphylococcus aureus) had plasmids of the same size (4.5kb) as shown in Figure 1. The plasmid curing experiment was successful as shown in Figure 2. The success of this curing agrees with previous reports of elimination of plasmids using DNA intercalating agents -SDS, acridine orange, ethidium bromide and other agents [24, 25]. Table 2 showed the antibiotic susceptibility patterns of the two plasmid-cured multi-drug resistant isolates. It revealed loss of resistance to majority of the antibiotics. The presence of plasmids aligns with earlier reports that Table 1.Antibiogram of Bacterial Isolates from Ikpoba River Water Samples. small DNA molecules known as plasmids are the key culprits in spreading the major global health threat of antibiotic resistance [26]. Plasmids are thought of as being important vehicles that transfer resistance genes between bacteria. Also, their number (plasmid copies) play a critical role in imparting resistance and other characteristics to the organisms. The post plasmid curing antibiotics susceptibility test conducted on the two multidrug resistant isolates revealed that resistance to most of the antibiotics was lost indicating that it was plasmid mediated. This consolidated the fact that plasmids play a significant role in antimicrobial resistance. The source of this is attributed to routine discharge of antibiotics and resistance genes from wastewater or runoff from livestock facilities and agriculture. Elevated levels of antibiotics resistance genes in aquatic environments are correlated to their proximity to anthropogenic activities. Apart from resistance conferred by mutation, antibiotics resistance determinants in pathogenic bacteria could also originate from non-clinical environment [2]. This also agrees with the findings in this research carried out on Ikpoba River isolates. Isolates Resistance To: Susceptible To: Staphylococcus aureus Augmentin, gentamycin, pefloxacin, ofloxacin, streptomycin, amoxicillin, chloramphenicol and cotrimoxazole Ciprofloxacin Streptococcus faecalis Chloramphenicol, cotrimoxazole, ofloxacin, pefloxacin, gentamycin, augmentin, sparfloxacin, amoxicillin Ciprofloxacin and streptomycin Vibriosp Amoxicillin Sparfloxacin, augmentin, gentamycin, pefloxacin, ofloxacin, cotrimoxazole, streptomycin, chloramphenicol, ciprofloxacin Salmonellasp Streptomycin and chloramphenicol Ofloxacin, pefloxacin, amoxillin, augmentin, sparfloxacin, cotrimoxazole, ciprofloxacin Escherichia coli Ciprofloxacin Sparfloxacin, augmentin, gentamycin, pefloxacin, cotrimoxazole, streptomycin, chloramphenicol, amoxicillin Figure 1. Plasmid profile of multi-drug resistant bacterial isolates analyzed with 0.8% agarose gel electrophoresis stained with ethidium bromide. L is 0.5kb- 48.5kb DNA ladder. Samples 5 and 6 are positive for plasmid with bands at 4.5kb. Samples 1, 2, 3, 4 and 7 are no DNA template control. Key 5= Staphylococcus aureus; 6= Streptococcus faecalis

34 Akpe Azuka Romanus et al.: Screening for Plasmid-Mediated Multidrug Resistant Bacteria in Ikpoba River Water Samples Figure 2. Plasmid profile (after curing) of multi-drug resistant bacterial isolates analyzed with 0.8% agarose gel electrophoresis stained with ethidium bromide. L is 0.5kb - 48.5kbDNA ladder (molecular marker).samples 5 and 6 shows no plasmid after curing. Samples 1, 2, 3, 4 and 7 are no DNA template control. Key 5 = Staphylococcus aureus 6 = Streptococcus faecalis Table 2.Antibiogram of Streptococcus faecalis and Staphylococcus aureus pre-and post Plasmid Curing. Isoltes Staphylococc us aureus Streptococcus faecalis Resistance To: Susceptible To: BeforeCuring AfterCuring BeforeCuring AfterCuring Augmentin, gentamycin, pefloxacin, Streptomycin and Augmentin, gentamycin, pefloxacin, ofloxacin, ofloxacin, streptomycin, amoxicillin, Ciprofloxacin amoxicillin Ciprofloxacin, chloramphenicol and cotrimoxazole chloramphenicol cotrimoxazole Chloramphenicol, cotrimoxazole, ofloxacin, pefloxacin, gentamycin, augmentin, sparfloxacin, amoxicillin Chloramphenicol Ciprofloxacin and streptomycin Ciprofloxacin, streptomycin cotrimoxazole, ofloxacin, pefloxacin, gentamycin, augmentin, sparfloxacin, and amoxicillin 4. Conclusion The research has shown that some of the isolates of water samples collected from Ikpoba River, Benin City, Edo State, Nigeria had a multidrug resistant property necessitated by plasmid. This would hamper the successful use of antibiotics for treating infectious diseases. Though antibiotics are still effective for treating many bacterial infections, many strains are becoming increasingly difficult to treat and therapeutic options are getting fewer and this poses a serious health threat to the populace. The isolates could have acquired the resistance by horizontal gene transfer through conjugation because large scales of antibiotics are used in aquaculture and poultry farming. Some of these wastes are drained into river through runoff and all these predispose the environment to antibiotics thereby resulting in resistance of bacterial isolates. Industries should endeavour to treat their wastewater before discharge as some of the disinfectant used in the factory could confer resistance to organisms. Also, the aquaculturists and poultry farmers that live within the vicinity of the rivers should avoid the abuse of antibiotics since the effect of some of these therapeutic agents do not end at the very site of action; the residual effect ends in the environment. This could help to prevent the widespread of resistance found in bacteria and reduce the risk of treatment failures. References [1] Caro, L., Chruchwar, G. D., & Chandler, M, (1984). Study of plasmid replication in vivo. Methods in Microbiol. 17 72-122. [2] Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, T., Falagas, M.E. (2012). Multidrug Resistance, Extensively drug-resistance and Pandrug-Resistance Bacteria in International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clinical Microbiology Infection 18: 269-281. [3] Messi, P., Guerrier, E., Bondi, M. (2005). Antibiotic Resistance and Antibacterial Activity in Heterotrophic Bacteria of Mineral Water Origin. Science Total Environment 346: 213-219. [4] Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O. and Dantas, G. (2012). The Shared Antibiotic Resistance of Soil Bacteria and Human Pathogues. Science (337): 1110-1111. [5] Baquero, F., Martinez, J.L. and Canton, R. (2018). Antibiotic Resistance in Water Environments.Correct Opinion Biotechnology (19): 260-265.

International Journal of Microbiology and Biotechnology 2018; 3(2): 31-35 35 [6] Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.C., Michael, I. and Fatta-Kassinos, D. (2013). Urban Wastewater Treatment Plants as Hotspots for Antibiotics Resistance Bacteria and Genes Spread into the Environment. A Review. Science Total Environment (447): 345-360. [7] Allenn, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., and Handelsman, J. (2010). Call of the Wide Antibiotic Resistance Genes in Natural Environments. National Revised Microbiology (8): 251-259. [8] Dapaola, A., Peeler, J. and Rodncky, G.E. (1995). Effects of Oxytetracychine-Mediated Feed On Antibiotic Resistance of Gram-Negative Bacteria in Catfish Ponds. Applied Environmental Microbiology (61): 2335-2340. [9] Zhang, X.X., Zhang, T. and Fang, H.H.P. (2009). Antibiotic Resistance Genes in Water Environment. Applied Microbiology Biotechnology (82): 397-414. [10] Ogbeibu, A.E. and Edutie, L.O. (2002). Effects of Brewery Effluents on the Water Quality and Rotifer. African Journal Environmental Pollution Health 1(2): 1-7. [11] Akpomie, O.O., Buzugbe, H.S. and Eze, P.M. (2014). Effect of brewery effluent on the microbiological quality of Ikpoba river and surrounding borehole water in Benin city, Nigeria. British Microbiology Research Journal 5(1): 76-82, 2015. ISSN: 2231-0886. [12] Ekhaise, F.O. and Anyansi, C.C. (2005). Influence of breweries effluent discharge on the microbiological and physicochemical quality of Ikpoba river, Nigeria. African Journal of Biotechnology 4 (10); 1062-1065. [13] Cheesbrough, M. (2006). District Laboratory Practice in Tropical Africa. University of Cambridge2 nd Edition Update Part 2. Pp. 63-70. [14] Bauer, AW., Kirby, WM., Sheries, JC. and Turk, M. (1996).Antimicrobial sensitivity testing by agar diffusion method. Journal Clinical Pathology 45: 493-6. [15] Baver, A.W., Kirby, W.M.M., Sherris, J.C., Turck, M. (1966). Antibiotics susceptibility testing by a standardized singles disc method. American Journal of Clinical Pathology 145: 493-496 [16] Islam, M.T., M.R. Amin, S.M.R. Hoque and S.R. Alim, (2014). Microbial loads and association of enteropathogenic bacteria in ice-creams sold by street vendors at Dhaka city in Bangladesh. Int. J.Pharm. Sci. Res., 5: 2436-2440. [17] Winkler, U., Ruger,W. andwackernagew, L,. (1979). Bacterial, Phage and Molecular Genetics, Pp.-128. Berlin: Springer. [18] Akpe, A.R., Ekundayo, A.O. and Esumeh F.I. (2013). Degradation of Crude oil by bacteria: A role for plasmid-borne genes. Global Journal of Scientific Frontier Research Biological Science 13(Issue 6 Version 1.0): 21-26. [19] Dillon J. R. (1985). Recombinant DNA Methodology John Willey & Sons, Canada. Pp81 83. [20] Birnboim, H. C. and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513-1523. [21] Sambrook J., Fritsch E. F., Maniatis T. (1989) Molecular cloning: laboratory manual, 2nd ed. Cold Spring Harbor Laboratory pres, Cold Spring Harbor, New York. ISBN 0-87969309-6. [22] Dapaola, A., Peeler, J. and Rodncky, G.E. (1995). Effects of Oxytetracychine-Mediated Feed On Antibiotic Resistance of Gram-Negative Bacteria in Catfish Ponds. Applied Environmental Microbiology (61): 2335-2340. [23] Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O. and Dantas, G. (2012). TheShared Antibiotic Resistance of Soil Bacteria and Human Pathogens. Science (337): 1110-1111. [24] Enabulele, O. I. and Orikpete, A. V. (2009). Extended spectrum B-lactamase production in Gram negative aerobic isolate from diabetic wounds. Nig. J. Microbiol. 23(1):1961-1969. [25] Esumeh, F. I., Akpe, A. R., Eguagie, O. E. (2009). Crude oil Degrading Capabilities of bacterial isolates from pawpaw (Carica papaya) and sweet orange (Citrus sinensis). A role for plasmid-mediated gene. Proceedings of the 1 st International Conference, Workshop and exhibition on Biotechnologies for Improved Production of Oil and Gas in the Gulf of Guinea, held in Abuja, Nigeria 1. April 1-3. 2009. BIPOG3-4-34. Pp. 1-7. [26] Craig, Maclean (2016). Antibiotic Resistance in Bacteria. Journal Nature, Ecology and Evolution. Pp. 33-46.