Can natural phenotypic variances be estimated reliably under homogeneous laboratory conditions?

Similar documents
Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)

Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures

WATER plays an important role in all stages

The influence of propagule size and maternal nest-site. selection on survival and behaviour of neonate turtles. J. J. KOLBE* and F. J.

JEZ Part A: Comparative Experimental Biology. An experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype

Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta)

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination

THE adaptive significance, if any, of temperature-dependent

and hydration of hatchling Painted Turtles, Chrysemys picta

Phenotypic Effects of Thermal Mean and Fluctuations on Embryonic Development and Hatchling Traits in a Lacertid Lizard, Takydromus septentrionalis

Does Variation in Soil Water Content Induce Variation in the Size of Hatchling Snapping Turtles (Chelydra serpentina)? MICHAEL S.

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

Like mother, like daughter: inheritance of nest-site

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia

Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination

The impact of behavioral and physiological maternal effects on offspring sex ratio in the common snapping turtle, Chelydra serpentina

EMBRYONIC TEMPERATURE INFLUENCES JUVENILE TEMPERATURE CHOICE AND GROWTH RATE IN SNAPPING TURTLES CHELYDRA SERPENTINA

Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats

MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE)

Egg environments have large effects on embryonic development, but have minimal consequences for hatchling phenotypes in an invasive lizard

Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles

Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination

Consequences of Extended Egg Retention in the Eastern Fence Lizard (Sceloporus undulatus)

EXPERIMENTAL ANALYSIS OF AN EARLY LIFE-HISTORY STAGE: SELECTION ON SIZE OF HATCHLING TURTLES

Nest depth may not compensate for sex ratio skews caused by climate change in turtles

University of Canberra. This thesis is available in print format from the University of Canberra Library.

Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming?

FEMALE PHENOTYPE, LIFE HISTORY, AND REPRODUCTIVE SUCCESS IN FREE-RANGING SNAKES (TROPIDONOPHIS MAIRII)

SNAPPING turtles (Chelydra serpentina) of various

EGG size and composition can be the target

phenotypes of hatchling lizards, regardless of overall mean incubation temperature

Age and Season Impact Resource Allocation to Eggs and Nesting Behavior in the Painted Turtle

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

THE concept that reptiles have preferred

Geographic variation in lizard phenotypes: importance of the incubation environment

Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard

Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field

The righting response as a fitness index in freshwater turtles

Weaver Dunes, Minnesota

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA)

IMPACT OF NEST-SITE SELECTION ON NEST SUCCESS AND NEST TEMPERATURE IN NATURAL AND DISTURBED HABITATS

A Three Year Survey of Aquatic Turtles in a Riverside Pond

Canadian Journal of Zoology. Thermal consequences of subterranean nesting behavior in a prairie-dwelling turtle

Thermal adaptation of maternal and embryonic phenotypes in a geographically widespread ectotherm

Influence of Incubation Temperature on Morphology, Locomotor Performance, and Early Growth of Hatchling Wall Lizards (Podarcis muralis)

Maternal Effects in the Green Turtle (Chelonia mydas)

PHENOTYPES AND SURVIVAL OF HATCHLING LIZARDS. Daniel A. Warner. MASTER OF SCIENCE in Biology

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017

DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES?

Is Parental Care the Key to Understanding Endothermy in Birds and Mammals?

Incubation temperature in the wild influences hatchling phenotype of two freshwater turtle species

Egg mass determines hatchling size, and incubation temperature influences post-hatching growth, of tuatara Sphenodon punctatus

The significance of predation in nest site selection of turtles: an experimental consideration of macro- and microhabitat preferences

A description of an Indo-Chinese rat snake (Ptyas korros [Schlegel, 1837]) clutch, with notes on an instance of twinning

Geographic variation in nesting behavior and thermally-induced offspring phenotypes in a widespread reptile

ACTIVITY #6: TODAY S PICNIC SPECIALS ARE

Metabolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas)

Effects of Incubation Temperature on Growth and Performance of the Veiled Chameleon (Chamaeleo calyptratus)

Rookery on the east coast of Penins. Author(s) ABDULLAH, SYED; ISMAIL, MAZLAN. Proceedings of the International Sy

Brooke L. Bodensteiner 251 Bessey Hall Iowa State University, Ames, IA

INTER-SEASONAL MAINTENANCE OF INDIVIDUAL NEST SITE PREFERENCES IN HAWKSBILL SEA TURTLES

Influence of egg aggregation and soil moisture on incubation of flexible-shelled lacertid lizard eggs

LookSmart's FindArticles - Ecology: Nest-site selection: microhabitat variation and its... Page 1 of 13

Canadian Journal of Zoology. The Effects of Climate on Annual Variation in Reproductive Output in Snapping Turtles (Chelydra serpentina).

Reproductive physiology and eggs

Latent Effects of Egg Incubation Temperature on Growth in the Lizard Anolis carolinensis

Testing the Persistence of Phenotypic Plasticity After Incubation in the Western Fence Lizard, Sceloporus Occidentalis

Seasonal Shifts in Reproductive Investment of Female Northern Grass Lizards ( Takydromus septentrionalis

ECONOMIC studies have shown definite

Phenotypic plasticity of nest timing in a post- glacial landscape: how do reptiles adapt to seasonal time constraints?

RELATIONSHIPS AMONG WEIGHTS AND CALVING PERFORMANCE OF HEIFERS IN A HERD OF UNSELECTED CATTLE

Effects of early incubation constancy on embryonic development: An experimental study in the herring gull Larus argentatus

D. Burke \ Oceans First, Issue 3, 2016, pgs

Social and Thermal Cues Influence Nest-site Selection in a Nocturnal Gecko, Oedura lesueurii

Title of Project: Distribution of the Collared Lizard, Crotophytus collaris, in the Arkansas River Valley and Ouachita Mountains

Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards

University of Groningen

Temperature-Dependent Sex Determination in the Leopard Gecko, Eublepharis macularius

Long-Term Selection for Body Weight in Japanese Quail Under Different Environments

CALCIUM METABOLISM IN EMBRYOS OF THE OVIPAROUS SNAKE COLUBER CONSTRICTOR

The critical importance of incubation temperature

Available from Deakin Research Online:

Nest-site selection in Eastern hognose snakes (Heterodon platirhinos) Casey Peet-Paré

Relationship between hatchling length and weight on later productive performance in broilers

APPLICATION OF BODY CONDITION INDICES FOR LEOPARD TORTOISES (GEOCHELONE PARDALIS)

Cold-Tolerance of Hatchling Painted Turtles (Chrysemys picta bellii) from the Southern Limit of Distribution 300 SHORTER COMMUNICATIONS

Amniote Relationships. Reptilian Ancestor. Reptilia. Mesosuarus freshwater dwelling reptile

Who Really Owns the Beach? The Competition Between Sea Turtles and the Coast Renee C. Cohen

6. The lifetime Darwinian fitness of one organism is greater than that of another organism if: A. it lives longer than the other B. it is able to outc

Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution

Temperature-Dependent Sex Determination under Rapid Anthropogenic Environmental Change: Evolution at a Turtle s Pace?

EFFECTS OF POSTNATAL LITTER SIZE ON REPRODUCTION OF FEMALE MICE 1

Natural History Note

Rigid Shells Enhance Survival of Gekkotan Eggs

Tree Swallows (Tachycineta bicolor) are breeding earlier at Creamer s Field Migratory Waterfowl Refuge, Fairbanks, AK

Sex-based hatching asynchrony in an oviparous lizard (Bassiana duperreyi, Scincidae)

Near-natural Incubation of Testudo graeca soussensis PIEH, 2000, Eggs

Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae)

Gulf and Caribbean Research

Transcription:

doi: 10.1111/j.1420-9101.2007.01343.x Can natural phenotypic variances be estimated reliably under homogeneous laboratory conditions? J. R. ST JULIANA 1 * & F. J. JANZEN *Department of Animal Ecology, Iowa State University, Ames, IA, USA Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA, USA Keywords: common garden experiment; developmental plasticity; phenotypic variance; quantitative genetics; temperature; turtle. Abstract The phenotypic variance is assumed to be greater in a more heterogeneous environment. The validity of this assumption is important for microevolutionists to extrapolate results from the laboratory to field environments. We subjected clutches of eggs from common snapping turtles (Chelydra serpentina) to a split-family design to evaluate the variability in incubation time and four size traits of neonates from eggs incubated in the laboratory and those left in situ. Mean size measurements were similar between the laboratory and the field, but incubation time was systematically longer in the field. We found no tendency among clutches for hatchlings resulting from eggs incubated in laboratory or field environments to demonstrate greater variability. Also contrary to expectation, clutches that experienced greater thermal variation in the field did not exhibit greater variation in phenotypic traits. Consequently, extrapolating results from the laboratory to the field may not always be problematic for microevolutionary analyses. Introduction The phenotype is a major determinant of individual fitness, often mediated through associated variation in behaviour or performance (Arnold, 1983; Kingsolver & Huey, 2003), and is usually the foundation of evolutionary quantitative genetic analyses (Falconer & Mackay, 1996; Roff, 1997; Lynch & Walsh, 1998). Experimentalists seeking to illuminate links between phenotype, performance and fitness and to estimate essential quantitative genetic parameters have often turned to laboratory (or greenhouse) settings in an effort to control factors that complicate many field studies of the same questions. The results of these laboratory studies are then usually interpreted as providing meaningful insights into natural systems. But how environmentally realistic are the outcomes of these microevolutionary experiments? Correspondence: Fredric J. Janzen, Department of Ecology, Evolution, & Organismal Biology, 253 Bessey Hall, Iowa State University, Ames, IA 50011-1020, USA. Tel.: +1-5152944230; fax: +1-5152941337; e-mail: fjanzen@iastate.edu 1 Present address: J. R. St Juliana, Department of Ecology and Organismal Biology, Indiana State University, Terre Haute, IN 47809, USA. Genes, environmental factors (including nongenetic parental effects), and genotype environment interactions control the phenotypes of quantitative traits (Roff, 1997; Schlichting & Pigliucci, 1998). Abiotic environmental factors may play a reduced role in determining phenotypic variation in traits subject to substantial family (parental or genetic) effects, yielding similar phenotypes under diverse environmental conditions (but see West- Eberhard, 2003). In contrast, traits with environmentally induced phenotypic plasticity are commonly assumed to exhibit the greatest degree of plastic response in variable environments, whereas less variation is expected in constant environments (e.g. Bull et al., 1982; Mitchell- Olds & Rutledge, 1986; Janzen, 1992). If so, then difficulties arise in estimating meaningful quantitative genetic parameters of traits measured in the usually less variable environmental conditions of the laboratory (but see Riska et al., 1989). In particular, heritability estimates (but not evolvabilities; see Houle, 1992) are fundamentally calculated from variance components, including the phenotypic variance (Falconer & Mackay, 1996; Roff, 1997; Lynch & Walsh, 1998). To address this concern over environmentally induced phenotypic variance, Weigensberg & Roff (1996) reviewed the literature on wild animals and found eight 1406

vs. laboratory phenotypic variances 1407 studies that compared the heritability of traits in matched field and laboratory populations. These heritabilities did not differ significantly (n ¼ 22 paired comparisons). Moreover, the phenotypic variances of traits (all of which pertained to insects) in the laboratory averaged 82% of those found in the corresponding field populations. These results suggest that, counter to common assumption, variance components of quantitative traits may not diverge greatly between the laboratory and the field. However, this conclusion is controversial and has been challenged on various grounds (e.g. Hoffmann, 2000; Hermida et al., 2002). Beyond differing environmental conditions and the taxonomic bias noted by Weigensberg & Roff (1996), a confounding statistical factor underlying such extrapolations is that the sibships (e.g. clutches, litters, seed sets, clones and lines) used in matched laboratory and field studies may not be the same. When using different sibships, genetic and parental effects that might influence phenotypic variation cannot be controlled explicitly, foisting additional inference onto interpreting the results. Instead, split-family or reciprocal transplant designs can better account for the phenotypic effects of environment and parentage (e.g. Gustafsson & Merila, 1994; Simons & Roff, 1994; Lynch & Walsh, 1998; Packard et al., 1999). The thermal and hydric environments to which developing reptile embryos are exposed can substantially influence phenotypic traits of the resulting neonates (reviewed in Ewert, 1985; Deeming & Ferguson, 1991; Packard, 1999; Arnold & Peterson, 2002), which can have substantial fitness consequences (e.g. Janzen et al., 2000). Incubation experiments in this active field of inquiry are usually conducted under constant conditions in the laboratory, even though it is well known that the environment typically fluctuates extensively in natural nests (e.g. Plummer et al., 1994; Shine & Harlow, 1996; Packard et al., 1999). How fluctuating temperatures in particular influence development of embryos relative to constant conditions is increasingly recognized to be of some importance (Georges et al., 1994; Shine & Harlow, 1996; Shine et al., 1997; Andrews et al., 2000; Ashmore & Janzen, 2003). Even so, extrapolating laboratory results to the field occurs frequently (but usually with an awareness of the assumptions) in incubation experiments involving reptile eggs and embryos. Whether we can reasonably infer that conditions in the laboratory yield similar phenotypes of offspring (and clutches) as circumstances in the field thus remains a subject of controversy (e.g. Packard et al., 1999 vs. Rimkus et al., 2002). Our study evaluates this controversy and helps redress the taxonomic bias and design shortcoming of nearly every prior microevolutionary analysis of this issue. We report an experimental assessment of variation in the means and variances of key phenotypic traits of hatchling common snapping turtles (Chelydra serpentina Linnaeus, 1758) deriving from clutches of eggs split between a constant common-garden setting in the laboratory and a naturally highly heterogeneous environment in the natal nest. The advantage of this split-family design is control of clutch effects that could otherwise complicate the applicability of laboratory results to the field. We examine body mass, carapace length, carapace width, plastron length and incubation time, traits that are influenced greatly by environmental factors and that have substantial fitness consequences as described above. We first compare the phenotypic means and variances of these traits between groups of siblings in the laboratory and field settings. We also explore whether increased variability in nest temperature in the field induces greater variation in hatchling phenotypes. Our goal was not, and cannot be, to calculate quantitative genetic parameters in this study for reasons discussed below. Methods Study organism and field methods The common snapping turtle, C. serpentina, is widespread throughout the eastern two-thirds of North America (Ernst et al., 1994), and ranges as far south as Ecuador. As in most species of turtles, eggs in a single Chelydra clutch are ovulated simultaneously (White & Murphy, 1973) and are oviposited with embryos all in a late gastrula stage (Ewert, 1985). Females (at least in the northern temperate zone) nest once per year at most (Ernst et al., 1994; Iverson et al., 1997). We conducted field research in the Upper Mississippi River National Wildlife and Fish Refuge in Carroll and Whiteside Cos., IL, USA. The field site is mainly sand prairie with a riparian zone near the river, providing a diversity of nesting habitat. We patrolled the field site daily from 1 to 30 June 2001; nesting activity (n ¼ 48) occurred between 7 and 27 June. We employed a split-family design in which 12 eggs were removed from the top of each of 15 targeted nests for laboratory study (n ¼ 180) (two eggs per nest were frozen for use in another study (St Juliana et al., 2004)). All other eggs (n ¼ 24 65 per nest) remained to incubate in their natal nests. This sampling procedure is unlikely to have influenced our results because eggs of other freshwater turtles do not vary systematically in size in relation to order of oviposition (Tucker & Janzen, 1998). We placed the eggs extracted from the nests into chicken egg cartons containing damp sand and stored the cartons in shaded Styrofoam coolers for 1 4 days before transporting them to Iowa State University. We protected most of the 15 focal nests with a cage containing a 3-cm grid of white, plastic-coated wire. Each cage was centred over the nest and secured with gardening rebar. The grid minimized disturbance to a nest site, allowing natural vegetation to persist through its openings. Several nests constructed in a sand road did not receive a cage for practical reasons. We briefly

1408 J. R. ST JULIANA AND F. J. JANZEN re-opened 14 nests between 27 and 30 June to insert an external probe into the middle to record temperature. We then buried a logger (HOBO Temp; Onset Corp., Pocasset, MA, USA) adjacent to a given nest and connected it to the probe. Loggers recorded temperature every 45 min for about 7 weeks (60 80% of development). We excavated all nests on 12 August to remove loggers and nearly hatched eggs (n ¼ 609) for transport to Iowa State University. The unhatched eggs completed incubation in the laboratory (see below for details). a moist paper towel for 2 days to permit solidification of the carapace and absorption of the yolk sac and then scored the targeted phenotypic traits for all surviving hatchlings from laboratory-incubated (n ¼ 137) and field-incubated (n ¼ 564) eggs. We recorded body mass to the nearest 0.01 g and carapace length along the dorsal midline, carapace width at the widest point, and plastron length along the ventral midline to the nearest 0.01 mm. We released all surviving hatchlings at the field site on 16 September (St Juliana et al., 2004). oratory methods We placed the 10 unfrozen eggs from each clutch into a constant-temperature chamber that averaged 28.37 ± 0.18 C during incubation and )150 kpa water potential of the vermiculite incubation substrate (detailed in St Juliana et al., 2004). This thermal regime reflects mean temperatures recorded in Chelydra nests at the field site during the middle portion of incubation (Table 1, see also Kolbe & Janzen, 2002), a period of embryonic development that encompasses substantial organ differentiation and growth (Yntema, 1968, 1979; Ewert, 1985; Janzen, 2007). The experimental hydric environment is also representative of soil moisture availability recorded in Chelydra nests laid in sandy soils like those found at the field site (Packard et al., 1985). We incubated nearly hatched eggs retrieved from nests on 12 August in the same thermal and hydric conditions used for their laboratory-incubated siblings. We checked all boxes two to three times day for hatchlings beginning 12 August and recorded incubation time as the number of days elapsed from oviposition until hatching. Upon hatching, we placed a turtle in a cup with Statistical analysis We used JMP version 5.1.1 (SAS Institute, Inc., 2004) for all statistical analyses, most of which employed means and variances of traits at the level of clutch. We examined relationships among nest and offspring characteristics in the laboratory and in the field with linear regression and correlation analyses and with analyses of variance. We also explored trait variation between laboratory- and field-incubated eggs using paired t-tests. We did not calculate any detailed quantitative genetic parameters (e.g. additive genetic variance) in this study because both the relatively small number of families (n ¼ 15 clutches) and the lack of information on parental phenotypes would probably yield wide standard errors (e.g. Simons & Roff, 1994). Furthermore, any estimate of heritability or genotype environment interaction is likely to be inflated, and therefore relatively useless, because we cannot account for the important maternal effect of egg mass on offspring body size for the fieldincubated eggs. Hence, we have focused conservatively on interpreting only phenotypic means and variances of the offspring. Clutch Date laid Clutch size Incubation temperature ( C) oratory hatching success (proportion) hatching success (proportion) Table 1 Characteristics of 15 nests of common snapping turtles (Chelydra serpentina). 1 8 June 63 31.36 ± 2.67 1 0.96 2 10 June 36 28.12 ± 2.33 1 1 3 10 June 49 28.86 ± 2.82 1 0.97 4 11 June 54 27.97 ± 1.84 1 0.95 5 11 June 73 26.08 ± 1.71 0.90 0.80 6 12 June 51 26.13 ± 1.80 0.90 1 7 12 June 50 N/A 0.80 0.53 8 12 June 33 N/A 0.80 0.95 9 12 June 75 N/A 1 0.90 10 12 June 35 N/A 0.90 1 11 12 June 38 27.68 ± 1.99 0.90 0.92 12 12 June 77 24.20 ± 1.88 0.90 0.97 13 14 June 53 28.59 ± 2.71 0.90 0.95 14 15 June 40 28.38 ± 2.48 0.90 0.82 15 20 June 73 27.24 ± 1.87 0.80 0.95 Mean 12 June 53.3 ± 15.6 27.69 ± 1.84 0.91 ± 0.07 0.91 ± 0.12 Incubation temperature is the mean (± 1 SD) recorded during the majority of embryonic development.

vs. laboratory phenotypic variances 1409 Results Nests The 15 snapping turtle nests used in this study were mainly laid within a few days of each other in mid-june (Table 1). This relative uniformity of oviposition date facilitates among-nest comparisons. The large clutch sizes (averaging 53 eggs per nest), combined with high hatching success (typically 80%) (Table 1), ensure adequate representation of each nest in both the laboratory and field settings employed in the split-family experimental design. These nests were also deposited in a diversity of microenvironments at the field site (St Juliana et al., 2004), which is confirmed by the considerable among-nest variation recorded in mean temperature during most of embryonic development for the 11 nests whose temperature loggers did not malfunction (24.20 31.36 C, Table 1). This range of thermal conditions experienced by nests in the field promotes evaluating the role of incubation temperature in impacting phenotypic variation in the resulting neonates. Lay date, clutch size and incubation temperature were all independent of each other ( r 0.39 and P 0.23 in all three pairwise comparisons). Phenotypic means and variances As expected from numerous prior laboratory and field studies of this species, incubation time in the nests was inversely correlated with nest temperature (r ¼ )0.62, P ¼ 0.0019, n ¼ 11). Consequently, some eggs spent more time in the laboratory than others before hatching (mean ± 1 SD ¼ 7.2 ± 5.7 days) because all field-incubated eggs were retrieved from nests on the same date. To assess possible bias induced by this among-clutch variation, we regressed data deriving from field-incubated eggs on the mean number of days of additional incubation in the laboratory. For all phenotypic traits, these analyses of both clutch means and variances yielded only two statistically significant results (r ¼ )0.39, P ¼ 0.0288 for mean plastron length and r ¼ 0.88, P < 0.0001 for mean incubation time; r 0.37, P 0.17 in the remaining eight cases). Consequently, our sampling scheme had a negligible impact on the results of the study. The clutch means of the four morphological traits, but not incubation time, were significantly correlated between the laboratory and field settings (Table 3). Larger hatchlings in the laboratory had larger siblings in their natal nest (Table 2, Fig. 1). Even so, there was no trend for the means of size measurements to be greater in either the laboratory or field settings (Tables 2 and 3). On the other hand, eggs systematically took longer to incubate in the field than did their counterparts in the laboratory (Tables 2 and 3). This result, at least in part, likely reflects the somewhat cooler mean temperature experienced in most nests (Table 1) compared with the Table 2 Means (± 1 SD) of phenotypic traits for embryos and offspring from 15 clutches of common snapping turtle (Chelydra serpentina) eggs reared in a split-family design. Incubation time (days) Body mass (g) Carapace length (mm) Carapace width (mm) Plastron length (mm) oratory oratory oratory oratory oratory Clutch (sample sizes) 1 (10, 49) 66.1 ± 1.1 65.1 ± 0.3 11.90 ± 0.62 12.08 ± 0.78 31.64 ± 1.14 31.19 ± 1.05 30.31 ± 1.85 29.52 ± 1.49 22.31 ± 0.77 22.09 ± 0.88 2 (10, 24) 64.6 ± 0.8 65.1 ± 2.5 9.29 ± 0.57 9.05 ± 0.41 30.19 ± 0.61 29.88 ± 0.61 27.62 ± 0.77 27.15 ± 0.66 21.26 ± 0.72 20.94 ± 0.44 3 (10, 35) 64.4 ± 1.2 65.9 ± 2.2 8.50 ± 0.50 8.48 ± 0.40 29.08 ± 0.61 28.29 ± 0.88 26.83 ± 0.54 25.80 ± 1.15 20.64 ± 0.68 20.43 ± 0.70 4 (10, 39) 65.7 ± 2.6 69.0 ± 2.1 10.33 ± 0.81 10.76 ± 0.67 29.60 ± 2.97 30.48 ± 0.95 27.94 ± 2.19 28.55 ± 0.85 20.89 ± 0.83 21.83 ± 0.87 5 (9, 49) 63.0 ± 0.5 63.7 ± 1.7 10.24 ± 0.36 9.40 ± 0.89 31.51 ± 0.55 28.41 ± 0.92 28.44 ± 0.99 26.51 ± 1.78 21.29 ± 0.74 21.10 ± 0.77 6 (9, 38) 63.1 ± 1.8 70.3 ± 1.8 9.79 ± 0.38 9.84 ± 0.52 29.13 ± 0.97 28.96 ± 0.79 27.28 ± 0.70 26.26 ± 1.14 21.16 ± 0.77 20.27 ± 0.83 7 (8, 19) 63.8 ± 1.5 67.2 ± 3.1 10.61 ± 0.34 11.38 ± 1.15 31.25 ± 0.37 31.12 ± 1.09 28.59 ± 1.16 28.81 ± 1.48 21.49 ± 0.69 22.23 ± 0.71 8 (8, 20) 64.4 ± 1.4 70.9 ± 1.7 9.47 ± 0.47 10.69 ± 0.35 29.13 ± 0.65 30.97 ± 0.54 26.74 ± 0.89 27.89 ± 0.73 20.03 ± 0.89 21.45 ± 0.59 9 (10, 57) 66.1 ± 2.0 66.8 ± 3.9 12.35 ± 0.46 12.23 ± 0.85 30.89 ± 1.09 30.87 ± 1.13 28.51 ± 0.87 28.34 ± 1.12 21.99 ± 0.99 22.14 ± 1.32 10 (9, 21) 67.1 ± 2.0 74.1 ± 1.0 10.98 ± 0.31 11.60 ± 0.42 30.66 ± 1.07 31.43 ± 0.71 28.63 ± 1.25 29.17 ± 0.87 20.47 ± 1.12 20.60 ± 0.97 11 (9, 22) 63.4 ± 1.3 71.9 ± 1.2 10.15 ± 0.48 10.78 ± 0.43 29.33 ± 0.59 29.58 ± 0.87 27.98 ± 1.18 27.43 ± 0.66 20.58 ± 0.75 20.39 ± 0.85 12 (9, 63) 64.4 ± 2.3 82.6 ± 1.6 10.35 ± 1.20 11.04 ± 0.59 29.92 ± 1.74 29.84 ± 0.76 26.97 ± 3.22 27.96 ± 1.02 22.06 ± 1.20 20.84 ± 0.72 13 (9, 39) 61.9 ± 2.7 59.6 ± 2.6 13.02 ± 0.55 12.44 ± 0.53 32.84 ± 0.54 32.58 ± 0.95 30.41 ± 0.54 30.00 ± 0.99 22.77 ± 1.16 23.11 ± 0.80 14 (9, 23) 62.2 ± 1.8 63.9 ± 2.0 8.08 ± 0.28 8.12 ± 0.43 28.13 ± 0.75 28.01 ± 0.78 25.58 ± 0.83 25.73 ± 0.77 19.93 ± 0.70 19.93 ± 0.64 15 (8, 58) 64.5 ± 2.7 63.5 ± 3.7 11.44 ± 0.42 11.16 ± 0.73 31.34 ± 0.42 30.24 ± 1.03 28.34 ± 0.72 27.59 ± 1.09 20.55 ± 1.47 20.94 ± 0.77 Mean (9.1, 37.1) 64.4 ± 2.3 68.1 ± 6.6 10.43 ± 1.44 10.76 ± 1.43 30.30 ± 1.65 30.12 ± 1.52 28.03 ± 1.81 27.83 ± 1.69 21.18 ± 1.19 21.29 ± 1.18 Sample sizes are the number of hatchlings examined in the laboratory and field respectively.

1410 J. R. ST JULIANA AND F. J. JANZEN 85 Incubation length (days) 80 75 70 65 60 55 Body mass (g) 14 13 12 11 10 9 Carapace length (mm) 33 32 31 30 29 8 28 31 24 Carapace width (mm) 30 29 28 27 26 Plastron length (mm) 23 22 21 20 25 19 Fig. 1 Reaction norms for fitness-related traits of embryonic and neonatal common snapping turtles (Chelydra serpentina) deriving from 15 clutches. Eggs from each clutch were split between a constant incubation environment in the laboratory and the fluctuating incubation environment of the natal nest. Each line connects the laboratory and field means for a given clutch. Table 3 Paired comparisons of means and variances of phenotypic traits for embryos and offspring from 15 clutches of common snapping turtle (Chelydra serpentina) eggs reared in a split-family design. Trait Means Variances Correlations, r (P) Paired t-tests, t (P) Correlations, r (P) Paired t-tests, t (P) Variance ratios Incubation time +0.35 (0.1944) 2.71 (0.0169)* +0.36 (0.1867) 1.76 (0.1005) 8.55 Body mass +0.92 (0.0001) 1.18 (0.2574) )0.10 (0.7251) 0.82 (0.4235) 0.99 Carapace length +0.65 (0.0084) 0.67 (0.5136) +0.06 (0.8322) 0.89 (0.3898) 0.85 Carapace width +0.79 (0.0005) 1.06 (0.3077) )0.02 (0.9393) 0.94 (0.3628) 0.86 Plastron length +0.70 (0.0034) 0.34 (0.7417) +0.17 (0.5443) 1.39 (0.1850) 0.99 P-values for all comparisons are two-tailed. Variance ratios are the ratios of phenotypic variance in the field to phenotypic variance in the laboratory, calculated over all individuals. *Mean incubation time was systematically longer in field-reared vs. laboratory-reared embryos.

vs. laboratory phenotypic variances 1411 higher constant incubation temperature employed in the laboratory part of the experiment (i.e. 28.37 C). In contrast to the results from the comparisons of means, the variances of offspring traits from laboratoryincubated eggs were uncorrelated with the corresponding variances for traits of turtles deriving from field-incubated eggs (Table 3). Similar to the examination of means, though, there was no tendency for the variance of any morphological trait for a given clutch to be larger in the field relative to its laboratory counterpart (Table 3). The variances in incubation time for fieldincubated eggs were systematically greater than for their laboratory-incubated counterparts, however (Table 3). Because mean incubation times differed substantially between the laboratory and field settings (F 1,28 ¼ 6.04, P ¼ 0.0205), we also statistically compared the coefficients of variation for this trait and found no significant difference (paired t ¼ 1.21, P ¼ 0.2466). Paired t-tests of the coefficients of variation for the morphological variables revealed no significant comparisons as well (paired t 1.59, P 0.13 in all four cases). Neither the mean nor the variance in nest temperature was implicated as a cause of the observed among-nest differences in means and variances of offspring morphology. All 16 possible correlations between temperature and morphology variables were small and far from statistical significance ( r 0.44, P 0.11). In contrast, mean incubation time declined with increases in both the mean and the variance of nest temperature (r ¼ )0.62, P ¼ 0.0019 and r ¼ )0.46, P ¼ 0.0305 respectively); the variance in incubation time was not related to either measure of nest temperature, however (r ¼ )0.10, P ¼ 0.7672 and r ¼ )0.09, P ¼ 0.7962 respectively). To further explore the potential impact of temperature on phenotypic variation, we compared the mean and variance of nest temperature with the ratio of the field to laboratory phenotypic variances for each of the five traits of interest. In none of the 10 analyses was the correlation statistically significant ( r 0.37, P 0.26), indicating that neither measure of nest temperature was important in influencing phenotypic variation in the nest when controlling for phenotypic variation in the laboratory. Discussion A primary requirement of adaptive microevolution is additive genetic variance for the trait(s) of interest (Falconer & Mackay, 1996; Lynch & Walsh, 1998). This genetic parameter is usually estimated through breeding designs conducted under controlled conditions and reported in terms of heritability (but see Houle, 1992). Because these conditions are typically artificial, the investigator must assume that the genetic estimates are representative of those operative in natural systems. Yet quantitative traits can be heavily influenced by environmental conditions (Roff, 1997; Schlichting & Pigliucci, 1998), thus this assumption is debatable. Moreover, changes in global climate are predicted to derive primarily from greater environmental variance through increases in extreme meteorological events (Karl & Trenberth, 2003). Thus, from a practical perspective as well, it is critical that we understand how increases in environmental heterogeneity affect organismal phenotypes. We explicitly addressed these issues by examining key phenotypic traits of offspring with a split-family design that incorporated both typical constant conditions in the laboratory and heterogeneous environments of natural nests. The primary result of our study is that the phenotypic variances of the focal traits did not differ consistently or significantly on a clutch-by-clutch basis between offspring from eggs reared either in the laboratory or in the field (Table 3). In other words, the phenotypic variances obtained in the laboratory for a given clutch were essentially representative of those obtained in the natal nest. Importantly, offspring sex ratios were similar in the laboratory and in the field (St Juliana et al., 2004), thus this result cannot be attributed to any aspects of temperature-dependent sex determination (Janzen, 2007). These findings are important because the phenotypic variance is a fundamental component of the heritability of a trait (i.e. narrow sense heritability is the ratio of the additive genetic variance to the phenotypic variance, Falconer & Mackay, 1996; Lynch & Walsh, 1998). Thus, if the additive genetic variances are similar in both laboratory and field settings (likely a reasonable assumption in this study as families were split between the two settings; but see, e.g. Simons & Roff, 1994), the heritabilities of the traits examined should be comparable in both conditions as well. This conclusion from our experiment on a vertebrate accords with the important review by Weigensberg & Roff (1996), which documented little difference in phenotypic variances between laboratory- and field-reared insects for various traits (but see Hoffmann, 2000; Hermida et al., 2002; Conner et al., 2003). Besides comparing phenotypic variances for eight matched laboratory field studies, Weigensberg & Roff (1996) also assessed the relationship between heritability estimates from hundreds of different laboratory and field studies across a diversity of animal species, obtaining essentially the same result. This finding is encouraging, but the potential for publication bias, particularly against field studies that are more likely to estimate nonsignificant heritabilities because of smaller sample sizes than laboratory studies, cannot be ignored (e.g. Palmer, 2000). Thus, we emphasize again that one of the strengths of our experiment (see also Simons & Roff, 1994) is the split-family design, which overcomes potentially confounding genetic and parental effects and can minimize the need for prohibitively large sample sizes. The phenotypic traits that we considered in this study possess at least two characteristics that render them

1412 J. R. ST JULIANA AND F. J. JANZEN especially effective candidates for testing the comparability of laboratory and field estimates in microevolutionary analyses. First, development time and body size have been linked to individual fitness in Chelydra and other organisms (e.g. Ultsch, 1989; Janzen, 1993; Bernardo, 1996; Janzen et al., 2000; but see Kolbe & Janzen, 2001). Because these traits are often under selection, estimates of their quantitative genetic parameters are particularly valuable for exploring microevolutionary dynamics (Grant & Grant, 1995; Sinervo & Doughty, 1996; Reznick et al., 1997). Second, prior laboratory (reviewed in Deeming & Ferguson, 1991; Packard, 1999; Arnold & Peterson, 2002) and field (Packard et al., 1993, 1999; Kolbe & Janzen, 2002; St Juliana et al., 2004) studies have linked phenotypic variation in these and other traits in reptiles to environmental variables, particularly temperature and substrate moisture during embryonic development. Thus, to the extent that these environmental factors varied in nature relative to the laboratory during this study, our experiment was ideally situated to document their impact on phenotypic differentiation and variation. The near absence of differences in phenotypic means and variances between the laboratory and the natural nests was somewhat unexpected because we focused on traits known to be affected by thermal and hydric environments in the laboratory (Deeming & Ferguson, 1991; Packard, 1999). Although egg size is a major determinant of offspring size in Chelydra (Packard & Packard, 1993), cool, moist incubation conditions slow embryonic development and produce relatively larger neonatal common snapping turtles than warm, dry incubation environments (e.g. Packard et al., 1987). Of course, most of this prior research has centred on differences in trait means, rather than in trait variances, among (usually constant) incubation treatments. One notable exception explored the effects of controlled variation in incubation temperature (substrate moisture was held constant) on means and variances of offspring traits in smooth softshell turtles (Apalone mutica Lesueur, 1827). Of particular note, the phenotypic variances of all measures of body size (the same as those included in the present study) declined with increasing thermal variance (Ashmore & Janzen, 2003). Similarly, in the present experiment, the greater environmental heterogeneity inherent in natural nests generally did not translate into higher phenotypic variances than in the laboratory, as indicated by variance ratios less than one (Table 3). The similarity of trait means and variances between the laboratory and the field is not due to low levels of environmental heterogeneity in the nests. Mean nest temperatures during the monitoring period (Table 1) covered most of the viable range of constant incubation temperatures (Yntema, 1978; F.J. Janzen, unpublished data). Moreover, temperatures varied within the centre of each nest as much as 10 C each day. Although we did not monitor soil moisture, prior research on Chelydra elsewhere has documented substantial and phenotypically meaningful levels of variation in water potential among nests constructed in similar soils (Packard et al., 1985, 1999). In sum, the ample variation in thermal (and likely hydric) conditions within and among nests did not consistently elicit correspondingly higher phenotypic variances in hatchling turtles arising from eggs incubated in those nests compared with their siblings reared in the laboratory. Our study is not without its limitations, however. We focused primarily on morphological traits, but other classes of traits (physiology, behaviour, life history, etc.) or phenotypes measured at different life stages could potentially yield different results. Also, we recorded temperatures during a limited, albeit important, fraction of the incubation period and only monitored temperatures in the centre of the nests. The contribution of temperatures at other times in development (especially during the first 2 weeks of incubation) to phenotypic variation is, thus, not known. Similarly, we removed eggs from the tops of nests, yet temperatures vary somewhat between the top and bottom of Chelydra nests (Wilhoft et al., 1983); this thermal variation could contribute to the phenotypic variation within and among nests. Finally, multiple paternity has been described in Chelydra clutches (Galbraith et al., 1993), which could contribute to errors in this study if paternity were distributed unevenly between eggs incubated in the laboratory and those that developed in the nests. Even so, the critical point is that we did not detect regular differences in phenotypic variances between the laboratory and the natural nests. To better address the possibility of nest matching by females and to quantify genotype environment interactions in nature, our splitfamily design could be extended to a cross-fostering approach among nests. In this way, eggs from various clutches could experience multiple natural incubation environments, in addition to their natal nest environment and one or more homogeneous laboratory conditions. Despite shortcomings, our experiment nonetheless showed that substantial levels of natural environmental heterogeneity did not have a great effect on phenotypic variances of key offspring traits in common snapping turtles. We also noted that phenotypic variances observed in the laboratory were generally representative of those detected in the field. Even so, we recognize that more research is required to determine whether our observations hold more broadly in vertebrates and in other taxa. Because experts predict forthcoming climate change to be characterized by increases in environmental heterogeneity (Karl & Trenberth, 2003), this issue holds implications as well for conservation research with a microevolutionary perspective. At the same time, field studies are not always practical for certain organisms. Consequently, extrapolating results from the laboratory or greenhouse to the field will likely always be a staple of

vs. laboratory phenotypic variances 1413 biological inquiry. Our work adds some confidence beyond the important review of Weigensberg & Roff (1996) that such extrapolations in microevolutionary experiments can be environmentally relevant and, thus, biologically meaningful. Acknowledgments We thank the US Fish and Wildlife Service (Special Use Permit 32576-01017), the Illinois Department of Natural Resources (Scientific Collecting Permit NH-01.0073), and the US Army Corps of Engineers for access to the field sites. We also thank M. Knutzen, M. Mullins and J. Rohloff for assistance with various aspects of both field and laboratory components of the study, J. Kolbe for helpful comments on methods and design, and S. Arnold, members of the Janzen, and two anonymous reviewers for critiquing drafts of the manuscript. Our research was conducted under Iowa State University Animal Care Protocol number 5-1-4822-J and was supported by National Science Foundation UMEB (IBN- 0080194) and LTREB (DEB-0089680) grants to FJJ. References Andrews, R.M., Mathies, T. & Warner, D.A. 2000. Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol. Monogr. 14: 420 231. Arnold, S.J. 1983. Morphology, performance and fitness. Am. Zool. 23: 347 361. Arnold, S.J. & Peterson, C.R. 2002. A model for optimal reaction norms: the case of the pregnant garter snake and her temperature-sensitive embryos. Am. Nat. 160: 306 316. Ashmore, G.M. & Janzen, F.J. 2003. Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant vs. fluctuating temperatures. Oecologia 134: 182 188. Bernardo, J. 1996. Maternal effects in animal ecology. Am. Zool. 36: 83 105. Bull, J.J., Vogt, R.C. & Bulmer, M.G. 1982. Heritability of sex ratio in turtles with environmental sex determination. Evolution 36: 333 341. Conner, J.K., Franks, R. & Stewart, C. 2003. Expression of additive genetic variances and covariances for wild radish floral traits: comparison between field and greenhouse environments. Evolution 57: 487 495. Deeming, D.C. & Ferguson, M.W.J. 1991. Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles. Cambridge University Press, New York. Ernst, C.H., Lovich, J.E. & Barbour, R.W. 1994. Turtles of the United States and Canada. Smithsonian Institution Press, Washington, DC. Ewert, M.A. 1985. Embryology of turtles. In: Biology of the Reptilia, Vol. 14 (C. Gans, F. Billett & P. F. A. Maderson, eds), pp. 75 267. Wiley, New York. Falconer, D.S. & Mackay, T.F. 1996. Introduction to Quantitative Genetics. Longman, Essex. Galbraith, D.A., White, B.N., Brooks, R.J. & Boag, P.T. 1993. Multiple paternity in clutches of snapping turtles (Chelydra serpentina) detected using DNA fingerprints. Can. J. Zool. 71: 318 324. Georges, A., Limpus, C. & Stoutjesdijk, R. 1994. Hatchling sex in marine turtle Caretta caretta is determined by proportion of development at a temperature not daily duration of exposure. J. Exp. Zool. 270: 432 444. Grant, P.R. & Grant, B.R. 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241 251. Gustafsson, L. & Merila, J. 1994. Foster parent experiment reveals no genotype environment correlation in the external morphology of Ficedula albicollis, the collared flycatcher. Heredity 73: 124 129. Hermida, M., Fernandez, C., Amaro, R. & San Miguel, E. 2002. Heritability and evolvability of meristic characters in a natural population of Gasterosteus aculeatus. Can. J. Zool. 80: 532 541. Hoffmann, A.A. 2000. oratory and field heritabilities: some lessons from Drosophila. In: Adaptive Genetic Variation in the Wild (T. A. Mousseau, B. Sinervo & J. Endler, eds), pp. 200 218. Oxford University Press, New York. Houle, D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195 204. Iverson, J.B., Higgins, H., Sirulnik, A. & Griffiths, C. 1997. Local and geographic variation in the reproductive biology of the snapping turtle (Chelydra serpentina). Herpetologica 53: 96 117. Janzen, F.J. 1992. Heritable variation for sex ratio under environmental sex determination in the common snapping turtle (Chelydra serpentina). Genetics 131: 155 161. Janzen, F.J. 1993. An experimental analysis of natural selection on body size of hatchling turtles. Ecology 74: 332 341. Janzen, F.J. 2007. Sex determination. In: Biology of the Snapping Turtle (A. C. Steyermark, M. S. Finkler & R. J. Brooks, eds), in press. Johns Hopkins University Press, Baltimore, MD. Janzen, F.J., Tucker, J.K. & Paukstis, G.L. 2000. Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles. J. Evol. Biol. 13: 947 954. Karl, T.R. & Trenberth, K.E. 2003. Modern global climate change. Science 302: 1719 1723. Kingsolver, J.G. & Huey, R.B. 2003. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43: 361 366. Kolbe, J.J. & Janzen, F.J. 2001. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15: 772 781. Kolbe, J.J. & Janzen, F.J. 2002. Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats. Ecology 83: 269 281. Lynch, M. & Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA. Mitchell-Olds, T. & Rutledge, J.J. 1986. Quantitative genetics in natural plant populations: a review of the theory. Am. Nat. 127: 379 402. Packard, G.C. 1999. Water relations of chelonian eggs and embryos: is wetter better? Am. Zool. 39: 289 303. Packard, G.C. & Packard, M.J. 1993. Sources of variation in laboratory measurements of water relations of reptilian eggs and embryos. Physiol. Zool. 66: 115 127. Packard, G.C., Paukstis G.L., Boardman, T.J. & Gutzke, W.H.N. 1985. Daily and seasonal variation in hydric conditions and temperature inside nests of common snapping turtles (Chelydra serpentina). Can. J. Zool. 63: 2422 2429.

1414 J. R. ST JULIANA AND F. J. JANZEN Packard, G.C., Packard, M.J., Miller, K. & Boardman, T.J. 1987. Influence of moisture, temperature, and substrate on snapping turtle eggs and embryos. Ecology 68: 983 993. Packard, G.C., Miller, K. & Packard, M.J. 1993. Environmentally induced variation in body size of turtles in natural nests. Oecologia 93: 445 448. Packard, G.C., Miller, K., Packard, M.J. & Birchard, G.F. 1999. Environmentally induced variation in body size and condition in hatchling snapping turtles (Chelydra serpentina). Can. J. Zool. 77: 278 289. Palmer, A.R. 2000. Quasireplication and the contract of error: lessons from sex ratios, heritabilities and fluctuating asymmetry. Annu. Rev. Ecol. Syst. 31: 441 480. Plummer, M.V., Shadrix, C.E. & Cox, R.C. 1994. Thermal limits of incubation in embryos of softshell turtles (Apalone mutica). Chelonian Conserv. Biol. 1: 141 144. Reznick, D.N., Shaw, F.H., Rodd, F.H. & Shaw, R.G. 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934 1937. Rimkus, T.A., Hruska, N. & Ackerman, R.A. 2002. Separating the effects of vapor pressure and heat exchange on water exchange by snapping turtle (Chelydra serpentina) eggs. Copeia 2002: 706 715. Riska, B., Prout, T. & Turelli, M. 1989. oratory estimates of heritabilities and genetic correlations in nature. Genetics 123: 803 813. Roff, D.A. 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York. SAS Institute, Inc. 2004. JMP Version 5.1.1. SAS Institute, Inc., Cary, NC. Schlichting, C. & Pigliucci, M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer, Sunderland, MA. Shine, R. & Harlow, P.S. 1996. Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77: 1808 1817. Shine, R., Madsen, T.R.L., Elphick, M.J. & Harlow, P.S. 1997. The influence of nest temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology 78: 1713 1721. Simons, A.M. & Roff, D.A. 1994. The effect of environmental variability on the heritabilities of traits of a field cricket. Evolution 48: 1637 1649. Sinervo, B. & Doughty, P. 1996. Interactive effects of offspring size and timing of reproduction on offspring reproduction: experimental, maternal, and quantitative genetic aspects. Evolution 50: 1314 1327. St Juliana, J.R., Bowden, R.M. & Janzen, F.J. 2004. The impact of behavioral and physiological maternal effects on offspring sex ratio in the common snapping turtle, Chelydra serpentina. Behav. Ecol. Sociobiol. 56: 270 278. Tucker, J.K. & Janzen, F.J. 1998. Order of oviposition and egg size in the red-eared slider turtle (Trachemys scripta elegans). Can. J. Zool. 76: 377 380. Ultsch, G.R. 1989. Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biol. Rev. 64: 435 516. Weigensberg, I. & Roff, D.A. 1996. Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50: 2149 2157. West-Eberhard, M.J. 2003. Developmental Plasticity and Evolution. Oxford University Press, New York. White, J.B. & Murphy, G.G. 1973. The reproductive cycle and sexual dimorphism of the common snapping turtle, Chelydra serpentina serpentina. Herpetologica 29: 240 246. Wilhoft, D.C., Hotaling, E. & Franks, P. 1983. Effects of temperature on sex determination in embryos of the snapping turtle, Chelydra serpentina. J. Herpetol. 17: 38 42. Yntema, C.L. 1968. A series of stages in the embryonic development of Chelydra serpentina. J. Morphol. 125: 219 252. Yntema, C.L. 1978. Incubation times for eggs of the turtle Chelydra serpentina (Testudines: Chelydridae) at various temperatures. Herpetologica 34: 274 277. Yntema, C.L. 1979. Temperature levels and periods of sex determination during incubation of eggs of Chelydra serpentina. J. Morphol. 159: 17 27. Received 18 November 2006; revised 9 February 2007; accepted 13 February 2007