Antimicrobial Susceptibility Patterns of an Emerging Multidrug Resistant Nosocomial Pathogen: Acinetobacter baumannii

Similar documents
Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Available online at ISSN No:

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

European Committee on Antimicrobial Susceptibility Testing

EUCAST recommended strains for internal quality control

Multidrug-Resistant Acinetobacter

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

Antimicrobial Susceptibility Profile of E. coli Isolates Causing Urosepsis: Single Centre Experience

Aerobic Bacterial Profile and Antimicrobial Susceptibility Pattern of Pus Isolates in a Tertiary Care Hospital in Hadoti Region

BACTERIOLOGICAL PROFILE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ISOLATES OF NEONATAL SEPTICEMIA IN A TERTIARY CARE HOSPITAL

Identification And Speciation Of Acinetobacter And Their Antimicrobial Susceptibility Testing

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

Isolation of Urinary Tract Pathogens and Study of their Drug Susceptibility Patterns

Bacteriological Study of Catheter Associated Urinary Tract Infection in a Tertiary Care Hospital

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

What does multiresistance actually mean? Yohei Doi, MD, PhD University of Pittsburgh

European Committee on Antimicrobial Susceptibility Testing

PrevalenceofAntimicrobialResistanceamongGramNegativeIsolatesinanAdultIntensiveCareUnitataTertiaryCareCenterinSaudiArabia

Isolation and Antibiogram of Enterococci from Patients with Urinary Tract Infection in a Tertiary Care Hospital

Isolation, identification and antimicrobial susceptibility pattern of uropathogens isolated at a tertiary care centre

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Comparison of Antibiotic Resistance and Sensitivity with Reference to Ages of Elders

Concise Antibiogram Toolkit Background

Antibiotic Resistance in Pseudomonas aeruginosa Strains Isolated from Various Clinical Specimens

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

GENERAL NOTES: 2016 site of infection type of organism location of the patient

Int.J.Curr.Microbiol.App.Sci (2017) 6(11):

Antibiotic Susceptibility of Common Bacterial Pathogens in Canine Urinary Tract Infections

Detection of Inducible AmpC β-lactamase-producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

International Journal of Pharma and Bio Sciences ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ESBL PRODUCING GRAM NEGATIVE BACILLI ABSTRACT

Appropriate antimicrobial therapy in HAP: What does this mean?

Acinetobacter Resistance in Turkish Tertiary Care Hospitals. Zeliha KOCAK TUFAN, MD, Assoc. Prof.

Antimicrobial Susceptibility Patterns of Salmonella Typhi From Kigali,

Antimicrobial Susceptibility Testing: Advanced Course

Antimicrobial Susceptibility Testing: The Basics

Help with moving disc diffusion methods from BSAC to EUCAST. Media BSAC EUCAST

Antimicrobial Stewardship/Statewide Antibiogram. Felicia Matthews Senior Consultant, Pharmacy Specialty BD MedMined Services

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

Mechanism of antibiotic resistance

International Journal of Health Sciences and Research ISSN:

Antimicrobial Stewardship Strategy: Antibiograms

Antibiotic susceptibility pattern of Pseudomonas aeruginosa at the tertiary care center, Dhiraj Hospital, Piparia, Gujarat

A Study on Urinary Tract Infection Pathogen Profile and Their In Vitro Susceptibility to Antimicrobial Agents

Summary of the latest data on antibiotic resistance in the European Union

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

Intrinsic, implied and default resistance

Study of drug resistance pattern of principal ESBL producing urinary isolates in an urban hospital setting in Eastern India

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Study of Microbiological Profile and their Antibiogram in Patients with Chronic Suppurative Otitis Media

Background and Plan of Analysis

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

Emerging antimicrobial resistance and clinical relevance of Acinetobacter isolates in a tertiary care hospital of rural area of Punjab, India

Antimicrobial Cycling. Donald E Low University of Toronto

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

APPENDIX III - DOUBLE DISK TEST FOR ESBL

Antimicrobial Resistance Surveillance from sentinel public hospitals, South Africa, 2013

Witchcraft for Gram negatives

Internationally indexed journal

New Drugs for Bad Bugs- Statewide Antibiogram

January 2014 Vol. 34 No. 1

2016 Antibiotic Susceptibility Report

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Volume-7, Issue-2, April-June-2016 Coden IJABFP-CAS-USA Received: 5 th Mar 2016 Revised: 11 th April 2016 Accepted: 13 th April 2016 Research article

JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH

Understanding the Hospital Antibiogram

GeNei TM. Antibiotic Sensitivity. Teaching Kit Manual KT Revision No.: Bangalore Genei, 2007 Bangalore Genei, 2007

ACINETOBACTER SPECIES: PHENOTYPIC CHARACTERIZATION AND ANTIMICROBIAL RESISTANCE

National Clinical Guideline Centre Pneumonia Diagnosis and management of community- and hospital-acquired pneumonia in adults

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

Prevalence of Pseudomonas aeruginosa in Surgical Site Infection in a Tertiary Care Centre

Antimicrobial Susceptibility Patterns

DRUG-RESISTANT ACINETOBACTER BAUMANNII A GROWING SUPERBUG POPULATION. Cara Wilder Ph.D. Technical Writer March 13 th 2014

THE NAC CHALLENGE PANEL OF ISOLATES FOR VERIFICATION OF ANTIBIOTIC SUSCEPTIBILITY TESTING METHODS

Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China

Compliance of manufacturers of AST materials and devices with EUCAST guidelines

Antibiotic Usage Guidelines in Hospital

Multi-drug resistant Acinetobacter (MDRA) Surveillance and Control. Alison Holmes

Original Article. Hossein Khalili a*, Rasool Soltani b, Sorrosh Negahban c, Alireza Abdollahi d and Keirollah Gholami e.

Nosocomial Infections: What Are the Unmet Needs

Drug resistance analysis of bacterial strains isolated from burn patients

What s new in EUCAST methods?

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

BACTERIOLOGICALL STUDY OF MICROORGANISMS ON MOBILES AND STETHOSCOPES USED BY HEALTH CARE WORKERS IN EMERGENCY AND ICU S

Sepsis is the most common cause of death in

Research Article Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

Antibiotic Susceptibility Pattern of Vibrio cholerae Causing Diarrohea Outbreaks in Bidar, North Karnataka, India

Trends in the Antibiotic Resistance Patterns of Enteric Fever Isolates a Three Year Report from a Tertiary Care Centre

Transcription:

Brief Communication Antimicrobial Susceptibility Patterns of an Emerging Multidrug Resistant Nosocomial Pathogen: Acinetobacter baumannii Rachna Tewari 1, Deepti Chopra 2, Rushna Wazahat 1, Shreya Dhingra 1, Mridu Dudeja 1 Submitted: 14 Dec 2017 Accepted: 16 Apr 2018 Online: 28 Jun 2018 1 Department of Microbiology, HIMSR, Jamia Hamdard, New Delhi-62, India 2 Department of Pharmacology, Government Institute of Medical Sciences, Kasna, Greater Noida, Uttar Pradesh-201310, India To cite this article: Tewari R, Chopra D, Wazahat R, Dhingra S, Dudeja M. Antimicrobial susceptibility patterns of an emerging multidrug resistant nosocomial pathogen: Acinetobacter baumannii. Malays J Med Sci. 2018;25(3):129 134. https://doi.org/10.21315/mjms2018.25.3.13 To link to this article: https://doi.org/10.21315/mjms2018.25.3.13 Abstract Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) bacterium, a nosocomial pathogen associated with a high mortality rate and limited therapeutic options have emerged as a serious problem throughout the world. The present study aimed to assess the current levels of antibiotic susceptibility among the isolates of Acinetobacter species. The sensitivity patterns were analysed from various clinical specimens obtained from both in-patients and outpatients of a teaching hospital. Isolation was performed on 5% sheep blood agar and MacConkey agar. Urine samples were inoculated into CLED agar. Antibiotic susceptibility was performed by the disc diffusion method. A total of 16,452 samples were collected. The total number of samples positive for Acinetobacter species was 67 (0.4%). The highest number of isolates 26 (38.8%) were obtained from urine. Majority 80.3% of the isolates exhibited resistance to three or more classes of antibiotics. All isolates were susceptible to colistin (100%). The susceptibility rate of A. baumannii isolates was 80% for tigecycline and 53.3% for carbapenem. Combination therapies including colistin and tigecycline seem to be the rational treatment for MDR A. baumannii until new alternatives come forward. Keywords: Acinetobacter, multidrug resistance, antibiotics, colistin, tigecycline, carbapenems Introduction Acinetobacter are aerobic, gram negative non-fermenting, non-fastidious, non-motile, catalase-positive, and oxidase negative coccobacilli that prefer a moist environment (1). The genus Acinetobacter has taken more and more imperative place as an opportunistic, difficult-to-treat pathogen causing nosocomial infections, though community acquired infections have also been reported. Acinetobacter is accredited as one of the six intricate pathogens ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) to emphasise that they escape the lethal action of antibiotics (2). Numerous studies have documented that Acinetobacter species have a noteworthy capacity for long-term survival (even in dry conditions) on various equipments like respirators and other inanimate surfaces in the hospital environment including telephone handles, door pushplates, patient charts, tabletops, hospital floor, hospital sink traps, bed linen, etc (3). The most important species of this organism is Acinetobacter baumannii (A. baumannii) causing most of the reported outbreaks. During the course of time Acinetobacter species have acquired resistance to almost all available antimicrobial agents. The spectrum Malays J Med Sci. May Jun 2018; 25(3): 129 134 www.mjms.usm.my Penerbit Universiti Sains Malaysia, 2018 This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 129

Malays J Med Sci. May Jun 2018; 25(3): 129 134 of antibiotic resistance of these organisms makes them a threat in hospital environment, as documented by recurring outbreaks and has created major challenges for healthcare management worldwide (4). The appearance of resistant Acinetobacter species is attributed to both selective pressure exerted by the use of broad spectrum antimicrobials and health care associated transmission of drug-resistant strains among patients (4). A number of acquired mechanisms of resistance including production of extended spectrum beta-lactamase enzymes, modification enzymes against aminoglycosides, altered binding sites for quinolones, and a variety of efflux mechanisms result in significant challenges for the clinician to select an appropriate empirical antimicrobial agent (4). Thus, the aim of the present study was to assess the current levels of antimicrobial susceptibility among the clinical isolates of Acinetobacter species recovered from different clinical specimens obtained from in-patients and out-patient department of a teaching hospital. Materials and Methods The present retrospective study was conducted in a 470-bedded teaching hospital, in Delhi, India by the Department of Microbiology and Department of Pharmacology over a 2-year period (January 2013 December 2015) after obtaining approval from the internal review board. Various clinical samples collected aseptically and processed during routine diagnostic work up from both inpatients and patients visiting the outpatient departments were analysed. Isolation of Acinetobacter species was performed on 5% sheep blood agar and MacConkey agar. Urine samples were inoculated into CLED agar and identification of clinical isolates was performed by grams staining, colony morphology and biochemical reactions. Acinetobacter species was identified as non-lactose fermenting, non-motile, oxidase negative, gram negative coccobacilli colonies and biochemical reactions. Species differentiation was done on the basis of glucose oxidation, gelatin hydrolysis, haemolysis, growth at 35 C and 44 C and assimilation tests (5). Identification was confirmed by an automated system, VITEK 2 (BioMerieux, France). VITEK 2 system uses the principles of Advanced Colorimetry. Identification of all isolates was executed with a pure overnight subculture as recommended by the manufacturer. Results are given as per the database in instrument, which is regularly updated by the manufacturer. Antibiotic susceptibility was performed by the Kirby Bauer disc diffusion method. The bacterial suspension of each sample was made and compared with 0.5 McFarland turbidity standard. The cartridges containing antimicrobial susceptibility discs (Himedia, Mumbai) were kept at temperature between 4 C and 20 C, and used after incubation at room temperature. Mueller-Hinton agar plates were inoculated and incubated at 35 C for 18 h, and the diameter of the zones of inhibition were measured and interpreted as recommended by Clinical and Laboratory Standards Institute (CLSI) 2010 guidelines (6). The antibiotics tested were Ampicillin (10 μg), Ampicillin/Sulbactam (10/10 μg), Co-amoxiclav (20/10 μg) Amikacin (30 μg), Ceftazidime (30 μg), Sulbactam/cefaperazone (75/30 μg), Ciprofloxacin (5 μg), Gentamicin (10 μg), Meropenem (30 μg), Imipenem (10 μg), Ofloxacin (5 μg), Piperacillin/Tazobactam (110 μg), Norfloxacin (10 μg), Nalidixic acid (30 μg), Ticarcillin (75μg), Piperacillin (100 μg), sulfamethoxazole trimethoprime (1.25/23.7 μg), Tigecycline (15 μg), Clindamycin (2 μg), Cefepime (30 μg), Nitrofurantoin (300 μg), Aztreonam (30 μg), and Colistin (110 μg). Antibiotic discs were obtained from Himedia, Mumbai, India. Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as control strains for quality control of media and antibiotic discs. All isolates of Acinetobacter resistant to three or more classes of antibiotics were considered as multidrug resistant (MDR). Results Bacterial Isolates During the study period, a total of 16,452 samples were collected in the bacteriology laboratory. The total number of samples positive for Acinetobacter species was 67 (0.4%). The frequency of Acinetobacter species in male and female patients was 27 (40.3%) and 40 (59.7%), respectively. Mean age of the patients being 63 ± 0.8 years. 130 www.mjms.usm.my

Brief Communication Multidrug resistant Acinetobacter baumannii Types of Clinical Specimens The isolates were predominantly recovered from urine samples (38.8%) followed by pus/ wound swab cultures (22.3%). The types of clinical specimens are depicted in the Table 1. Table 1. Types of clinical specimens Clinical specimen Number (%) Urine 26 (38.8%) Pus/ wound culture 15 (22.3%) Blood 13 (19.4%) Respiratory tract 10 (14.9%) (Sputum, Bronchial lavage, Endotracheal tube secretion) Others 3 (4.5%) Antibiotic Susceptibility Pattern Acinetobacter species showed high antibiotic resistance rate, with great percentage (80.3%) of the isolates exhibiting resistance to three or more classes of antibiotics. Urine samples showed the greatest yield of resistant A. baumannii. Only 7.8% of the isolates were sensitive to all the drugs. The results of antimicrobial susceptibility tests showed that most (86.6%) of the A. baumannii isolates were MDR strains i.e., resistant to three or more classes of antibiotics while 13.3% were resistant to two classes of antibiotics (Figure 1). All the A. baumannii isolates were sensitive to colistin (100%) while 80% were sensitive to tigecycline and 53.3 % were sensitive to carbapenems (Table 2). Antibiotic susceptibility pattern of isolates of A. baumannii group differed from the nonbaumannii Acinetobacter group (Table 2). Resistance to three or more (MDR) 86.6% Resistance to two antibiotics classes 13.3% Figure 1. Percentage of Acinetobacter baumannii resistant to various numbers of antibiotics classes Discussion Antimicrobial resistance among Acinetobacter species has increased at a disquieting rate leading to increased morbidity, mortality and treatment costs in Intensive Care Table 2. Antibiotic susceptibility of Acinetobacter species Antibiotic Acinetobacter baumannii Sensitivity n (%) non-baumannii Acinetobacter Sensitivity n (%) Colistin 45 (100%) 22 (100%) Tigecycline 36 (80%) 12 (54.5%) Carbapenems 24 (53.3 %) 16 (72.7%) Cefoperazone/ sulbactam 21 (46.6%) 10 (45.4%) Cefepime 18 (40%) 11 (50%) Piperacillin /tazobactam 15 (33.3%) 10 (45.4%) Amikacin 15 (33.3%) 9 (40.9%) Piperacillin 14 (31.1%) 10 (45.4%) Cotrimoxazole 12 (26.7%) 9 (40.9%) Ciprofloxacin 9 (20%) 9 (40.9%) Nalidixic acid 9 (20%) 9 (40.9%) Nitrofurantoin 3 (6.6%) 4 (18.2%) Amoxiclav 3 (6.6%) 8 (36.4%) www.mjms.usm.my 131

Malays J Med Sci. May Jun 2018; 25(3): 129 134 Units (ICU). Definitions of multidrug-resistant Acinetobacter species vary, the most widespread being isolates showing either carbapenem resistance or resistance to more than three classes of antimicrobials (7). In the present study, there was predominance of isolates from urine samples. This finding is similar to various studies from India and other countries, demonstrating predominance of isolation of Acinetobacter from urine specimens (8, 9). In contrast, some studies have shown respiratory secretions as the most common specimen from which Acinetobacter are isolated (9, 10, 11). Isolation rate from blood in this study was 19.4 % whereas different studies have reported isolation rates ranging from 7% 25% (8, 10, 12). The resistance pattern of the A. baumannii isolates has varied according to the geographic location. In India, there has been an increasing trend towards multidrug resistant Acinetobacter. In present study, overall 80.3% of the Acinetobacter species and 86.6% of the A. baumannii isolates were MDR. Likewise, other parts of the world have also reported increasing MDR trend. Nazmul et al. (12) reported 85% MDR Acinetobacter isolates from Malaysia wherein Vakili et al. (11) reported 95% MDR A. baumannii isolates from Iran. Similar to this study, the percentage of isolates showing MDR were highest from urine (8, 12). In the present study, the sensitivity of the isolates (both A. baumannii and non-baumannii Acinetobacter species) to piperacillin was low. Further, studies conducted in other parts of the world between 2012 and 2014 reported a high prevalence of resistance to piperacillin. Nazmul et al. (12) reported 77.5% resistance to piperacillin whereas, Shakibaie et al. (13) reported 100% resistance. A recent study from India by Gupta et al. (14) reported 55% resistance to piperacillin. The result of the present study showed an increasing trend for development of resistance of the A. baumannii species towards the piperacillin/tazobactam combination. Only 33.3% were sensitive to piperacillin/tazobactam combination. This is in accordance with studies from India and other countries, which also reported a high resistance rate of A. baumannii isolates to piperacillin/tazobactam combination (10, 15). Resistance to carbapenems has also increased. A few earlier studies from India have reported low resistant rate to carbapenems which exemplify the increasing trend of resistance level (16). The resistance pattern varies depending on whether the isolate belongs to A. baumannii or non-baumannii Acinetobacter species. Studies have demonstrated that the rate of carbapenem resistance is more in A. baumannii group as compared to non-baumannii Acinetobacter. In the present study 53.3% of the A. baumannii isolates were sensitive to carbapenems wherein 72.7% of the non-baumannii Acinetobacter isolates were sensitive to carbapenems. In concordance with this, Shareek et al. (17) reported 25% and 73% sensitivity of A. baumannii and non-baumannii Acinetobacter species to carbapenems, respectively. Study by Jaggi et al. (10) also reported high resistance rate (90%) of the A. baumannii species towards carbapenems (10). Additionally, study by Nazmul et al. (12) in Malaysia revealed as high as 92.5% resistance of Acinetobacter species to meropenem. Besides this, a recent study from India has shown 50% sensitivity of Acinetobacter species to carbapenems (18). In this study, 80% of the A. baumannii isolates were sensitive to tigecycline. Shareek et al. (17) from India reported 61.4% sensitivity of A. baumannii to tigecycline. Furthermore, Van et al. (15) from Vietnam reported 58.7% susceptibility to tigecycline. In this study colistin was the only drug that showed 100% sensitivity against all the species of Acinetobacter. Likewise, Van et al. (15) also reported 100% sensitivity to colistin. Additionally, Jaggi et al. (10) reported around 1.2% resistance and Rani et al. (18) reported 80% 90% sensitivity to Colistin. Correspondingly, Vakili et al. (11) from Iran reported 11.6% resistance to colistin. Colistin and tigecycline remain the only active antibiotics for the treatment of MDR A. baumannii. Tigecycline has a large volume of distribution resulting in a low serum peak concentration and a suboptimal clinical outcome. Breakthrough bacteremia during tigecycline therapy can be observed in drug resistant A. baumannii infection. A study done by Kim et al. (19) demonstrated that the efficacy of tigecycline-based therapy was comparable to that of colistin-based therapy in patients with multidrug-resistant and extensively drugresistant A. baumannii. The same study also revealed a trend toward higher clinical and microbiological success rates and lower 30- day, ICU, and in-hospital mortality rates in the combination therapy group as compared to 132 www.mjms.usm.my

Brief Communication Multidrug resistant Acinetobacter baumannii monotherapy. Colistin, is a narrow spectrum cationic lipopeptide rapidly bactericidal against gram-negative bacteria. Moreover, colistin administration alone is associated with significant nephrotoxicity and hetero-resistance in MDR A. baumannii clinical isolates. A recent (2015) meta-analysis suggested that colistin is probably as safe and efficacious as standard antibiotics for the treatment of drug-resistant A. baumannii infection (20). Thus, new alternative antibiotics or treatment options with newer combinations is the need of the hour for successful management of multidrug-resistant A. baumannii, until then combination therapies including tigecycline; colistin is a reasonable approach. Conclusion Injudicious use of antibiotics has led to the development of multidrug-resistant A. baumannii species which make therapeutic decisions to be challenging. In the present study high rate of resistance was observed to broad-spectrum cephalosporin, aminoglycosides, fluoroquinolones and combination of penicillin/beta-lactamase inhibitor. Colistin was found to be the most effective drug (100% sensitivity) for all species of Acinetobacter. For A. baumannii colistin was the most effective drug followed by tigecycline and carbapenemes. Authors Contributions Conception and design: RT, DC, MD Analysis and interpretation of the data: RT, DC Drafting of the article: RT, DC, RW, SD, MD Critical revision of the article for important intellectual content: RT, DC, MD Final approval of the article: RT, DC, RW, SD, MD Provision of study materials or patients: RW, SD Collection and assembly of data: RW, SD Correspondence Dr Deepti Chopra DTCD (University of Delhi), MD (University of Delhi) Associate Professor Department of Pharmacology, Government Institute of Medical Sciences, Kasna, Greater Noida, Uttar Pradesh-201310, India. Tel: 919818710237 E-mail: drdeeptichopra@yahoo.co.in References 1. Van Looveren M, Goossens H. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect. 2004;10(8):684 704. https:// doi.org/10.1111/j.1469-0691.2004.00942.x 2. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079 1081 https://doi.org/10.1086/533452 3. Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148 165. 4. Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008;46(8):1254 1263. https://doi.org/ 10.1086/529198 5. Bouvet PJ, Grimont PA. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol. 1987:138(5):569 578. 6. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 20th informational supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2010. 7. Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006;55:1619 1629. https://doi. org/10.1099/jmm.0.46747-0 8. Lahiri KK, Mani NS, Purai SS. Acinetobacter spp as nosocomial pathogen: clinical significance and antimicrobial sensitivity. MJAFI. 2004;60(1):7 10. https://doi.org/10.1016/ S0377-1237(04)80148-5 9. Villers D, Espase E, Coste-Burel M, Giauffret F, Ninin E, Nicolas F, et al. Nosocomial Acinetobacter baumannii infections: microbiological and clinical epidemiology. Ann Intern Med. 1998;129(3):182 189. www.mjms.usm.my 133

Malays J Med Sci. May Jun 2018; 25(3): 129 134 10. Jaggi N, Sissodia P, Sharma L. Acinetobacter baumannii isolates in a tertiary care hospital: antimicrobial resistance and clinical significance. JMID. 2012;2(2):57 63. https://doi.org/10.5799/ ahinjs.02.2012.02.0043 11. Vakili B, Fazeli H, Shoaei P, Yaran M, Ataei B, Khorvash F, et al. Detection of colistin sensitivity in clinical isolates of Acinetobacter baumannii in Iran. J Res Med Sci. 2014;19(Suppl 1):S67 S70. 12. Nazmul MHM, Jamal H, Fazlul MKK. Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia. Biomed Res-India. 2012;23(4):571 575. https://pdfs.semanticscholar.org/a14d/49d62327 053ca54e330205b82000262f54ee.pdf 13. Shakibaie MR, Adeli S, Salehi MH. Antibiotic resistance patterns and extended spectrum b-lactamase production among Acinetobacter spp. isolated from an intensive care unit of a hospital in Kerman, Iran. Antimicrob Resist Infect Control. 2012;1:1. https://doi.org/10.1186/2047-2994-1-1 14. Gupta N, Gandham N, Jadhav S, Mishra RN. Isolation and identification of Acinetobacter species with special reference to antibiotic resistance. J Nat Sci Biol Med. 2015;6(1):159 162. https://doi.org/10.4103/0976-9668.149116 15. Van TD, Dinh QD, Vu PD, Nguyen TV, Pham C V, Dao TT, et al. Antibiotic susceptibility and molecular epidemiology of Acinetobacter calcoaceticus baumannii complex strains isolated from a referral hospital in northern Vietnam. J Glob Antimicrob Resist. 2014;2(4):318 321. https://doi.org/10.1016/j. jgar.2014.05.003 16. Gaur A, Garg A, Prakash P, Anupurba S, Mohapatra TM. Observations on carbapenem resistance by minimum inhibitory concentration in nosocomial isolates of Acinetobacter species: an experience at a tertiary care hospital in North India. J Health Popul Nutr. 2008;26(2):183 188. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2740671/ 17. Shareek PS, Sureshkumar D, Ramgopalakrishnan, Ramasubramanian V, Ghafur KA, Thirunarayanan MA. Antibiotic sensitivity pattern of blood isolates of Acinetobacter species in a tertiary care hospital: a retrospective analysis. Am J Infect Dis. 2012;8(1):65 69. http://thescipub. com/pdf/ajidsp.2012.65.69.pdf 18. Rani P, Latha MB, Reddy SG, Bilolikar AK. A study of Acinetobacter from various clinical specimens and its antibiotic sensitivity pattern in a tertiary care hospital. J Med Sci Res. 2015;3(4):162 165. https://doi.org/10.17727/ JMSR 19. Kim W-Y, Moon J-Y, Huh JW, Choi S-H, Lim C-M, Koh Y, et al. Comparable efficacy of tigecycline versus colistin therapy for multidrugresistant and extensively drug-resistant Acinetobacter baumannii pneumonia in critically ill patients. PLoS One. 2016;11(3):e0150642. https://doi.org/10.1371/journal.pone.0150642 20. Chen Z, Chen Y, Fang Y, Wang X, Chen Y, Qi Q, et al. Meta-analysis of colistin for the treatment of Acinetobacter baumannii infection. Sci Rep. 2015;5:17091. https://doi.org/10.1038/srep17091 134 www.mjms.usm.my