Population demography of an endangered lizard, the Blue Mountains Water Skink. Dubey et al.

Similar documents
Survivorship. Demography and Populations. Avian life history patterns. Extremes of avian life history patterns

University of Canberra. This thesis is available in print format from the University of Canberra Library.

Biodiversity and Extinction. Lecture 9

What do visitors to Royal National Park know about the endangered broad-headed snake?

Like mother, like daughter: inheritance of nest-site

Maturity and Other Reproductive Traits of the Kanahebi Lizard Takydromus tachydromoides (Sauria, Lacertidae) in Mito

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection

Lizard malaria: cost to vertebrate host's reproductive success

Re: Proposed Revision To the Nonessential Experimental Population of the Mexican Wolf

Motuora island reptile monitoring report for common & Pacific gecko 2016

Relative effectiveness of Irish factories in the surveillance of slaughtered cattle for visible lesions of tuberculosis,

DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES?

A comparison of placental tissue in the skinks Eulamprus tympanum and E. quoyii. Yates, Lauren A.

Sprint speed capacity of two alpine skink species, Eulamprus kosciuskoi and Pseudemoia entrecasteauxii

GUIDELINES FOR APPROPRIATE USES OF RED LIST DATA

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF TWO SPECIES OF EGERNIA (SCINCIDAE) IN WESTERN AUSTRALIA

Consequences of Extended Egg Retention in the Eastern Fence Lizard (Sceloporus undulatus)

Table of Threatened Animals in Amazing Animals in Australia s National Parks and Their Traffic-light Conservation Status

An assessment of the Striped Legless Lizard Delma impar population at Denton Avenue Grassland Reserve, St Albans, Victoria

INFORMATION SHEET PROTECTION OF BLACK-COCKATOO HABITAT

SEXUAL DIMORPHISM IN BODY SHAPE WITHOUT SEXUAL DIMORPHISM IN BODY SIZE IN WATER SKINKS (EULAMPRUS QUOYII)

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

COMPARING BODY CONDITION ESTIMATES OF ZOO BROTHER S ISLAND TUATARA (SPHENODON GUNTHERI) TO THAT OF THE WILD, A CLINICAL CASE

Thermal adaptation of maternal and embryonic phenotypes in a geographically widespread ectotherm

Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks

Open all 4 factors immigration, emigration, birth, death are involved Ex.

Are reptile and amphibian species younger in the Northern Hemisphere than in the Southern Hemisphere?

Lecture 15. Biology 5865 Conservation Biology. Ex-Situ Conservation

Social and Thermal Cues Influence Nest-site Selection in a Nocturnal Gecko, Oedura lesueurii

Drivers of Extinction Risk in Terrestrial Vertebrates

A Population Analysis of the Common Wall Lizard Podarcis muralis in Southwestern France

Impact of colour polymorphism and thermal conditions on thermoregulation, reproductive success, and development in Vipera aspis

WOOL DESK REPORT MAY 2007

Erin Maggiulli. Scientific Name (Genus species) Lepidochelys kempii. Characteristics & Traits

Living Planet Report 2018

RELATIONSHIPS AMONG WEIGHTS AND CALVING PERFORMANCE OF HEIFERS IN A HERD OF UNSELECTED CATTLE

Title of Project: Distribution of the Collared Lizard, Crotophytus collaris, in the Arkansas River Valley and Ouachita Mountains

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017

4 Many species of mammals, birds, reptiles, amphibians and fish 940L. Source 1 Habitats

Gardens are not just for wall skinks

Who Cares? The Evolution of Parental Care in Squamate Reptiles. Ben Halliwell Geoffrey While, Tobias Uller

RWO 166. Final Report to. Florida Cooperative Fish and Wildlife Research Unit University of Florida Research Work Order 166.

Pikas. Pikas, who live in rocky mountaintops, are not known to move across non-rocky areas or to

Seasonal Shifts in Reproductive Investment of Female Northern Grass Lizards ( Takydromus septentrionalis

Natural Selection. What is natural selection?

Current Status of Amphibian Populations. Amphibian biology - characteristics making

reproductive life History and the effects of sex and season on morphology in CRoTALus oreganus (northern PaCifiC RATTLESNAKES)

I LOVE MY DRAGONS! Dragons of Sydney Harbour Factsheet Kids Version

phenotypes of hatchling lizards, regardless of overall mean incubation temperature

The effect of invasive plant species on the biodiversity of herpetofauna at the Cincinnati Nature Center

Effect of Tail Loss on Sprint Speed and Growth in Newborn Skinks, Niveoscincus metallicus

The Echidna The Eastern Long Beaked Echidna Nick Corlew, Harrison Simons, and Charlie Lichauer

Station 1 1. (3 points) Identification: Station 2 6. (3 points) Identification:

FEMALE PHENOTYPE, LIFE HISTORY, AND REPRODUCTIVE SUCCESS IN FREE-RANGING SNAKES (TROPIDONOPHIS MAIRII)

Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)

Marsupial Mole. Notoryctes species. Amy Mutton Zoologist Species and Communities Branch Science and Conservation Division

Darwin s Finches and Natural Selection

Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia

New Zealand Society of Animal Production online archive

Endangered and Endemic Species of India (8 Marks)

Module 2.4: Small Mammals Interpreting with Chinchillas

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper.

How do dogs make trouble for wildlife in the Andes?

Home Range, Habitat Use, Feeding Ecology and Reproductive Biology of the Cuban Boa (Chilabothrus angulifer) at Naval Station Guantánamo Bay, Cuba

Snowshoe Hare and Canada Lynx Populations

JoJoKeKe s Herpetology Exam

EverGraze: pastures to improve lamb weaning weights

Commercial Collection. & Pit Fall Trap Updates. Jason L. Jones Herpetologist 23 June 2017 Commission Update

10/03/18 periods 5,7 10/02/18 period 4 Objective: Reptiles and Fish Reptile scales different from fish scales. Explain how.

Objectives: Outline: Idaho Amphibians and Reptiles. Characteristics of Amphibians. Types and Numbers of Amphibians

A.13 BLAINVILLE S HORNED LIZARD (PHRYNOSOMA BLAINVILLII)

Hooded Plover Environmental Protection and Biodiversity Conservation Act Nomination

B-Division Herpetology Test. By: Brooke Diamond

Painted Dog (Lycaon pictus)

A.13 BLAINVILLE S HORNED LIZARD (PHRYNOSOMA BLAINVILLII)

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA)

MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE)

Introduction to the Cheetah

Motuora island reptile monitoring report for common & Pacific gecko 2017

Dipsas trinitatis (Trinidad Snail-eating Snake)

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra

Effects of prey availability and climate across a decade for a desert-dwelling, ectothermic mesopredator. R. Anderson Western Washington University

Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution

Required and Recommended Supporting Information for IUCN Red List Assessments

Caretta caretta/kiparissia - Application of Management Plan for Caretta caretta in southern Kyparissia Bay LIFE98 NAT/GR/005262

Animal Diversity wrap-up Lecture 9 Winter 2014

Weaver Dunes, Minnesota

Status of the Nile Monitor in South Florida. Todd Campbell, Ph.D., Assistant Professor Department of Biology, University of Tampa

Reptiles Notes. Compiled by the Davidson College Herpetology Laboratory

Writing: Lesson 31. Today the students will be learning how to write more advanced middle paragraphs using a variety of elaborative techniques.

Taseko Prosperity Gold-Copper Project. Appendix 5-6-D

Proponent: Switzerland, as Depositary Government, at the request of the Animals Committee (prepared by New Zealand)

The Seal and the Turtle

Biodiversity Trail Australian Animals

THE RED BOOK OF ANIMALS OF THE REPUBLIC OF ARMENIA

RESEARCH ARTICLE Potentially adaptive effects of maternal nutrition during gestation on offspring phenotype of a viviparous reptile

NAME: DATE: SECTION:

ESIA Albania Annex 11.4 Sensitivity Criteria

Introduction. Chapter 1

Benefit Cost Analysis of AWI s Wild Dog Investment

Transcription:

Population demography of an endangered lizard, the Blue Mountains Water Skink Dubey et al. Dubey et al. BMC Ecology 2013, 13:4

Dubey et al. BMC Ecology 2013, 13:4 RESEARCH ARTICLE Open Access Population demography of an endangered lizard, the Blue Mountains Water Skink Sylvain Dubey 1*, Ulrich Sinsch 2, Maximilian J Dehling 2, Maya Chevalley 1 and Richard Shine 3 Abstract Background: Information on the age structure within populations of an endangered species can facilitate effective management. The Blue Mountains Water Skink (Eulamprus leuraensis) is a viviparous scincid lizard that is restricted to < 40 isolated montane swamps in south-eastern Australia. We used skeletochronology of phalanges (corroborated by mark-recapture data) to estimate ages of 222 individuals from 13 populations. Results: These lizards grow rapidly, from neonatal size (30 mm snout-vent length) to adult size (about 70 mm SVL) within two to three years. Fecundity is low (mean 2.9 offspring per litter) and is affected by maternal body length and age. Offspring quality may decline with maternal age, based upon captive-born neonates (older females gave birth to slower offspring). In contrast to its broadly sympatric (and abundant) congener E. tympanum, E. leuraensis is short-lived (maximum 6 years, vs 15 years for E. tympanum). Litter size and offspring size are similar in the two species, but female E. leuraensis reproduce annually whereas many E. tympanum produce litters biennially. Thus, a low survival rate (rather than delayed maturation or low annual fecundity) is the key reason why E. leuraensis is endangered. Our 13 populations exhibited similar growth rates and population age structures despite substantial variation in elevation, geographic location and swamp size. However, larger populations (based on a genetic estimate of effective population size) contained older lizards, and thus a wider variance in ages. Conclusion: Our study suggests that low adult survival rates, as well as specialisation on a rare and fragmented habitat type (montane swamps) contribute to the endangered status of the Blue Mountains Water Skink. Keywords: Australia, Montane species, Reptile, Skeletochronology Background Estimation of the age structure of endangered populations can facilitate their efficient management (e.g. [1-3]). Unfortunately, an animal s age is difficult to calculate for many species. Mark-recapture analyses provide the most direct information, but require long-term studies, precluding any rapid conservation management plans [1]. An alternative way to estimate an individual s age is skeletochronology, based on histological analyses of growth marks in the skeleton [4,5]. This technique relies upon seasonal variation in ratesofskeletalgrowth,andthusisespeciallyeffective for ectothermic vertebrates that live in highly seasonal environments [6,7]. The Blue Mountains Water Skink (Eulamprus leuraensis, Wells & Wellington, 1983) is a medium-sized (total length * Correspondence: sylvain.dubey@unil.ch 1 University of Lausanne, Department of Ecology and Evolution, Biophore Bld, 1015, Lausanne, Switzerland Full list of author information is available at the end of the article to 20 cm) viviparous scincid lizard that is restricted to less than forty small montane swamps (typically, <2 ha) at 560 to 1,060 m elevation in the Blue Mountains and Newnes Plateau, west of the city of Sydney in south-eastern Australia. This species is classified as endangered under the IUCN Red List [8], the Threatened Species Conservation Act [9] and the Environmental Protection and Biodiversity Conservation Act [10]. This lizard species is an ecological specialist, and comprises isolated small populations that are subject to considerable ongoing threats. In addition, the species entire distribution (montane swamps; <2,000 km 2 ) is listed as threatened under the Threatened Species Conservation Act [9] due to impacts of nearby urbanisation, (i.e., invasion by weeds, modification of the hydrological system and of bushfire regimes, pollutants and longwall mining). These threats to population persistence are exacerbated by the low vagility of the lizards. Gene flow between populations is very limited, and animals within each of the 2013 Dubey et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dubey et al. BMC Ecology 2013, 13:4 Page 2 of 8 two major parts of the species distribution (Blue Mountains versus Newnes Plateau) have been isolated from each other for at least a million years [11,12]. In addition, this species has low annual fecundity (one to five neonates per annual litter; [13,14]), further reducing the ability of populations to recover from the effects of episodes of higher-than-usual mortality [15,16]. In the present study, we used phalangeal skeletochronology (supported by field mark-recapture data) to estimate the age structure of 13 populations of Blue Mountains Water Skinks. As well as clarifying basic issues such as growth rates and age at maturity, we took advantage of data from our earlier studies to explore the effects of maternal age on reproductive output and progeny quality (based on data from Dubey et al., [13] and Dubey & Shine, [14]) and to compare population age structure to various site-specific parameters (including indices of genetic diversity from Dubey & Shine, [11,12]). Results Our mark-recapture data show that Blue Mountains Water Skinks exhibited rapid growth in the first two years after birth (Figure 1). Our skeletochronological estimates of age (= n LAGs 1) agree well with those predicted (based on body size) by the Von Bertalanffy function fitted to our mark-recapture data (Figure 1). Born at approximately 30 mm snout-vent length and weighing 0.7 g [14], these lizards attained maturation at SVLs of about 70 mm SVL and 7 g (this study; [13]) within two to three years (Figure 1). Growth slowed thereafter, eliminating any correlation between age and body size in lizards that were more than three years of age (Figure 1). Our age estimates suggest that the oldest males and females among our sample of 222 lizards were only six years old. About half (49%) of the adult lizards (roughly two or more years in age) were two years old, and only 23% were more than three years old (see Figure 2). Most of the lizards in our study population may live to reproduce only once or twice before dying. The mean age of males that sired offspring (based on paternity analyses from Dubey et al. [13]) was 2.88 years (N = 18; varying from one to five) and the mean age of adult males (i.e., > 52 mm SVL) for which juveniles were not assigned was 2.25 years (N = 16; from two to six). The mean age of females that produced litters was 3.00 years (N = 38; from two to six years old) whereas three adult (SVL > 66 mm) but nonreproductive females averaged 1.33 years of age (from one to two). The probability of reproducing increased with age after maturation in females (F 1,40 = 7.40, P < 0.01) but not males (F 1,33 =2.59, P = 0.11). Our multiple linear regression including the age and size (SVL) of gravid females as explanatory variables and the litter size as the response variable, revealed a significant effect of a female s body size (F 1,39 = 28.99, P < 0.0001) and Snout-vent length (mm) Snout-vent length (mm) 85 75 65 55 45 35 25 85 75 65 55 45 35 25 Female 0 1 2 3 4 5 6 Male 0 1 2 3 4 5 6 Age (year) Figure 1 The relationship between lizard age and body size in Eulamprus leuraensis of both sexes, based on skeletochronology of 220 lizards, compared to results from the von Bertalanffy growth model applied to data from lizards captured and then recaptured in the following year. The black squares show the von Bertalanffy curve, and the grey dots show data for individual lizards. of the interaction term between age and body size (F 1,39 = 6.16, P = 0.018) on her litter size, as well as a marginally significant effect of her age (F 1,39 = 3.62, P = 0.065). Older and larger females produced larger litters. We also found a significant effect of these parameters on mean offspring size (SVL), with larger females producing larger neonates and older females smaller neonates (age: F 1,34 = 8.79, P = 0.006; size: F 1,34 = 4.63, P = 0.039; interaction: F 1,34 = 5.59, P < 0.025). Similarly, larger females produced heavier neonates whereas older females gave

Dubey et al. BMC Ecology 2013, 13:4 Page 3 of 8 Frequency Frequency 30 20 10 30 20 10 Female 0 1 2 3 4 5 6 7 Male 0 1 2 3 4 5 6 7 Age (year) Figure 2 The overall age structure of male and female Blue Mountains Water Skinks, Eulamprus leuraensis (data combined from all populations). birth to lighter neonates (age: F 1,34 = 4.65, P = 0.039; size: F 1,34 = 1.01, P = 0.32; interaction: F 1,34 = 6.24, P = 0.018). Interestingly, our performance tests on offspring born in captivity showed that the progeny of older females were also slower (analysis based on mean speeds per litter, age: F 1,30 = 8,18; P = 0.0078; size: F 1,30 = 0.45, P = 0.5; interaction: F 1,30 = 0.01, P = 0.9; Figure 3). Finally, we found no significant relationship between a mother s age and her snout-vent length (F 1,36 = 1.13, P = 0.30). Blue Mountains Water Skinks are surprisingly shortlived. The mean age of individuals within populations varied from 1.67 (BH5) to 3.75 (BH3) years (Table 1), and differed significantly among populations (one-way Mean speed of the offspring (m/s) 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 3 4 5 6 7 Age of the mother (year) Figure 3 Relationships between the age of female lizards and the mean sprint speed of their offspring. Table 1 Mean age (with variance in parentheses) of Eulamprus leuraensis in our study populations Population Mean age BH3 4.75 (3.31) BH4 3.33 (1.08) BH5 2.67 (0.22) MH4 3.5 (0.25) MRP1 3.5 (0.75) WFL 4.2 (3.56) KT1 3.44 (1.02) WF7 2.95 (1.09) WF5 2.71 (0.92) WF1 3.8 (2.56) XFC1 3.79 (1.86) NP4 3.86 (1.74) PNP1 4.25 (1.69) ANOVA: F 12,206 = 3.19, P = 0.0004). The oldest individuals were six years old (Figure 2). We found no significant relationship between the mean age of individuals within populations and the elevation (F 1,12 = 1.77; P = 0.21), longitude (F 1,12 = 1.32; P = 0.27) or latitude (F 1,12 =2.71; P = 0.13) of sites of collection, or the size of the swamps (F 1,12 = 0.14; P = 0.72). However, both the mean age of individuals, and the variance in ages within a population, were higher in larger populations (using Theta k as our measure of effective population size; Theta k versus mean age: F 1,12 = 4.97; P = 0.048; versus variance in ages: F 1,12 = 9.73; P = 0.0097; Figure 4). Discussion Blue Mountains Water Skinks grow fast and die young. The largest cohort of adult females comprised those in their first reproductive year post-maturation. Older females were rare, and (because they ceased growing) did not produce larger litters than their younger counterparts. Also, the offspring of older females exhibited reduced locomotor performance. In combination, these traits suggest that the reproductive capacity of a population of Blue Mountains Water Skinks rests primarily upon the output of newlymatured animals. This result provides a striking contrast to the demography of a congeneric water skink that is also found at relatively high elevations (and indeed, occurs in the eucalypt woodland of the Blue Mountains). The highland water skink E. tympanum is an abundant and widelydistributed taxon that has been the subject of detailed ecological studies, including skeletochronological work ([17-22]). Tilley [17] reported females living up to at least 15 years of age in a Victorian population, and Blomberg & Shine [22] concluded that adults lived more than 10 years in a NSW population. Mean ages of reproductive adults

Dubey et al. BMC Ecology 2013, 13:4 Page 4 of 8 Variance of the age (year) within populations 4 3.5 3 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Theta K Figure 4 Relationships between the genetically-based population parameter Theta k and the variance in lizard ages (years) within 13 populations of the Blue Mountains Water Skink. within E. tympanum populations were between four and seven years (in low and high elevation sites, respectively), compared to three to four years in the highelevation E. leuraensis (present study). Offspring mass and litter size are similar in the two species. However, the proportion of females reproducing is higher in E. leuraensis than in E. tympanum (91% versus 30 to 60%, respectively; [13,19]). In many lizard and snake species, reproductive output increases strongly with maternal age, primarily because continued growth translates into larger females, that reproduce more often and produce more offspring when they do so (e.g., [23]). Blue Mountains Water Skinks do not exhibit such an increase. Instead, reproductive frequency is as high from the outset (as soon as females mature) as thereafter, because body size (the main determinant of litter size) does not increase substantially during adult life. Indeed, offspring quality (and thus, the benefits to maternal fitness) may decline in older females, based on the reduced locomotor capacities and body sizes of their offspring. Given a mean litter size of 2.9 [13,14], the average lifetime production of neonates per female (even if she reaches six years of age) is less than 15. The short adult lifespan, coupled with the small litter size, must reduce the rate that a population can recover after its numbers have been reduced by events such as bushfires, heavy predation, or prolonged drought. Clearly, the survival rate of the newborns will have a major impact on the rate of population recovery. The age structure of our populations suggests that many of the lizards are semelparous: that is, they reproduce in only a single year before dying. Like most coolclimate viviparous squamates, Blue Mountains Water Skinks produce only a single litter each year (although females in tropical populations of the congeneric E. quoyii can produce two litters per year: Schwarzkopf, unpublished). Although most lizards and snakes are iteroparous, semelparity is not uncommon, especially in harsh habitats such as hot and dry areas as well as at high elevations (e.g. [24-28]). Although the 13 populations that we sampled spanned a broad range in terms of abiotic factors such as elevation, geographic location and swamp size, none of these factors had any detectable effect on the age structure of lizard populations. However, a genetic estimate of the effective population size (Theta k; based on the study of Dubey & Shine, [15]) was positively correlated with mean age and with intrapopulation variation in age. This pattern suggests that areas that confer higher survival of individual lizards (e.g., due to low predation rates or high food availability) thereby result in larger effective population sizes. Intuition suggests that larger swamps should contain more lizards, but our analyses show no such pattern (i.e., neither Theta k nor age structure were correlated with swamp size). Habitat quality may be more important than quantity. A low Theta k value also reflects low genetic diversity, which could directly reduce survival rates via inbreeding effects [29,30]. Future conservation efforts could usefully explore the biotic and abiotic factors that render swamps more or less favorable to Blue Mountains Water Skinks. Our skeletochronological data also identify a puzzling feature of this endangered lizard s life history: its low adult survival rate. At a proximate level, this low survival rate must contribute to the precarious conservation status of the Blue Mountains Water Skink. If that low survival rate was driven by extrinsic factors such as local predation pressure or fire history, we would have expected to see at least some populations with much older animals. Thus, our data suggest that either the entire range of this species was affected by some major catastrophe about seven years prior to our study, or else low adult survival rates are a consistent feature of the biology of this species. We know of no obvious historical catastrophe that could explain the truncation of age structures across the entire range of the species. Thus, the most likely scenario is that, unlike its congeners such as E. tympanum, the Blue Mountains Water Skink is a relatively short-lived species. Conclusions The analysis above adds a demographic factor to the traits already identified as contributing to the endangerment of E. leuraensis. These lizards are habitat specialists, dependent upon a relatively scarce and highly fragmented set of highland swamps [11,31,32]. Their low vagility reduces gene flow among swamps, and retards recolonisation of any

Dubey et al. BMC Ecology 2013, 13:4 Page 5 of 8 swamps where local populations have been extirpated [12,13]. They live in an area that abuts Australia s largest city, and hence are exposed to myriad threats caused by the proximity of humans [11,31,32]. Their dependence on moist habitats at high elevations means that they are at a high risk of habitat degradation due to climate change (southeastern Australia is predicted to become hotter and drier: [33]). Lastly, they exhibit the unfortunate combination of low reproductive output and low rates of adult survival. In combination, these characteristics render the Blue Mountains Water Skink highly vulnerable to any additional pressures (e.g., [13,34,35]), and suggest that the future conservation and management of this species will require close scrutiny and perhaps, active intervention to maintain suitable habitat conditions. Methods Sampling procedure In the course of our genetic studies [12-14], we collected toe-clips from 222 individuals in 13 different sites from B PNP1 A B PNP1 NP4 XFC1 NP4 C BH3 BH5 BH4 MH4 WFL XFC1 5 km 25 km MRP1 WF7 WF1 KT1 WF5 C BH3 BH4 Blackheath BH5 MH4 Katoomba MRP1 WFL Lawson KT1 WF7 WF5 WF1 5 km Valley Population Pine plantation City River Highway Unsealed road Figure 5 Distribution of the 13 populations of Blue Mountains Water Skinks (Eulamprus leuraensis) analysed in the present study (A: entire range; B: Newnes Plateau; C: Blue Mountains).

Dubey et al. BMC Ecology 2013, 13:4 Page 6 of 8 mid-spring to mid-summer 2008 2009 and spanning virtually the entire known range of the species (Figure 5). We recorded the sex, total length, snout-vent length and tail length (to the nearest mm), and mass (to the nearest 100 mg) before toe-clipping the animal and releasing it at its site of capture. The phalange samples were stored in 90% ethanol at room temperature for skeletochronological age assessment. The toe-clips also provided an opportunity to mark individuals with a unique toe-clip code and hence to assess growth rates (and thus, ages relative to body size) by calculating growth increments for the 27 individuals that we recaptured in successive years. We used the von Bertalanffy growth model [36,37] to estimate the relationship between size and age for both males and females. We fitted mark-recapture data to these models using the non-linear least-squares regression procedure in JMP 8.0.1 [37-39]. The parameters k (intrinsic growth rate) and a (asymptotic length) were seeded with initial best guesses. Skeletochronological age estimation Laboratory procedures for processing humeri and the second phalanx of the toes followed the standard methods of skeletochronology for amphibians and lizards [4,40]: (1) decalcification of bones (5% formic acid, 1 h), (2) fixation in Bouin s solution (at least 1 h), (3) Historesin (JUNG) embedding, (4) cross sectioning of the diaphysis at 10 μmusing a JUNG RM2055 rotation microtome, (5) staining with 0.05% cresylviolet (5-10 min), (6) light microscopic examination using an Olympus BX 50 with ocular micrometer. The number of lines of arrested growth (LAG) was counted in the periosteal bone of those diaphysis sections in which the size of the medullar cavity was at its minimum and that of bone at its maximum. The number of usable diaphysis sections per individual varied between 2 and 16. All were considered for LAG counting and two of the authors independently obtained age estimates for each individual. Endosteal bone was present in all individuals, but the first LAG always remained visible (maximum resorption: ca. 30% of the complete line). The validity of LAGs as age estimators was supported by our observations that (a) in four recaptured individuals for which we obtained successive samples one year apart, the number of LAGs had increased by 1 in each case (see Figure 6 for an example); (b) the location of the LAG relative to the growing edge of the bone shifted seasonally, in a predictable fashion (in spring, the LAG was near the outer edge of the bone; in autumn, the LAG was separated from the bone edge by a large growth zone); and (3) all captive-born neonates had only a single LAG. Consequently, the age of an individual corresponds to the number of LAGs minus 1. Statistical analyses Statistical analyses were conducted using JMP 8.0 [39]. Linear regressions were performed to compare the mean age of individuals within populations to longitude, latitude, elevation, swamp size and an estimate of the effective population size based on genetic analyses from Dubey & Shine ([11]; Theta k, estimated from the infinite-allele equilibrium relationship [41] between the Figure 6 Histological section of the second phalanx of a female Blue Mountains Water Skink collected in two successive years at locality KT1. When first captured on 16 December 2008, this animal measured 71 mm snout-vent length and weighed 7.9 g; when recaptured on 9 December 2009 it measured 80 mm SVL and weighed 11.5 g.

Dubey et al. BMC Ecology 2013, 13:4 Page 7 of 8 sample size [n], the expected number of alleles [k], and Theta [population parameter; Theta = 2Mu where M is equal to 2 N for diploid populations of size N, and u is the overall mutation rate at the haplotype level]; [42]). We also performed multiple linear regressions between the age and size (SVL) of gravid females and their reproductive output (litter size and offspring size), including hatchling locomotor performance (sprint speed: see Dubey & Shine, [15] for methods). We omitted variables (incubation treatments, litter sizes) that did not affect locomotor speeds in this system [15]. Mean values were calculated for each litter to avoid pseudoreplication. Data on reproductive variables were obtained from Dubey & Shine [15] and Dubey et al. [14]. Based on these data and paternity analyses from Dubey et al. [14], we also estimated the mean age of males that were known to have sired offspring. Competing interests The authors declare that they have no competing interests. Authors contributions SD, MC, US, JMD and RS contributed with the conceptual development of the work and the writing of the manuscript. SD, JMD, and US carried out the analyses and SD and MC performed the fieldwork. All authors read and approved the final version of the manuscript. Acknowledgements We thank B. Nilow for technical assistance, M. Hensen for support and encouragement, J. Goudet and N. Perrin for helpful comments, and the Blue Mountains City Council, the Australian Research Council, and the Swiss National Science Foundation for funding. Tissue samples were taken under approvals from the University of Sydney Animal Care and Ethics Committee (authorization N L04/12-2008/1/4956) and the Blue Mountains City Council. Author details 1 University of Lausanne, Department of Ecology and Evolution, Biophore Bld, 1015, Lausanne, Switzerland. 2 Universität Koblenz-Landau, IfIN, Department of Biology, Universitätsstr. 1, D-56075, Koblenz, Germany. 3 University of Sydney, School of Biological Sciences A08, Sydney, NSW 2006, Australia. Received: 11 October 2012 Accepted: 7 February 2013 Published: 13 February 2013 References 1. Chinsamy A, Valenzuela N: Skeletochronology of the endangered sideneck turtle, Podocnemis expansa. S Afr J Sci 2008, 104:311 314. 2. Gillespie G: Population age structure of the spotted tree frog (Litoria spenceri): insights into population declines. Wildlife Res 2010, 37:19 26. 3. Yang W, Liu C, Jiang J, Li C, Xie F: Age structure of females in a breeding population of Echinotriton chinhaiensis (Caudata: Salamandridae) and its conservation implication. Asian Herpetol Res 2011, 2:91 96. 4. Sinsch U, di Tada IE, Martino A: Longevity, demography and sex-specific growth of the Pampa de Achala toad, Bufo achalensis Cei, 1972. Stud. Neotrop. Fauna E 2001, 36:95 104. 5. Oromi N, Sanuy D, Sinsch U: Altitudinal variation of demographic lifehistory traits does not mimic latitudinal variation in natterjack toads (Bufo calamita). Zoology 2012, 115:30 7. 6. Castanet J, Smirina E: Introduction to the skeletochronological method in amphibians and reptiles. Ann Sci Nat, 13. ser Zool 1990, 11:191 196. 7. Castanet J, Francillon-Vieillot H, Meunier FJ, de Ricqles A: Bone and individual aging. In Bone growth. Edited by Hall BK. Boca Raton: CRC Press; 1993:245 283. 7. 8. IUCN: IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist. org. 2011. Downloaded on 09 May 2012. 9. NSW: Threatened Species Conservation Act. Sydney: Department of Environment and Climate Change; 1995. 10. Commonwealth: Environmental Protection and Biodiversity Conservation Act. Canberra: Australian Government; 1999. 11. Dubey S, Shine R: Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae). Mol Ecol 2010, 19:886 897. 12. Dubey S, Shine R: Plio-Pleistocene diversification and genetic population structure of an endangered lizard (the Blue Mountains water skink, Eulamprus leuraensis) in southeastern Australia. J Biogeogr 2010, 37:902 914. 13. Dubey S, Chevalley M, Shine R: Sexual dimorphism and sexual selection in amontanescincidlizard(eulamprus leuraensis). Austr Ecol 2011, 36:68 75. 14. Dubey S, Shine R: Predicting the effects of climate change on an endangered montane lizard, Eulamprus leuraensis (Scincidae). Clim Chang 2011, 17:531 547. 15. McKinney ML: Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Evol S 1997, 28:495 516. 16. Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G: Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 2008, 12:2621 2626. 17. Tilley SJ: Skeletal variation in the Australian Sphenomorphus group (Lacertilia: Scincidae). La Trobe University, Melbourne, Victoria, Australia: Dissertation; 1984. 18. Schwarzkopf L: Sexual dimorphism in body shape without sexual dimorphism in body size in water skinks (Eulamprus quoyii). Herpetologica 1992, 61:116 123. 19. Schwarzkopf L: Costs of reproduction in water skinks. Ecology 1993, 74:1970 1981. 20. Doughty PD, Shine R: Detecting life-history tradeoffs: measuring energy stores in "capital" breeders reveals costs of reproduction. Oecologia 1997, 110:508 513. 21. Rohr DH: Demographic and life history variation in two proximate populations of a viviparous skink separated by a steep altitudinal gradient. J Anim Ecol 1997, 66:567 578. 22. Blomberg S, Shine R: Modeling life history strategies with capturerecapture data: evolutionary demography of the water skink Eulamprus tympanum. Austr Ecol 2001, 26:349 359. 23. Shine R: Reproductive strategies in snakes. P. Roy. Soc. B 2003, 270:995 1004. 24. Shine R: "Costs" of reproduction in reptiles. Oecologia 1980, 46:92 100. 25. Bonnet X, Lourdais O, Shine R, Naulleau G: Reproduction in a typical capital breeder: costs, currencies, and complications in the aspic viper. Ecology 2002, 83:2124 2135. 26. Karsten KB, Andriamandimbiarisoa LN, Fox SF, Raxworthy CJ: A unique life history among tetrapods: an annual chameleon living mostly as an egg. P Natl Acad Sci USA 2008, 105:8980 8984. 27. Rodríguez-Romero F, Smith GR, Méndez-Sánchez F, Hernández-Gallegos O, Sánchez Nava P, de la Cruz FR M: Demography of a Semelparous, highelevation population of Sceloporus bicanthalis (Lacertilia: Phrynosomatidae) from the Nevado de Toluca Volcano, Mexico. Southwest Nat 2011, 56:71 77. 28. Bonnet X: The evolution of semelparity. Reproductive biology and phylogeny of snakes. Reproductive Biology and Phylogeny Series. Science Publishers Inc 2011, 17:645 672. 29. Vandewoestijne S, Schtickzelle N, Baguette M: Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 2008, 6:46. 30. Valtonen TM, Roff DA, Rantala MJ: Analysis of the effects of inbreeding on lifespan and starvation resistance in Drosophila melanogaster. Genetica 2011, 139:525 533. 31. Commonwealth: Environmental Protection and Biodiversity Conservation Act. Canberra: Australian Government; 1999. 32. NSW National Parks & Wildlife Service: Blue Mountains water skink (Eulamprus leuraensis) recovery plan. Hurstville, NSW: NSW NPWS; 2001. 33. Dubey S, Pike D, Shine R: Predicting the impacts of climate change on genetic diversity in an endangered lizard species. Clim Chang 2012, doi:10.1007/s10584-012-0540-3. 34. Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D: Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biol 2007, 13:1672 1684. 35. Forcada J, Trathan PN, Murphy EJ: Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Global Change Biol 2008, 14:2473 2488.

Dubey et al. BMC Ecology 2013, 13:4 Page 8 of 8 36. Schoener TW, Schoener A: Estimating and interpreting body-size growth in some Anolis lizards. Copeia 1978, 1978:390 405. 37. Webb JK, Pike DA, Shine R: Population ecology of the velvet gecko, Oedura lesueurii in south eastern Australia: implications for the persistence of an endangered snake. Austr Ecol 2008, 33:839 847. 38. SAS Institute: User Guide. SAS Campus Drive, Cary, NC 27513: JMP, A Business Unit of SAS; 2009. 39. Frazer NB, Gibbons JW, Greene JL: Exploring Fabens growth interval model with data on a long-lived vertebrate, Trachemys scripta (Reptilia: Testudinata). Copeia 1990, 1990:112 118. 40. Sinsch U, Martino A, di Tada IE: Longevity and sexual size dimorphism of the Pampa de Achala copper lizard Pristidactylus achalensis (Gallardo, 1964). Amphibia-Reptilia 2002, 23:177 190. 41. Ewens WJ: The sampling theory of selectively neutral alleles. Theor Popul Biol 1972, 3:87 112. 42. Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res. 2010, 10:564 567. doi:10.1186/1472-6785-13-4 Cite this article as: Dubey et al.: Population demography of an endangered lizard, the Blue Mountains Water Skink. BMC Ecology 2013 13:4. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit