SUPPLEMENTARY INFORMATION

Similar documents
Reconsidering the Avian Nature of the Oviraptorosaur Brain (Dinosauria: Theropoda)

The Endocranial Cavity of Oviraptorosaur Dinosaurs and the Increasingly Complex, Deep History of the Avian Brain

Shedding Light on the Dinosaur-Bird Connection

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Proc. R. Soc. B doi: /rspb Published online

Anatomical Markers for Elevated Cognition in Dinosaurs

Pre-Archaeopteryx coelurosaurian dinosaurs and their implications for understanding avian origins

Accepted Manuscript. News & Views. Primary feather vane asymmetry should not be used to predict the flight capabilities of feathered fossils

SUPPLEMENTARY INFORMATION

Article. A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China

Supplementary Note 1. Additional osteological description

A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers

Name: GEOL 104 Dinosaurs: A Natural History Video Assignment. DUE: Wed. Oct. 20

Science & Literacy Activity

A new oviraptorid from the Upper Cretaceous of Nei Mongol, China, and its stratigraphic implications

An Archaeopteryx-like theropod dinosaur newly

A juvenile coelurosaurian theropod from China indicates arboreal habits

New Information on the Braincase of the North American Therizinosaurian (Theropoda, Maniraptora) Falcarius utahensis

Volume of the crocodilian brain and endocast during ontogeny

Geo 302D: Age of Dinosaurs. LAB 7: Dinosaur diversity- Saurischians

SUPPLEMENTAL APPENDICES TO TURNER, POL, AND NORELL (2011)

Supplementary Figure 1 Cartilaginous stages in non-avian amniotes. (a) Drawing of early ankle development of Alligator mississippiensis, as reported

Ceri Pennington VELOCIRAPTOR

古脊椎动物学报 VERTEBRATA PALASIATICA. Corwin SULLIVAN

Supplementary Figure 1. Comparisons of the holotypes of Alioramus altai and Qianzhousaurus sinensis illustrating selected features that exhibit a

17.2 Classification Based on Evolutionary Relationships Organization of all that speciation!

A new maniraptoran dinosaur from China with long feathers on the metatarsus

AMERICAN MUSEUM NOVITATES

Early evolution of the biological bird: perspectives from new fossil discoveries in China

VERTEBRATA PALASIATICA

Selected Internet Sites

A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin

CURRICULUM VITAE SIMON SCARPETTA (July 2018)

Outline 17: Reptiles and Dinosaurs

With original illustrations by Brian Regal, Tarbosaurus Studio. A'gJ" CAMBRIDGE UNIVERSITY PRESS

A new basal sauropodiform dinosaur from the Lower Jurassic of Yunnan Province, China

A New Study of the Brain of the Predatory Dinosaur Tarbosaurus bataar (Theropoda, Tyrannosauridae)

Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification

Juehuaornis gen. nov.

A Small Derived Theropod from Öösh, Early Cretaceous, Baykhangor Mongolia

APPENDIX 2: CHARACTER LIST

Title: Fossil Focus: Reimagining fossil cats IMPORTANT COPYRIGHT CITATION OF ARTICLE

Cladistics (reading and making of cladograms)

Supplementary Materials for

An Archaeopteryx-like theropod from China and the origin of Avialae

Video Assignments. Microraptor PBS The Four-winged Dinosaur Mark Davis SUNY Cortland Library Online

Early diversification of birds: Evidence from a new opposite bird

Morphometric Changes In Semicircular Canal Shape Within Theropoda (Dinosauria: Saurischia) And Their Dietary Implications

3. Structure of the brain cavity and inner ear of the centrosaurine ceratopsid dinosaur Pachyrhinosaurus based on CT scanning and 3D visualization

et al., 1999),$&YeBrfltk$% 125 Ma (Swisher et al., 1999), %%%g?gffl$&

LIZARD EVOLUTION VIRTUAL LAB

A review of the basal tyrannosauroids (Saurischia: Theropoda) of the Jurassic Period

Confusing Dinosaurs With Mammals: Tetrapod Phylogenetics and Anatomical Terminology in the World of Homology

TAXONOMIC HIERARCHY. science of classification and naming of organisms

Line 136: "Macroelongatoolithus xixiaensis" should be "Macroelongatoolithus carlylei" (the former is a junior synonym of the latter).

Phylogeny Reconstruction

1 Describe the anatomy and function of the turtle shell. 2 Describe respiration in turtles. How does the shell affect respiration?

Are the dinosauromorph femora from the Upper Triassic of Hayden Quarry (New Mexico) three stages in a growth series of a single taxon?

FEATHERED DINOSAURS RECONSIDERED: NEW INSIGHTS FROM BARAMINOLOGY AND ETHNOTAXONOMY

ANATOMICAL NOMENCLATURE OF FOSSIL VERTEBRATES: STANDARDIZED TERMS OR LINGUA FRANCA?

The inner bird: anatomy and evolution Darren Naish a a

ON THE ORBIT OF THEROPOD DINOSAURS

The Fossil Record of Vertebrate Transitions

Preservation of ovarian follicles reveals evolution of avian reproductive behaviour

Theropod Teeth from the Middle-Upper Jurassic Shishugou Formation of Northwest Xinjiang, China

Postilla PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY NEW HAVEN, CONNECTICUT, U.S.A.

A large theropod metatarsal from the upper part of Jurassic Shishugou Formation in Junggar Basin, Xinjiang, China

Pinacosaurus: A Study. Abstract. dinosaurs, few of which left behind fossils for mankind to recover. One of which were the

Bird evolution. Primer

Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications

On the Discovery of the earliest fossil bird in China (Sinosauropteryx gen. nov.) and the origin of birds

The Origin of Birds. Technical name for birds is Aves, and avian means of or concerning birds.

PRELIMINARY REPORT ON A CLUTCH OF SIX DINOSAURIAN EGGS FROM THE UPPER TRIASSIC ELLIO T FORMATION, NORTHERN ORANGE FREE STATE. J. W.

Lower Cretaceous Kwanmon Group, Northern Kyushu

Endocranial Anatomy of the Charadriiformes: Sensory System Variation and the Evolution of Wing-Propelled Diving

THE LIGAMENT SYSTEM IN THE NECK OF RHEA AMERICANA AND ITS IMPLICATION FOR THE BIFURCATED NEURAL SPINES OF SAUROPOD DINOSAURS

A small, unusual theropod (Dinosauria) femur from the Wealden Group (Lower Cretaceous) of the Isle of Wight, England

Edinburgh Research Explorer

A Troodontid Dinosaur from Ukhaa Tolgod (Late Cretaceous Mongolia)

9. Summary & General Discussion CHAPTER 9 SUMMARY & GENERAL DISCUSSION

Birds are sensitive indicators of. 140 million years. Dr. Gareth Dyke. Environmental Science. Earth Systems Institute University College Dublin

Gradual Assembly of Avian Body Plan Culminated in Rapid Rates of Evolution across the Dinosaur-Bird Transition

New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia

Ahypertrophied ossified sternum characterizes all living birds,

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata

Stuart S. Sumida Biology 342. (Simplified)Phylogeny of Archosauria

THE SMALL THEROPOD DINOSAURS TUGULUSAURUS AND PHAEDROLOSAURUS FROM THE EARLY CRETACEOUS OF XINJIANG, CHINA

New Dromaeosaurids (Dinosauria: Theropoda) from the Lower Cretaceous of Utah, and the Evolution of the Dromaeosaurid Tail

Do the traits of organisms provide evidence for evolution?

From Dinosaurs to Birds: Puzzles Unraveled while Evidence Building up

Bio 1B Lecture Outline (please print and bring along) Fall, 2006

Comparative Zoology Portfolio Project Assignment

First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia

Jurassic Food Web. Early Childhood Learning Objective

Fig. 5. (A) Scaling of brain vault size (width measured at the level of anterior squamosal/parietal suture) relative to skull size (measured at the

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1

Report. Gradual Assembly of Avian Body Plan Culminated in Rapid Rates of Evolution across the Dinosaur-Bird Transition

Saurischian diversity

Transcription:

doi:10.1038/nature12424 Figure S1. Bivariate plots of log-transformed data of body size. Body size is plotted against a, olfactory bulb volume, b, optic lobe volume, c, cerebellum volume, and d, brain stem volume. Colours indicate crown birds (blue), non-maniraptoran theropods (white), oviraptorosaurs (red), deinonychosaurs (yellow), Archaeopteryx lithographica (green). Reduced major-axis regression line for entire sample (solid), crown group birds (large dashes), and non-avian theropods (small dashes). Regression statistics are given in Table S3. WWW.NATURE.COM/NATURE 1

RESEARCH SUPPLEMENTARY INFORMATION Figure S2. Bivariate plots of log-transformed data of total endocranial volume. Total endocranial volume is plotted against a, olfactory volume, b, optic lobe volume, and c, brain stem volume. Colours indicate crown birds (blue), oviraptorosaurs (red), deinonychosaurs (yellow), Archaeopteryx lithographica (green). Reduced major-axis regression line for entire sample (solid), crown group birds (large dashes), and non-avian theropods (small dashes). Regression statistics are given in Table S4. 2 WWW.NATURE.COM/NATURE

RESEARCH Figure S3. Endocranial casts of Archaeopteryx (above) and loon, Gavia immer (below). The cerebral indention potentially homologous with the avian wulst is highlighted by a dotted line. Anterior is to the left, and endocasts are scaled to the same size. WWW.NATURE.COM/NATURE 3

RESEARCH SUPPLEMENTARY INFORMATION Table S1. CT scanning parameters Taxon Specimen # Scanning facility z-spacing (mm) x-, y-spacing (mm) Number of slices through skull Anas platyrhynchus UTCT 0.400 0.122 123 Brotogeris chrysopteris UTCT 0.163 0.066 123 Bucorvus abyssinicus UTCT 0.263 0.117 143 Chauna chavaria UTCT 0.295 0.102 115 Chordeiles minor UTCT 0.059 0.054 381 Coragyps atratus UTCT 0.121 0.055 300 Eudyptes chrysocome AMNH 0.104 0.104 1100 Fregata magnificens UTCT 0.128 0.059 269 Gavia immer UTCT 0.109 0.051 408 Grus canadensis UTCT 0.166 0.076 246 Haliaeetus leucocephalus UTCT 0.169 0.077 245 Melanerpes aurifron UTCT 0.060 0.052 311 Phaethon rubricada UTCT 0.174 0.051 171 Phalacrocorax penicillatus UTCT 0.115 0.049 399 Phoebastria immutabilis UTCT 0.138 0.063 313 Podilymbus podiceps UTCT 0.056 0.026 379 Ptilinopus melanospilus UTCT 0.121 0.056 290 Struthio camelus SUNY 0.310 0.250 209 Incisivosaurus IVPP V gauthieri 13326 SUNY 0.310 0.187 147 Conchoraptor gracilis 100/3006 OU 0.092 0.092 550 Citipati osmolskae 100/978 UTCT 0.250 0.196 360 Khaan mckennai 100/973 UTCT 0.164 0.076 328 Zanabazar junior 100/1 UTCT 0.450 0.230 195 Unnamed UTCT 0.047 0.043 1710 4 WWW.NATURE.COM/NATURE

RESEARCH troodontid* 100/1126 Tsaagan UTCT 0.475 0.234 124 mangas 100/1015 Archaeopteryx BMNH UTCT 0.023 0.020 996 lithographica 37001 Shuvuuia 100/977 UTCT 0.251 0.101 195 deserti Alioramus UTCT 0.250 0.294 490 altai 100/1844 *see Turner et al. (2012) 15 for phylogenetic position of 100/1126. WWW.NATURE.COM/NATURE 5

RESEARCH SUPPLEMENTARY INFORMATION total endocranium Table S2. Raw Volumetric Data for endocranial regions (cm 3 ). Body mass given in kg. Taxon specimen # body mass olfactory bulbs cerebrum optic lobes cerebellum brain stem Anas platyrhynchus 0.17 6.76 0.055 4.69 0.95 0.53 0.53 Brotogeris chrysopteris 0.02 1.98 0.009 1.53 0.20 0.16 0.06 Bucorvus abyssinicus 1.26 22.04 0.006 16.81 2.84 1.70 0.68 Chauna chavaria 1.20 7.69 0.036 5.18 0.90 1.00 0.58 Chordeiles minor 0.01 0.87 0.006 0.46 0.24 0.11 0.06 Coragyps atratus 0.90 8.68 0.234 5.95 0.99 0.96 0.55 Eudyptes chrysocome 2.33 11.43 0.009 8.05 1.07 1.62 0.68 Fregata magnificens 0.17 9.11 0.015 6.09 0.88 1.62 0.49 Gavia immer 0.30 9.87 0.041 5.50 1.62 1.94 0.77 Grus canadensis 2.18 15.10 0.026 11.08 1.95 0.89 1.15 Haliaeetus leucocephalus 2.06 17.69 0.032 12.24 2.16 2.18 1.07 Melanerpes aurifron 0.01 2.20 0.003 1.57 0.20 0.34 0.08 Phaethon rubricada 0.03 4.02 0.010 2.22 0.73 0.76 0.29 Phalacrocorax penicillatus 0.26 12.28 0.027 8.36 1.40 1.63 0.86 Phoebastria immutabilis 0.43 14.33 0.206 9.45 1.44 2.40 0.85 Podilymbus podiceps 0.05 2.48 0.008 1.63 0.41 0.26 0.17 Ptilinopus melanospilus 0.10 1.11 0.003 0.63 0.27 0.13 0.07 Struthio camelus 59.30 56.31 0.274 36.85 7.61 6.45 5.13 Incisivosaurus IVPP V gauthieri 13326-5.52 0.029 2.38 1.20 1.07 0.83 Conchoraptor gracilis c 100/3006 5.02 9.44 - * 4.27 1.57 2.49 1.07 Citipati osmolskae 100/978 85.96 22.62 0.569 9.52 3.60 5.16 3.78 Khaan mckennai 100/973 12.61 8.83 0.028 3.71 1.31 1.60 2.17 Zanabazar junior 100/1 49.30 ** 25.14 1.080 14.81 4.75 3.16 2.35 6 WWW.NATURE.COM/NATURE

RESEARCH unnamed troodontid c Tsaagan mangas Archaeopteryx lithographica c Shuvuuia deserti Alioramus altai Tyrannosaurus rex a 100/1126 0.92 3.11 0.021 1.38 0.87 0.50 0.33 100/1015 15.95 3.07 0.042 1.61 0.70 0.31 0.40 BMNH 37001 0.50 1.44 0.077 0.60 0.36 0.24 0.17 100/977 0.25 0.83 0.050 0.41 0.16 0.09 0.12 100/1184 359.0 73.23 6.180 18.70 - - - AMNH 5029 5840.0 343.0-111.80 - - - UMNH VP 7435-169.0-46.7 - - - Allosaurus fragilis a Acrocanthosaurus 10146 3770.0 191.0 - - - - - OMNH atokensis *Olfactory bulbs for Conchoraptor gracilis are present but too small to measure accurately. **Body size of Zanabazar junior estimated based on Saurornithoides mongoliensis 19, a closely related taxon. Body size scaled using overlapping elements found in both taxa. Body size of Tsaagan mangas estimated based on another specimen, IVPP V 16923 15, 20. Body size scaled using overlapping elements found in both taxa. Body size of Tyrannosaurus rex estimated based on another specimen, FMNH PR2081 21. Body size scaled using overlapping elements found in both taxa. a Endocranial volumes taken from Larsson et al. (2000) 5. b Endocranial volume taken from Franzosa and Rowe (2005) 22. c Endocranial volumes for these taxa were calculated by doubling the undistorted halves of the endocasts. WWW.NATURE.COM/NATURE 7

RESEARCH SUPPLEMENTARY INFORMATION Table S3. Regression statistics for partitions vs. body size region statistic Whole Sample Crown Birds Non-avian Theropods uncorrectecorrectecorrected un- un- corrected corrected corrected slope 0.43 0.77 0.50 0.86 0.62 0.72 total y- endocranium 0.84-0.44 1.10-0.60 0.20-0.39 intercept r 2 0.66 0.50 0.77 0.31 0.89 0.74 slope 0.66 1.32 0.63 1.33 0.96 1.43 olfactory y- bulbs intercept -1.41-1.40-1.34-1.89-1.89-0.63 r 2 0.62 0.25 0.43 0.13 0.73 0.80 slope 0.42 0.85 0.52 0.94 0.59 0.81 cerebrum y- intercept 0.60-0.54 0.93-0.72-1.00-0.49 r 2 0.46 0.50 0.87 0.30 0.92 0.77 slope 0.41 0.68 0.44 0.71 0.67 0.66 optic y- lobes intercept 0.02-0.39 0.19-0.43-0.55-0.46 r 2 0.50 0.41 0.89 0.23 0.58 0.63 slope 0.48 0.84 0.51 0.91 0.84 0.78 cerebellum intercept y- -0.032-0.59 0.18-0.69-0.77-0.61 r 2 0.38 0.43 0.66 0.32 0.55 0.56 slope 0.49 0.68 0.54 0.70 0.74 0.67 brain y- stem intercept -0.25-0.31-0.09-0.33-0.76-0.37 r 2 0.66 0.51 0.82 0.32 0.71 0.75 8 WWW.NATURE.COM/NATURE

RESEARCH Table S4. Regression statistics for partitions vs. endocranial volume region statistic Whole Sample Crown Birds Non-avian Theropods uncorrectecorrectecorrected un- un- corrected corrected corrected slope 1.56 1.84 1.50 1.62 1.44 2.15 olfactory y- bulbs intercept -2.66-0.78-2.81-1.10-2.19-0.09 r 2 0.45 0.27 0.42 0.20 0.65 0.86 slope 0.96 1.09 1.04 1.07 0.91 1.14 cerebrum y- intercept -0.21-0.03-0.21-0.01-0.28-0.05 r 2 0.96 0.98 0.99 0.98 0.99 0.99 slope 0.91 0.92 0.89 0.96 0.95 0.85 optic y- lobes intercept -0.75 0.06-0.79-0.13-0.68 0.04 r 2 0.91 0.87 0.92 0.84 0.97 0.97 slope 1.08 1.01 1.02 1.01 1.20 0.99 cerebellum intercept y- -0.94 0.02-0.94 0.02-0.94 0.02 r 2 0.91 0.84 0.91 0.79 0.96 0.97 slope 1.09 0.91 1.08 0.89 1.06 0.92 brain y- stem intercept -1.17 0.04-1.28 0.05-0.92 0.02 r 2 0.84 0.85 0.93 0.83 0.94 0.87 WWW.NATURE.COM/NATURE 9

RESEARCH SUPPLEMENTARY INFORMATION Table S5. PCA loadings Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 relative olfactory 0.46 0.67-0.10 0.94 0.30 volume relative cerebral -0.87 0.04 0.02-0.11 0.47 volume relative optic volume 0.32 0.74 0.31-0.18 0.47 relative cerebellar 0.24-0.64 0.57-0.05 0.46 volume relative brain stem volume 0.28-0.18-0.75-0.25 0.51 Abbreviations AMNH, American Museum of Natural History; BMNH, Natural History Museum, London;, Geological Institute, Ulaan Baatar, Mongolia; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing; OMNH, Sam Noble Oklahoma Museum of Natural History, Oklahoma City; OU, Ohio University, Athens; SUNY, State University of New York, Stony Brook; UMNH, Natural History Museum of Utah, Salt Lake City; UTCT, University of Texas at Austin, High-resolution X-ray CT Facility 10 WWW.NATURE.COM/NATURE

RESEARCH References: 1. Hopson, J. A. in Biology of the Reptilia, vol. 9. (eds Gans, C., Northcutt, R. G. & Ulinski, P.) 39 146 (Academic Press, 1979) 2. Iwaniuk, A. N. & Hurd, P. L. The evolution of cerebrotypes in birds. Brain Behavior and Evolution 65, 215 230 (2005) 3. Butler, A. B. & Hodos, W. 2005. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation, 2nd ed. (Wiley, 2005) 4. Baumel, J. J. & Witmer L. M. in Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd ed. (eds Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C.) 45 132 (Nuttall Ornithological Club, 1993) 5. Larsson, H. C. E., Sereno, P. C. & Wilson, J. A. Forebrain enlargement among theropod dinosaurs. J. Vert. Paleo. 20, 615 618 (2000) 6. Franzosa, J. W. Evolution of the Brain in Theropoda (Dinosauria). (Unpub. Ph.D. diss., Univ of Texas, Austin, 2004) 7. Dominguez Alonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J. & Rowe, T. B. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430, 666 669 (2004) 8. Jerison, H. J. Brain evolution and dinosaur brains. American Naturalist 103, 575 588 (1969) 9. Kundrát, M. Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis. Naturwissenschaften 94, 499 504 (2007) 10. Iwaniuk, A. N. & Nelson J. E. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology 80, 16 23 (2002) 11. Christiansen, P. & Fariña, R. A. Mass prediction in theropod dinosaurs Hist. Bio. 16, 85 92 (2004) WWW.NATURE.COM/NATURE 11

RESEARCH SUPPLEMENTARY INFORMATION 12. Midford, P. E., Garland, T.G. Jr., & Maddison, W.P. PDAP:PDTREE: A translation of the PDTREE application of Garland et al. s Phenotypical Diversity Analysis Program. Available at http://mesquiteproject.org/pdap_mesquite/index.html (2010) 13. Felsenstein, J. Phylogenies and the comparative method. American Naturalist 125, 1 15 (1985) 14. Smith, N. D., Makovicky, P. J., Hammer, W. R. & Currie, P. J. Osteology of Crylophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zoological Journal of the Linnean Society 151, 377 421 (2007) 15. Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaiosaurid systematics and paravian phylogeny. Bulletin of the American Museum of Natural History 371, 1 206 (2012) 16. Mayr, G. and Clarke, J. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19, 527 553 (2003) 17. Livezey, B. C. & Zusi, R. L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society 149, 1-95 (2007) 18. de Winter, W. & Oxnard, C. E. Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409, 710 714 (2001) 19. Norell, M. A. et al. A review of the Mongolian Cretaceous dinosaur Saurornithoides (Troodontidae: Theropoda). Amer. Mus. Nov. 3654, 1 63 (2009) 20. Xu, X. et al. A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China. Zootaxa. 2403, 1 9 (2010) 12 WWW.NATURE.COM/NATURE

RESEARCH 21. Brochu, C. A. Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Soc. Vert. Paleontol. Memoir 7, 1 138 (2003) 22. Franzosa, J. W., & Rowe, T. Cranial endocast of the Cretaceous theropod dinosaur Acrocanthosaurus atokensis. J. Vert. Paleontol. 25, 859 864 (2005) WWW.NATURE.COM/NATURE 13