TOXOCARA EGG SOIL CONTAMINATION AND ITS SEROPREVALENCE AMONG PUBLIC SCHOOL CHILDREN IN LOS BAÑOS, LAGUNA, PHILIPPINES

Similar documents
Data were analysed by SPSS, version 10 and the chi-squared test was used to assess statistical differences. P < 0.05 was considered significant.

Academia Arena 2017;9(3) Prevalence of parasites in soil samples in Tehran public places.

SEROPREVALENCE TO CATTLE BABESIA SPP. INFECTION IN NORTHERN SAMAR ABSTRACT

Hair Contamination of Sheepdog and Pet Dogs with Toxocara canis Eggs

IDEXX PetChek IP A new approach to intestinal parasites in veterinary medicine

Fighting feline worms: Toxocara in cats and its role in human toxocarosis

Title: ontamination of the hair of owned dogs with the eggs of Toxocara spp.

Quantifying the risk of zoonotic geohelminth infections for rural household inhabitants in Central Poland

ELlSA Seropositivity for Toxocara canis Antibodies in Malaysia,

Original article: Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2

Serodiagnosis of Toxocara among Infants and Pregnant Women Suspected of Ocular or Visceral Toxocariasis Using Two Types of ELISA Antigens

Enzyme immunoassay for the qualitative determination of antibodies against Toxocara canis in human serum or plasma

antibody test Voller (1963) have shown both in vitro and in vivo that the third stage of Ascaris larvae of man and

The Prevalence of Some Intestinal Parasites in Stray Dogs From Tetova, Fyr Macedonia

School-based Deworming Interventions: An Overview

Determining the Most Prevalent Parasitic Worms Found in Canines Surrounding the Bryan/College Station Area

Diagnosing intestinal parasites. Clinical reference guide for Fecal Dx antigen testing

Diagnosing intestinal parasites. Clinical reference guide for Fecal Dx antigen testing

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Seroprevalence of Larva Migrans of Toxocara canis and Evaluation of Associated Risk Factors Among Children in a Mexico-United States Border Region

The prevalence of anti-echinococcus antibodies in the North-Western part of Romania

What s Hiding in your Pet?

Seroprevalence and risk factors of infections with Neospora caninum and Toxoplasma gondii in hunting dogs from Campania region, southern Italy

STUDIES ON THE PREVALENCE OF HOOKWORM INFECTION AMONGST RURAL FARMERS IN EMOHUA L.G.A, RIVERS STATE

Ectoparasites of Stray Cats in Bangkok Metropolitan Areas, Thailand

Nora Labeeb El-Tantawy 1, Hala Ahmed El-Nahas 1, Mohamed mohamed El-Assmy 2, Argaya Mohamed Alsalem 3

Toxocara Spp. Eggs in Public Parks of Urmia City, West Azerbaijan Province Iran

Chapter 8. Effect of a government education campaign in the Netherlands on awareness of Toxocara and toxocarosis. P.A.M. Overgaauw

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 4, Issue 2, March 2016

Surveillance of animal brucellosis

We Check Your Pets For Internal Parasites

IMPACT OF A FILARIASIS CONTROL PROGRAM ON INTESTINAL HELMINTHIC INFECTIONS; A PILOT STUDY IN NARATHIWAT PROVINCE, THAILAND

STUDIES ON THE PREVALENCE OF HOOKWORM INFECTION AMONGST RURAL FARMERS IN EMOHUA L.G.A, RIVERS STATE.

Seroprevalence of Toxocariasis in Children with Urticaria: A Population-based Study

Helminthic food-borne infection in Japan

ECONOMICS OF DEWORMING BEEF CATTLE & HERD MONITORING WITH FECAL EGG COUNTS

Most clients are well aware that puppies

FECAL EGG AND OOCYST COUNTS IN DOGS AND CATS FROM ANIMAL SHELTERS FROM SOUTH DAKOTA

Proceeding of the LAVC Latin American Veterinary Conference Oct , 2010 Lima, Peru

SEMESTER ONE 2007 INFECTION and IMMUNITY GRADUATE ENTRY PROGRAMME PARASITOLOGY PRACTICAL 9 Dr TW Jones NEMATODES

Guard against intestinal worms with Palatable All-wormer

Intestinal Worms CHILDREN SAY THAT WE CAN. Intestinal worms affect millions of children worldwide.

THE HIGH PREVALENCE OF ASYMPTOMATIC TOXOCARA INFECTION AMONG SCHOOLCHILDREN IN MANADO, INDONESIA

Toxocariasis: serological diagnosis by enzyme

Presentation of Quiz #85

Prevalence of Toxocara antibodies among patients clinically suspected to have ocular toxocariasis: A retrospective descriptive study in Sri Lanka

Coproantigen prevalence of Echinococcus spp. in rural dogs from Northwestern Romania

FELINE CORONAVIRUS (FCoV) [FIP] ANTIBODY TEST KIT

AWARENESS OF FARMERS REGARDING HYGIENIC HANDLING OF THEIR CATTLE TO PREVENT ZOONOTIC DISEASES

Antihelminthic Trematodes (flukes): Cestodes (tapeworms): Nematodes (roundworms, pinworm, whipworms and hookworms):

Lecture 4: Dr. Jabar Etaby

Canine giardiosis in an urban are Title source on infection of man. NikoliĆ, Aleksandra, DimitrijeviĆ Author(s) BobiĆ, Branko

A SEROEPIDEMIOLOGICAL STUDY OF TOXOCARIASIS AND RISK FACTORS FOR INFECTION IN CHILDREN IN SRI LANKA

EFSA s activities on Antimicrobial Resistance

VICH Topic GL20 EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR FELINE

Vietnam - WSP Global Scaling up Handwashing Behavior Impact Evaluation, Baseline and Endline Surveys

Enzootic Bovine Leukosis: Milk Screening and Verification ELISA: VF-P02210 & VF-P02220

Ascarids, Pinworms, and Trichocephalids

HOOKWORM FAQ SHEET (rev ) Adapted from the CDC Fact Sheet

PREVALENCE OF BORDER DISEASE VIRUS ANTIBODIES AMONG NATIVE AND IMPORTED SHEEP HERDS IN ZABOL. Sari-Iran.

Cardiac blood samples were collected in EDTA tubes as described in Chapter 2, and

A Field Study on Efficacy of Albendazole (Albezol ) Against Gastro-intestinal Nematodes in Ruminants

Ocular Larva Migrans: A Severe Manifestation of an Unseen Epidemic

Introduction to Helminthology

Schools as a venue for WASH promotion CDC s experience

Ascarids, Oxyuris, Trichocephalids

PARASITOLOGICAL EXAMINATIONS CATALOGUE OF SERVICES AND PRICE LIST

Supplementary webappendix

The use of serology to monitor Trichinella infection in wildlife

SensPERT TM Giardia Test Kit

Guidelines for Veterinarians: Prevention of Zoonotic Transmission of Ascarids and Hookworms of Dogs and Cats

Latent and Asymptomatic

STRAY ANIMALS (DOGS AND CATS) AS SOURCES OF SOIL-TRANSMITTED PARASITE EGGS/CYSTS IN TEMPLE GROUNDS OF BANGKOK METROPOLITAN, THAILAND

Prevalence of Liver Fluke in Sheep and Goat Slaughtered at Abattoirs in Zaria, Kaduna State, Nigeria

CIMTRADZ. Capacity building in Integrated Management of Trans-boundary Animal Diseases and Zoonoses

Salmonella Dublin: Clinical Challenges and Control

OIE Reference Laboratory Reports Activities

Rapid molecular testing to detect Staphylococcus aureus in positive blood cultures improves patient management. Martin McHugh Clinical Scientist

FACULTY OF MEDICINE INSTITUTE OF BIOLOGY SYSTEMS AND GENETIC RESEARCH HELENE TONNER

Classificatie: intern

Recommended for Implementation at Step 7 of the VICH Process on 15 December 2004 by the VICH Steering Committee

EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR CANINES

The impact on the routine laboratory of the introduction of an automated ELISA for the detection of Cryptosporidium and Giardia in stool samples

P<0.05 ٢٠٠٧ ٣ ﺩﺪﻌﻟﺍ ﺮﺸﻋ ﺚﻟﺎﺜﻟﺍ ﺪﻠﺠﳌﺍ ﺔﻴﳌﺎﻌﻟﺍ ﺔﺤﺼﻟﺍ ﺔﻤﻈﻨﻣ ﻂﺳﻮﺘﳌﺍ ﻕﺮﺸﻟ ﺔﻴﺤﺼﻟﺍ ﺔﻠﺠﳌﺍ

Chapter 4. Nematode infections in dog breeding kennels in the Netherlands, with special reference to Toxocara.

Research & Reviews: Journal of Zoological Sciences

THE CONTROL AND SURVEILLANCE OF FILARIASIS IN HAINAN PROVINCE, CHINA

VICH Topic GL19 EFFICACY OF ANTHELMINTICS: SPECIFIC RECOMMENDATIONS FOR CANINES

Research report Caroline Palmbergen Supervisor: Drs. Rolf Nijsse

Seroprevalence of toxocariasis among Orang Asli (Indigenous people) in Malaysia using two immunoassays

Comparative Evaluation of Online and Paper & Pencil Forms for the Iowa Assessments ITP Research Series

OCCURRENCE OF ENDOPARASITES IN INDIGENOUS ZAMBIAN DOGS. Bruce-Miller, M., Goldová, M.

Soil Contamination of Public Places with Toxocara spp. Egg in Kermanshah, Iran, in 2014

Brucellosis in Kyrgyzstan

Isolation of IgG Antibodies to Toxocara in Ankylosing Spondylitis Patients with Acute Anterior Uveitis

Ecology & Evolutionary Biology 4274 Lecture Exam #3. Nematoda, Misc. phyla, Arthropoda, ecology and evolution December 10, 2014

INFECTIOUS HEPATITIS, PARVOVIRUS & DISTEMPER

Outline 1/13/15. Range is mostly surrounding Puerto Rico Important for Tourism and ecological balance

Dirofilaria. Dirofilaria immitis and D. repens in dog and cat and human infections. Editors Claudio Genchi, Laura Rinaldi, Giuseppe Cringoli

Curriculum Vitae. Education: DVM University of Shiraz, School of veterinary medicine

Transcription:

Toxocara Contamination and Infection in Los Baños TOXOCARA EGG SOIL CONTAMINATION AND ITS SEROPREVALENCE AMONG PUBLIC SCHOOL CHILDREN IN LOS BAÑOS, LAGUNA, PHILIPPINES Apryl Joy M Fajutag and Vachel Gay V Paller Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines Abstract. The soil-transmitted nematode Toxocara sp has little epidemiological information in the Philippines. In this study, we studied the extent of soil contamination with Toxocara eggs and the seroprevalence of Toxocara infection among public school children in Los Baños, Laguna, Philippines. Soil samples were obtained from public schools, backyards, and empty lots in Los Baños to examine for the presence of Toxocara eggs using the modified sucrose flotation technique. Serum samples were obtained from public school children in Los Baños and examined for Toxocara infection using an ELISA test. Of the 200 soil samples, 85 (43%) were positive for Toxocara eggs at a concentration of 1 egg/g of soil. Forty-two percent of soil samples obtained from the public school, 45% of backyard samples, and 40% of empty lot samples were positive. Of the 75 serum samples from children, 37 (49%) were positive for Toxocara infection. There was a positive correlation between Toxocara egg concentration and seroprevalence of Toxocara infection. Results showed a high prevalence of soil contamination and a high seroprevalence of Toxocara infection among children in Los Baños, Laguna, Philippines. Keywords: Toxocara, soil contamination, seroprevalence, school children, Philippines INTRODUCTION Soil is a potential source of helminth parasites. The World Health Organization (WHO) has reported two billion people world-wide are estimated to be infected by soil transmitted helminthes, such as Ascaris lumbricoides, hookworms, and Trichuris trichiura. These parasites can cause chronic morbidity and debilitation (Doligalska and Donskow, 2003). Correspondence: Apryl Joy M Fajutag, Institute of Biological Sciences, College of Arts and Sciences, UP Los Baños, Laguna, Philippines. Tel: +63 49 536 2843; Fax: +63 49 536 2893 E-mail: apryljoy.fajutag@gmail.com Toxocara canis and Toxocara cati are less known soil-transmitted helminths that cause human toxocariasis. One study found 2-88% of soil samples collected from different countries and regions have T. canis and T. cati eggs (Institute for International Cooperation in Animal Biologies, 2005). These nematodes are found in dogs and cats, respectively, then can be transmitted to the environment and then to humans through ingestion of contaminated soil or food with embryonated egg (Dubna et al, 2007). Upon ingestion they migrate to the different tissues and organs causing toxocariasis. This disease is characterized by two syndromes: visceral Vol 44 No. 4 July 2013 551

Southeast Asian J Trop Med Public Health larva migrans and ocular larva migrans. Visceral larva migrans can cause persistent eosinophilia which in most cases is asymptomatic; ocular larva migrans can cause ocular disease resulting in vision loss and it can cause retinal granulomas (Smith et al, 2009). Toxocariasis is more common in children under age 20 (CDC, 2007) and may affect the neuropsychological performance and decrease the cognitive development (Sharghi et al, 2000). Transmission of Toxocara is favored by high ambient temperatures and humidity (Institute for International Cooperation in Animal Biologies, 2005). In the Philippines, there has been little awareness of human toxocariasis, although there are plenty of feral dogs and cats, soiled areas, and an increasing population of children. There have been no published studies of soil contamination with Toxocara eggs and infection seroprevalence in the Philippines; therefore we aimed to accomplish this with this study. Of the nine species of Toxocara (Institute for International Cooperation in Animal Biologies, 2005), the focus of this study will only be on T. canis and T. cati. These two species were not distinguished from each other since they are morphologically similar (Uga et al, 2000). This study aimed to examine the extent of soil contamination with Toxocara eggs and to determine the prevalence of Toxocara infection among public school children in Los Baños, Laguna, Philippines. MATERIALS AND METHODS Study site and soil sample collection (Fig 1) The municipality of Los Baños is classified as an urban area based on the 2000 Census of Population and Housing (CPH), Report No. 4 Urban Population (National Statistics Office, 2006). Los Banos is composed of 14 districts of barangays, 5 of which were randomly selected for this study by drawing lots: Bambang, Batong Malake, Bayog, Maahas and Mayondon. From each randomly selected barangay, 1 public school, 3 backyards and 3 empty lots were semi-purposively selected (ie, the sample sites chosen were those frequented by dogs and cats). Ten samples were obtained from each public school, five from each backyard and five from each empty lot. Each sample consisted of 50 grams. The samples were obtained at a depth of 5 cm and placed in labeled Ziplock bags (Dubna et al, 2007). Determining Toxocara eggs concentration in the soil The soil samples were dried at room temperature and then filtered through 125 µm mesh. Approximately 2 g of the filtered sample was placed in a centrifuge tube, mixed with 6 ml of distilled water and then centrifuged at 1,800 rpm for 10 minutes. The supernatant was decanted and the residue was then mixed with 8 ml sucrose solution [specific gravity (S.G.) = 1.2]. The suspension was then centrifuged at 1,800 rpm for 10 minutes. The tubes containing the suspension were filled to the brim with additional sucrose solution (S.G. = 1.3) and then covered with a cover slip. Microscopic examination The slide samples were examined under a microscope at high power. If the eggs could not be classified a drop or two of Lugol s iodine was added to the fluid at the edge of the cover slip, and the preparation was then re-examined after 5 minutes. The preparations were viewed within 15 minutes of preparation to avoid over-staining (Gillespie and Hawkey, 1995). An ocular micrometer was used to verify egg sizes. 552 Vol 44 No. 4 July 2013

Toxocara Contamination and Infection in Los Baños Fig 1 Map of Los Baños, Laguna showing sampling sites. Enzyme-linked immunosorbent assay Serum samples (15 µl by finger prick) were obtain from 75 randomly selected public school children aged 8-13 years from three barangays: Bambang, Bayog and Mayondon (25 samples from each barangay). The study was approved by the Municipal Health Office and with the consent of the parents of the children. The studied children completed a questionnaire asking about socio-economic factors with the help of their parents and/ or guardians. The blood samples collected were centrifuged at 3,000 rpm for 30 minutes within 24 hours of collection and then stored at -20ºC until used. A DRG Toxocara canis ELISA kit (DRG International, Mountainside, NJ) was used to determine the presence of toxocariasis. Data analysis A comparison of the prevalence of soil contaminated with Toxocara from the backyards and empty lots within a barangay was conducted using the independent sample t-test. To compare the backyards and empty lots among barangays, oneway analysis of variance (ANOVA) was performed using PASW Statistics version 18.0 software. All data were transformed to an arc sine before statistical analysis. For seroprevalence tests, the measured absorbance was subtracted from the value of the no-serum blank. A result was considered negative if the absorbance reading of the analyzed sample was less than 0.3 (the IgG antibodies against Toxocara excretory/secretory antigen were not significantly elevated) (Bordier Affinity Products, 2007; DRG International, 2009). Possible socio-economic risk factors Vol 44 No. 4 July 2013 553

Southeast Asian J Trop Med Public Health Prevalence (%) Fig 2 Toxocara eggs found in soil samples examined: A-C, unembryonated eggs; D, embryonated egg (scale bar = 15 µm). 80 70 60 50 40 30 20 10 0 Bambang Batong Malake Bayog Barangay Maahas Mayondon Public school Backyards Empty lots Fig 3 Prevalence of Toxocara eggs in soil samples from sample sites, Los Baños. for Toxocara infection based on the questionnaires were analyzed using an independent t-test and a one-way ANOVA. The prevalence and intensity of Toxocara eggs in the soil were compared with the seroprevalence of Toxocara infection using Pearson correlation analysis. RESULTS Prevalence of Toxocara in soil From the 200 soil samples collected, 85 (43%) were positive for Toxocara eggs with a maximum of 8 Toxocara eggs found in each of two soil samples: a backyard in Bayog and a public school in Maahas. Fig 2 shows some of the Toxocara eggs found in the soil samples examined. Both unembryonated and embryonated eggs were observed. The average concentration of Toxocara eggs per soil sample was 1 egg/g soil sample (Table 1). This concentration was the same for all 5 barangay study location at all sampling sites. A public school in Maahas had the greatest concentration of 2 eggs/g soil. Fig 3 shows a summary of the prevalences of Toxocara eggs at each of the five barangays in Los Baños. In Bambang, Toxocara eggs were found in 30, 33 and 54% of public school, back yard and empty lots soil samples, respectively. In Batong Malake, Toxo- cara eggs were found in 50, 67 and 33% of public school, back yard and empty lot soil samples, respectively. In Bayog, Toxocara eggs were found in 30, 47 and 33% of public school, back yard and empty lot soil samples, respectively. In Maahas, Toxocara eggs were found in 50, 554 Vol 44 No. 4 July 2013

Toxocara Contamination and Infection in Los Baños Table 1 Mean concentrations of Toxocara eggs per 2 g of soil at the study sites. Barangay Public school Backyard Empty lot Average Bambang 2 3 2 2 Batong Malake 1 2 3 2 Bayog 2 3 2 3 Maahas 4 3 2 3 Mayondon 2 2 2 2 Average 2 2 2 2 Table 2 Prevalence of Toxocara antibodies by selected variables. Variables Positive/examined (%) Bambang (n=25) Bayog (n=25) Mayondon (n=25) Total (n=75) Gender Male 5/7 (71) 11/14 (79) 4/10 (40) 20/31 (65) Female 8/18 (44) 5/11 (45) 4/15 (27) 17/44 (39) Age 8-9 yrs old 2/2 (1) 8/10 (80) 1/2 (50) 11/14 (79) 10-11 yrs old 7/17 (41) 5/10 (50) 6/13 (46) 18/40 (45) 12-13 yrs old 4/6 (67) 3/5 (60) 1/10 (10) 8/21 (38) Pet ownership Dogs 4/7 (57) 7/12 (58) 2/7 (29) 13/26 (50) Cats 4/6 (67) 3/4 (75) 1/2 (50) 8/12 (67) Both 3/6 (50) 2/2 (100) 3/7 (43) 8/15 (53) None 2/6 (33) 4/7 (57) 2/9 (22) 8/22 (36) Daily family income < Php 100 1/4 (25) 1/1 (100) 0/2 (0) 2/7 (29) Php 100-500 11/19 (58) 11/20 (55) 6/19 (32) 28/58 (48) >Php 500 1/2 (50) 4/4 (100) 2/4 (50) 7/10 (70) Php, Philippines Pesos 40 and 27% of public school, back yard and empty lot soil samples, respectively. In Mayondon, Toxocara eggs were found in 50, 40 and 53% of public school, back yard and empty lot soil samples, respectively. The prevalences of soil samples positive for Toxocara eggs were not significantly different from eachother (Fig 4). The overall mean prevalence at each barangay are shown in Fig 5. Serological prevalence Of the 75 serum samples from public school children in the three barangays examined, 37 (49%) had IgG antibodies against Toxocara with an ELISA test. The largest number of children with a serum sample positive for Toxocara IgG antibodies were from Bayog (16), followed by Bambang (13), and then Mayondon (8) (Fig 6). Vol 44 No. 4 July 2013 555

Southeast Asian J Trop Med Public Health Prevalence (%) Fig 4 Prevalences (mean ± SD) of Toxocara eggs from each type of sample site. Prevalence (%) Fig 5 Prevalences of Toxocara eggs at each of the five barangay study sites. Prevalence (%) 60 50 40 30 20 10 0 60 50 40 30 20 10 0 70 60 50 40 30 20 10 0 School Bambang Batong Malake Backyard Los Baños Barangay Empty lot Bayog Maahas Mayondon Bambang Bayog Mayondon Barangay Fig 6 Seroprevalence of Toxocara antibodies among public school children in the three barangays of Los Baños. Seventeen of 44 females (39%) were positive for Toxocara infection, while 20 of 31 males (65%) were positive. The children, were divided into groups based on age: 8-9 years old, 10-11 years old, and 12-13 years old. Eleven of 14 children (79%) aged 8-9 years had Toxocara antibodies, 18 of 40 children (45%) aged 10-11 years had antibodies and 8 of 21 children (38%) aged 12-13 years had antibodies. Thirteen of 26 children with dogs as pets (50%) had antibodies, 8 of 12 children with cats as pets (67%) had antibodies, 8 of 15 children with both dogs and cats as pets (53%) had antibodies and 8 of 22 children with no pets (36%) had antibodies. Two of 7 children (29%) who had a daily family income below 100 Philippine Pesos (Php) had a serum sample positive for Toxocara antibodies, 28 of 58 children (48%) with a daily family income of Php 100-150 were positive and 7 of 10 children (70%) with a daily family income greater than Php 500 were positive (Table 2). To better understand the impact of the prevalence of Toxocara eggs in soil on the seroprevalence of Toxocara infection, the two were compared. There was a negative correlation between the prevalence of Toxocara eggs in the soil and the seroprevalence of Toxocara infection (r = -0.99). On the other hand there was a positive correlation between the concentration of Toxocara eggs in the soil and the seroprevalence of Toxocara infection (r = 0.96). 556 Vol 44 No. 4 July 2013

Toxocara Contamination and Infection in Los Baños DISCUSSION Approximately 43% of the soil samples in this study were positive for Toxocara eggs. This finding is similar to a study from the Czech Republic where 45% of the soil samples examined were positive (Dubna et al, 2007). This finding is greater than a study from Turkey (19%) (Gurel et al, 2005) but less than a study from Thailand (56%) (Wiwanitkit and Waenlor, 2004). The mean concentration of Toxocara eggs in this study was 1 egg/g soil. This finding is higher than the concentration seen in a study from both rural and urban Czech Republic (6 eggs/100g soil) (Dubna et al, 2007), but similar to a study from Maryland, USA conducted in backyards and gardens (1 egg/g soil) (Childs, 1985). The prevalence and concentration of Toxocara eggs in soil samples in this study imply the presence of many feral dogs and cats defecating in the soil. Both unembryonated and embryonated eggs were observed in the soil samples collected. The presence of embryonated eggs indicates the environment is favorable for the development of these eggs, and the eggs were on the soil long enough for embryonation (Tinoco-Garcia et al, 2007). These embryonated eggs can be infective, causing toxocariasis upon ingestion. Of the sampled sites, the backyards in Batong Malake had the highest prevalence of Toxocara eggs. The residences where backyard soil samples were collected in this study have dogs as their pets. The high prevalence of eggs in these soil samples implied that the pet dogs may be infected increasing the risk for the residents to become infected. Backyards are a popular play area for children (Dubna et al, 2007). The 67% soil prevalence with Toxocara eggs in this area is alarming. Toxocara soil contamination rates in the backyards were not significantly different among the five barangays. Of the public schools examined those in Bambang and Batong Malake did not keep their areas enclosed, allowing dogs to enter the school grounds. However, at all the schools, cats were seen while collecting soil samples. The presence of eggs in the soil samples collected suggests the cats and dogs living around the school may be infected with Toxocara. During sample collection, children were seen playing in the soil with their bare hands and not wearing shoes or slipper, thus increasing the risk of acquiring Toxocara infection. Toxocariasis may decrease the neurophysiological and cognitive development of infected children (Sharghi et al, 2000). Children may also play in empty lots where Toxocara eggs were found. Fortyfour percent of the studied children said they play in empty lots, increasing their risk for Toxocara infection. The high seroprevalence of Toxocara among public school children in Los Baños, Laguna (49%) is alarming. This prevalence is higher than a study from Peru (7%) (Lescano et al, 1998) and Italy (2%) (Habluetzel et al, 2003). The highest number of children positive for Toxocara infection was in Bayog (16), followed by Bambang (13) and Mayondon (8). Most of the children in Bayog (56%) played in empty lots where the soil was accessible to dogs and cats. Forty percent of empty lot soil samples were positive for Toxocara eggs. In Bambang, 40% of children played in empty lots and 52% played at school where dogs and cats had easy access to the grounds. Possible socio-economic factors affecting Toxocara infection were also Vol 44 No. 4 July 2013 557

Southeast Asian J Trop Med Public Health analyzed. However, there were no significant associations (p < 0.05) between the seroprevalence of Toxocara antibodies and gender, age, pet ownership, and family daily income. Males had a slightly higher prevalence of infection than females. This could be due to the play habits of male children who may spend more time playing in areas at higher risk for contracting infection. The lower seroprevalence of infection among female children could be attributed to the females spending less time playing outside and more time helping inside with the household chores. However, there were no significant differences in prevalences of infection between male and female students (p < 0.05). Similar findings were reported in a study from Peru where no significant difference was seen in prevalences between the genders (Lescano et al, 1998). There was a slightly higher prevalence of infection among children aged 8-9 years than among older children. The younger children tended to spend more time outdoor playing in the soil, while older children spent more time helping with household chores and studying. Most of the older children, specifically from Bayog, preferred to play computer games, reducing their risk of contact with soiled environments. Younger children are more likely to have pica; this increasing the chance of contracting Toxocara infection orally. However, there were no significant differences in seroprevalence by age group (p < 0.05). Similar findings were reported in a study from Peru, where no significant difference in infection prevalence were seen by age group (Lescano et al, 1998). It is assumed the Toxocara eggs were introduced into the environment in the feces of dogs and cats; therefore, the subject of pet ownership is important. Children with no pets at home had a slightly lower seroprevalence of infection, while children with pets (dogs, cats, or both) had a slightly greater seroprevalence of infection. Children in close contact with dogs or cats had a slightly greater risk of ingesting eggs. However, there was no significant difference in seroprevalence between children who owned pets (regardless of the type), and those who do not (p < 0.05). However, another study did find a significant difference in seroprevalence between children who owned pets and those who did not (Baboolal and Rawlins, 2002). Children belonging to a family with greater income had a slightly higher seroprevalence of Toxocara infection, but this difference was not statistically significant (p < 0.05). The incomes of the families of the subjects (ie, 100-500 Php/day) was at the poverty level, thus no difference was seen between richer and poorer households in the prevalence of Toxocara infection. There was a negative correlation (r = -0.99) between soil prevalence of Toxocara eggs and seroprevalence of infection among public school children. As the number of position soil samples increased, the number of children infected with Toxocara decreased. This could be attributed to the number of Toxocara eggs per soil sample were not enough to start infection. However, there was a positive correlation (r = 0.96) between the concentration of Toxocara eggs in soil and the seroprevalence of infection. The greater the concentration of Toxocara eggs present in soil, the greater the chance of ingesting an egg and contracting infection. Only three barangays were included in the study of 558 Vol 44 No. 4 July 2013

Toxocara Contamination and Infection in Los Baños seroprevalence of Toxocara infection. A greater number of barangays need to be studied to better elucidate the relationship between concentration of Toxocara eggs in the soil and seroprevalence of infection. This is the first report of the soil prevalence of Toxocara eggs and infection among school children in the Philippines. This alarmingly prevalence of Toxocara eggs in the soil and seroprevalence of Toxocara in school children represents a public health hazard in the community (Lescano et al, 1998). This baseline information can be used for control and prevention of toxocariasis and other soil-transmitted helminth infections common in children. This study gives baseline information regarding soil contamination and infection with Toxocara in Los Baños, Laguna, the Philippines. The results of this study can be helpful in conducting toxocariasis awareness programs and preventive measures, such as deworming of dogs and cats, strict implementation of the ordinance on registration of pets and the continuous practice of proper hygiene. Further studies from other areas in the Philippines are needed to assess the prevalence of soil contamination and infection among school children. Easier, specific diagnostic methods to determine active infection with Toxocara need to be developed for more efficient diagnosis of this zoonotic disease. ACKNOWLEDGEMENTS We would like to thank the Friends of Overseas Filipinos Incorporated (FOFI), the National Institute of Molecular Biology and Biotechnology (BIOTECH), Immunology Laboratory, Municipal Health Office, Health Center Workers of Bambang, Bayog, and Mayondon, the College of Veterinary Medicine, Tabon Field Station, Bio-Scan Clinlab Los Baños, Animal Biology Division, Mrs Rosalina Tandang, Mrs Claire Ramos, Dr Alvin Isidoro, Prof Emmanuel Ryan De Chavez, Dr Ma Dalisay Giron-Maligalig, Prof Consuelo Habito, Ms Larren Aguirre, Mr Langel Deyparine, Mr and Mrs Bakker, Ms Hannah Mei Medina, the UPLB Zoological Society (OZOOMS), UP Ecology and Systematics Major Students Society (UP ECOSS), family and friends for all their prayers, time, care, patience, help, and support given with this study. Above all, we give thanks and praise to God Almighty, for all blessings, hope, and guidance; for without Him, we would not have been able to finish this study. This is all for His glory. REFERENCES Baboolal S, Rawlins S. Seroprevalence of toxocariasis in schoolchildren in Trinidad. Trans R Soc Trop Med Hyg 2002; 96: 139-43. Childs J. The Prevalence of Toxocara species ova in backyards and gardens of Baltimore, Maryland. Am J Public Health 1985; 75: 1092-4. Centers for Disease Control (CDC). New CDC study results show Toxocara infection more common than previously thought. Atlanta: CDC, 2007. [Cited 2010 Jan 16]. Available from URL: http://www.cdc.gov/ NCIDOD/DPD/PARASITES/toxocara/ Toxocara_announcement.pdf Doligalska M, Donskow K. Environmental contamination with helminth infective stages implicated in water and foodborne diseases. Acta Microbiol Pol 2003; 52: 45-56. Dubna S, Langrova I, Jankovska J, et al. Contamination of soil with Toxocara eggs in urban (Prague) and rural areas in Czech Republic. Vet Parasitol 2007; 144: 81-6. Gillespie S, Hawkey P. Medical parasitology: a practical approach. New York: Oxford Vol 44 No. 4 July 2013 559

Southeast Asian J Trop Med Public Health University Press, 1995; 152: 83-4. Gurel F, Ertug S, Okyay P. Prevalence of Toxocara spp eggs in public parks of the city of Aydin, Turkey. Turkiye Parazitol Derg 2005; 29: 177-9. Habluetzel A, Traldi G, Ruggieri S, et al. An estimation of Toxocara canis prevalence in dogs, environmental egg contamination and risk of human infection in the Marche region of Italy. Vet Parasitol 2003; 113: 243-52. Institute for International Cooperation in Animal Biologies. Toxocariasis, 2005. [Cited 2009 Dec 1]. Available from: URL: http:// www.cfsph.iastate.edu/factsheets/pdfs / toxocariasis.pdf Lescano S, Chieffi P, Peres B, et al. Soil contamination and human infection by Toxocara sp in the urban area of Lima, Peru. Mem Inst Oswaldo Cruz 1998; 93: 733-4. National Statistics Office. 2000 CPH, Report No. 4, urban population. Manila: National Statistics Office, 2006. [Cited 2009 Dec 1]. Available from: URL: http://nscb.gov.ph/ activestats/psgc/ municipality.asp?munco de=043411000&regcode=04&provcode=34 Sharghi N, Schantz P, Hotez P. Toxocariasis: an occult cause of childhood neuropsychological deficits and asthma? Semin Pediatr Infect Dis 2000; 11: 257-60. Smith H, Holland C, Taylor M, Magnaval J-F, Schantz P, Maizels R. How common is human toxocariasis? Towards standardizing our knowledge. Trends Parasitol 2009; 25: 182-8. Tinoco-Garcia L, Barreras-Serrano A, Lopez- Valencia G. Frequency of Toxocara canis eggs in public parks of the urban area of Mexicali, BC, Mexico. J Anim Vet Adv 2007; 6: 430-4. Uga S, Matsuo J, Kimura D, Rai S, Koshino Y, Igarashi K. Differentiation of Toxocara canis and T. cati eggs by light and scanning electron microscopy. Vet Parasitol 2000; 92: 287-94. Wiwanikit V, Waenlor W. The frequency rate of Toxocara species contamination in soil samples from public yards in an urban area Payathai, Bangkok, Thailand. Rev Inst Med Trop Sao Paulo 2004; 46: 113-4. 560 Vol 44 No. 4 July 2013