VENOMS OF CORAL SNAKES (MICRURUS SPP.): REPORT ON A MULTIVALENT ANTIVENIN FOR THE AMERICAS

Similar documents
Neutralization of Micrurus distans distans venom by antivenin (Micrurus fulvius)

TOXOIDING OF SNAKE VENOM AND EVALUATION OF IMMUNOGENICITY OF THE TOXOIDS

Gye and Cramer (1919) found that the ionizable salts of calcium injected together with the washed spores of Cl. tetani or of certain

(D) fertilization of eggs immediately after egg laying

6/20/2018. A Public Benefit Corporation. A First-in-Class Snakebite Antidote. Discovery to Accelerated Development

NOTES IMMUNOGENICITY IN MONKEYS OF A COMBINED TOXOID FROM THE MAIN TOXIC PRINCIPLES SEPARATED FROM HABU SNAKE VENOM

Reproductive Strategies of New World Coral Snakes, Genus Micrurus

EUROPEAN REFERENCE LABORATORY (EU-RL) FOR BOVINE TUBERCULOSIS WORK-PROGRAMME PROPOSAL Version 2 VISAVET. Universidad Complutense de Madrid

ENVIRACOR J-5 aids in the control of clinical signs associated with Escherichia coli (E. coli) mastitis

= 0.5 mg. In vitro toxin neutralisation test based on haemolysis of sheep erythrocytes. For a full list of excipients, see section 6.1.

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

VOL. XXIII NO. II THE JOURNAL OF ANTIBIOTICS 559. ANTIBIOTIC 6640.* Ill

ff2 REFJPORT: Final Report-~Vs ~

The Most Venomous Dangerous Deadly Poisonous Snakes?

Clostridial Vaccination Efficacy on Stimulating and Maintaining an Immune Response in Beef Cows and Calves 1,2

DETECTION AND NEUTRALIZATION OF VENOM BY OVINE ANTISERUM IN EXPERIMENTAL ENVENOMING BY Bothrops jararaca

Antimicrobial Resistance Surveillance in the Americas

SUMMARY OF PRODUCT CHARACTERISTICS

il/kerwan JMflsdum of New Forms Coral Snakes (Elapidae), with Descriptions A Check List of the New World Venomous BY JANIS A.

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

zation and labor when large groups are than toxoid injections in adults, although second method is of great value, but it

Overview and Expectations

Summary of product characteristics As per Annex C. SUMMARY OF PRODUCT CHARACTERISTICS Doc. No. SPC/71108 Ver.1

Traveling Treasures 2016 The Power of Poison

5 Dangerous Venom Types Thailand Snakes. Thailand Snake Venom Types:

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Antitoxin l.evels in Botulism Patients Treated with Trivalent Equine Botulism Antitoxin to Toxin Types A, B, and E

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

COMMITTEE FOR MEDICINAL PRODUCTS FOR VETERINARY USE

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS. Medicinal product no longer authorised

MARBOCYL 10% SUMMARY OF PRODUCT CHARACTERISTICS

Maharashtra, India. snake venom poisoning for animal experiment. The root of Vitex trifolia is

UT HEALTH EMERGENCY MEDICINE & TRAUMA GUIDELINES

Summary of Product Characteristics

Health Products Regulatory Authority

Error! Reference source not found. I. SUMMARY OF PRODUCT CHARACTERISTICS


Reproductive Vaccination- Deciphering the MLV impact on fertility

FELINE CORONAVIRUS (FCoV) [FIP] ANTIBODY TEST KIT

Control And Preventive Study Of Brucellosis By Using Lipopolysacharide Sub Unit Vaccine Brucella abortus Strain S-19

Enzootic Bovine Leukosis: Milk Screening and Verification ELISA: VF-P02210 & VF-P02220

ANNUAL STATISTICAL REPORT FOR ANIMALS USED IN IRELAND UNDER SCIENTIFIC ANIMAL PROTECTION LEGISLATION

Mouse Formulary. The maximum recommended volume of a drug given depends on the route of administration (Formulary for Laboratory Animals, 3 rd ed.

SUMMARY OF PRODUCT CHARACTERISTICS. NUFLOR 300 mg/ml solution for injection for cattle and sheep

Irish Medicines Board

Received 23-IV Corrected 28-VII Accepted 31-VIII-2016.

'ItNDEXED & 4. Pan American Health Organization. PAHO/ACHR/23/3.7 Original: Spanish

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

. Analgesics and antipyretics (tabkt mefanemic acid

Diurnal variation in microfilaremia in cats experimentally infected with larvae of

STANDARD OPERATING PROCEDURE #110 MOUSE ANESTHESIA

ANNUAL STATISTICAL REPORT FOR ANIMALS USED IN IRELAND UNDER SCIENTIFIC ANIMAL PROTECTION LEGISLATION

Anti-tick vaccines: A potential tool for control of the blacklegged ticks and other ticks feeding on whitetailed deer

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Materials and Methods: Anti-snake venom activities of Asparagus racernosus

SUMMARY OF PRODUCT CHARACTERISTICS

Accidental Exposure to Cattle Brucellosis Vaccines in Wyoming, Montana, and Idaho Veterinarians

Introduction. Material

* * *Determine Culicoides spp. present in the Southeast, including at

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1/18

Paul-Ehrlich-Institut Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel Federal Institute for Vaccines and Biomedicines

SUMMARY OF PRODUCT CHARACTERISTICS

USA Product Label LINCOCIN. brand of lincomycin hydrochloride tablets. brand of lincomycin hydrochloride injection, USP. For Use in Animals Only

ENZYME IMMUNOASSAYS FOR THE DIAGNOSIS OF BOVINE BRUCELLOSIS: TRIAL IN LATIN AMERICA

Northern Copperhead Updated: April 8, 2018

DOSAGE FORMS AND STRENGTHS Otic Suspension: Each OTIPRIO vial contains 1 ml of 6% (60 mg/ml) ciprofloxacin otic suspension. (3)

GENTAMICIN: ACTIVITY IN VITRO AGAINST GRAMNEGATIVE ORGANISMS AND CLINICAL EXPERIENCES IN THE TREATMENT OF URINARY TRACT INFECTIONS

INFECTIOUS HEPATITIS, PARVOVIRUS & DISTEMPER

and other serological tests in experimentally infected cattle

Venom Research at Natural Toxins Research Center (NTRC)

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Inactivation of Burkholderia mallei in equine serum for laboratory use.

Use of animals for scientific or educational purposes principles in Finland

Rhipicephalus sanguineus: Vector of a New Spotted Fever

The neuromuscular activity of Micrurus pyrrhocryptus venom and its neutralization by commercial and specific coral snake antivenoms

Commonly Used Therapeutic Drugs in Rodents

Australian and New Zealand College of Veterinary Scientists. Fellowship Examination. Veterinary Anaesthesia and Critical Care Paper 1

OIE international standards on Rabies:

206 Adopted: 4 April 1984

Summary of Product Characteristics

VMP Focal point training Casablanca 6 8 December Dr Susanne Münstermann

Dendroaspis polylepis breeding

Spiders and Snakes Martin Belson, MD

IACUC POLICIES, PROCEDURES, and GUIDELINES. HUMANE USE PAIN CLASSIFICATIONS (Pain Categories)

JAC Bactericidal index: a new way to assess quinolone bactericidal activity in vitro

Chapter 1 COPYRIGHTED MATERIAL. Introduction to Veterinary Pathology. What is pathology? Who does pathology?

6.0 ANTIBACTERIAL ACTIVITY OF CAROTENOID FROM HALOMONAS SPECIES AGAINST CHOSEN HUMAN BACTERIAL PATHOGENS

A Field Study on Efficacy of Albendazole (Albezol ) Against Gastro-intestinal Nematodes in Ruminants

Cydectin. Fort Dodge PRODUCT DESCRIPTION

Rx, For use by or on the order of a licensed veterinarian.

Pan American Health Organization

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

VENOM WEEK 2005 (Formerly "Snakebites in the New Millenium: A State-of-the-Art-Symposium" Friday, October 21, 2005: Field Trip, Introductions and

VII SEMINAR ON HARMONIZATION AND CONTROL OF VETERINARY MEDICINES LIMA, PERU, 6-10 AUGUST 2001

European Public MRL assessment report (EPMAR)

Clinical Profile of Envenomation in Children With Reference To Snake Bite

National Wildlife Research Center, 4101 LaPorte Ave, Ft. Collins, CO, , USA

Committee for Medicinal Products for Veterinary Use (CVMP) Work Plan 2018

VENOMOUS SNAKE BITES IN LAO PDR: A RETROSPECTIVE STUDY OF 21 SNAKEBITE VICTIMS IN A PROVINCIAL HOSPITAL

Transcription:

Bull Pan Am Health Organ 12(l), 1918. VENOMS OF CORAL SNAKES (MICRURUS SPP.): REPORT ON A MULTIVALENT ANTIVENIN FOR THE AMERICAS R. Boltis, L. Cerdas,s and J. W. Abalos4 A recently developed antivenin has Proved capable of neutraliring venoms from nine coral snakes (Micrurus s#p.) of the s. The authors feel that this antivenin will prove efficacious against a very significant share of all coral snake bites in the area extending from the southern United States to Argentina. According to Roze (1970) and Hoge and Roman0 (1971) there are 111 kinds of coral snakes. These are classified in three genera-leptomicrurus, Micruroides, and Micrurus-containing a little over 50 species. Available infbrmation on the medical importance of this group is very limited. The few papers published on this matter, our own experience, and a personal letter from Dr. J anis Roze suggest to us that the situation is as follows: Micrurus fulvius is the most important species in the United States (Parrish, 1967), although some mild bites have also been produced by Micruroides euryxcznthus (Russell, 1967). Micrurus diastema, M. distans, and M. laticollaris seem to be the most important species in Mexico and Guatemala, while Micrurus nigrocinctus and M. alleni are the most important in the rest of Central and Panama. In a wide variety of Micrurus species-including MiCTUTUS carinicaudus, M. mipartitus, M. corallinus, M. frontalis, M. lemniscatus, Paper presented at the Fifth International Symposium on Animal, Plant, and Microbial Toxins held at San JOG, Costa Rica, in August 1976. Also appearing in Spanish in the BoletCz de la Oficina Sanitaria Panamericana. ZDirector, Clodomiro Picado Institute, and Professor of Immunology, University of Costa Rica. SChief, Production Division, Clodomiro Picado Institute, and Associate Professor of Immunology, University of Costa Rica. 4Director, Applied Zoology Center, and Professor of Invertebrate Zoology, National University of CBrdoba, Argentina. M. spixii, M. surinamensis, and M. isozonous-could be the most frequently involved in accidents or else the more abundant and potentially important species (Figure 1). Unfortunately, not all their venoms are available for study. Cohen and his collaborators (1966, 1968, 1971) have reported important immunological cross-reactions among Micrurus venoms, and have attempted to design a multivalent antivenin for use against the principal coral snakes of the s. Work at our own laboratories has also produced data on the immunological characteristics of some Micrurus venoms. Some of these data were presented at the Third Latin n Congress of Parasitology (Bolaiios, 1973) and some were previously reported in Toxicon (Bolafios, 1975). Using all available data, we feel that we can divide the venoms studied into three serologically related groups, as shown in Table 1. In the first two groups the immunological relationship seems to be complete, at least in horses, because the specific antivenins protect against all three venoms. The third group, however, seems to have only a one-way relationship, because M. alleni antivenin does not offer protection against M. mi#artitus venom, but M. mipartitus antivenin has been shown to protect mice against challenges with M. alleni venom. These findings, taken together, suggest that an antivenin prepared by inoculating horses with a mixture of venom from all 23

24 PAHO BULLETIN l vol. XII, no. 1, 1978 Figure 1. Medically important coral snake (Micrurus) species of the s. M. canhucaudus M. isozonus M. spivii M. Iemniscatus M. corallinus M. frontalis M. diastema M. IaticoIlaris Table l-groups of cross-reacting Micruru.s venoms. Venom group Micrurus species Habitat M. fulvius North 1 M. nigtocinctus Central M. carinicaudus M. corallinus 2 M. ftontalis M. @xii 3 M. alleni M. mifiartitus Central and three groups might be effective against the more common Micrurus in the Hemisphere. The present article describes the production of such an antivenin and the in vitro assay of its neutralizing potency against available venoms. Materials and Methods The following three venoms were used for immunization: M. frontalis fiyrrhocryptus venom obtained from the Applied Zoology Center of the National University of C6rdoba, Argentina: M. mipartitus hertwigi venom obtained from the Clodomiro Picado Institute of the University of Costa Rica; and M. nigrocinctus venom (a mixture of M. n. nigtocinctus and M. n. mosquitensis venoms) likewise obtained from the Clodomiro Picado Institute. These three venoms were also employed for assay purposes, along with the following: M. alleni venom from the Clodomiro Picado Institute; M. fulvius fulvius and M. carinicaudus dumerilii venoms from the Division of Biological Standards, U.S. National Institutes of Health; M. corallinus, M. spixii, and M. lemniscatus venoms purchased from the Miami Serpentarium Laboratories in Miami, Florida; and M. surinamensis venom obtained from a single specimen of this snake kindly donated by Dr. Juan Manuel Renjifo of the National Institute of Special Health Programs of Colombia. The immunization procedure was essentially the same used previously to prepare antivenin against Micrurus mipartitus (Bolaiios, 1975), except that the antigen was an equal mixture of the M. frontalis, M. mipartitus, and M. nigrocinctus venoms. Two healthy five-year-old horses were used. They were inoculated with nine progressively larger amounts of venom mixture, ranging from 1 mg initially to 75 mg with the final injection. Sodium alginate was employed as an adjuvant depot with all the injections except the second to last, which was administered with Freund s complete adjuvant. Thirty liters of blood were withdrawn from each horse two weeks after the last injection (over four successive days) with reinjection of red blood cells. The material was then fractionated with ammonium sulfate and concentrated to 10 per cent

Boian os et al. l CORAL SNAKE ANTIVENIN FOR THE AMERICAS 25 I protein. The purified antivenin was bottled in 10 ml lots and liophilized. Neutralization tests were performed with mice of both sexes weighing 16 to 18 grams. Aliquots of venom, containing 450 pg of M. mipartitus, M. frontalis, or M. corilanus venom, or 300 pg of one of the other venoms, were prepared. These were mixed with progressively larger amounts of antivenin, and the resulting mixtures were brought to a final volume of 6 ml. These mixtures were then incubated in a water bath at 37OC for 30 minutes and inoculated intraperitoneally (ip) into groups of five mice (one ml per mouse). The neutralization titers, calculated in milligrams of venom neutralized per ml of antivenin, were based on the smallest amount of antivenin which protected at least four of the five animals. The postinoculation observation period for the test animals was 72 hours. Results and Discussion Table 2 shows the neutralization titers obtained with the refined and concentrated antivenin when tested against both homologous and heterologous venoms. The ip LD50 for each venom and the challenge dose administered to each mouse are also indicated. As can be seen, at least three LD50 of venom were given in each case. With the exception of M. surinamensis venom, all the venoms were neutralized to some extent, suggesting the antivenin has efficacy in the event of coral snake bites. Considering the very small amounts of venom obtained by exhaustive milking of coral snakes, it would seem that two or three 10 ml vials of the antivenin should suffice to neutralize the venom injected by a natural bite. This would appear true even if the bite were administered by M. mipartitus or M. alleni, the two species whose venoms were neutralized at the lowest titers. Nevertheless, the fact that M. mipartitus (and M. alleni) venom was neutralized at a low titer suggests a need for increasing the proportion of M. mipartitus venom in the immunization formula, or else modifying the immunization procedure so as to administer more doses or larger amounts of venom. This is not possible at present because of shortages of M. mipartitus specimens. However, there is a fine opportunity for collecting specimens of this snake in Colombia s coffee-growing regions. M. surinamensis venom does not seem to have a close immunologic relationship with any of the other venoms tested. This is important, because it leads to the hypothe- Table 2-Neutralization titers of a multivalent Mkrurus antivenin tested against ten of the more important Micrurus venoms. Micrurus species Observed neutralization Venom toxicity (one LDbO in Challenge venom Titer (mg of venom pg per mouse*) (pg per mouse*) per ml of serum) M. fulvius 9 50 0.4-0.5 Ad. nigrocinctus 13 50 0.6-0.8 M. carinicaudus 17 50 1.0-1.5 M. frontalis 15-20 75 0.4-0.5 M. corallinus 20-25 75 1.5-2.0 M. spixiz 10-15 50 0.3-0.4 M. mipartitus 23 75 0.2-0.3 M. alleni 12 50 0.2-0.3 M. lemniscatus 5 50 0.6-0.7 M. surinamensis 5-10 50 <O.l *16-18 gram mice of both sexes.

26 PAHO BULLETIN l vol. XII, no. 1, 1978 sis that none of the various Micrurus antivenins now on the market are effective against this venom. If the multivalent antivenin just described is included, we can say that there are now a total of six coral snake antivenins. The other five are anti-m. fulvius antivenin (USA), anti-m. nigrocinctus and M. alleni antivenin (Costa Rica), anti-m. mifiartitus antivenin (Costa Rica), and anti-m. frontalis and M. corallinus antivenin (Brazil and Argentina). All these homologous venoms were included in this study: none appears to have immunological cross reactions with M. surinamensis. We feel that this situation justifies the preparation of a monovalent antivenin or else (if enough venom could be stored) the inclusion of M. surinamensis venom in an immunization formula for amultivalent antidote. To date we have had no opportunity to test our antivenin against the more important coral snakes of Mexico and Guatemala, or against M. isozonous, which is important in. Nevertheless, we believe that it will prove efficacious against a very significant percentage of all coral snake bites that occur in the Western Hemisphere. This antivenin could be prepared easily through cooperative efforts by scientists in different countries, and could readily be distributed through international agencies such as the Pan n Health Organization., ACKNOWLEDGMENTS This investigation was supported by a re- Research, by the University of Costa Rica, search grant from Costa Rica s National and by the National University of Cbrdoba, Council of Scientific and Technological Argentina, SUMMARY A multivalent coral snake antivenin was prepared in horses immunized with a mixture of venoms from the species Micrurus nigrocinctus, M. mifiartitus, and M. frontalis, following immunization procedures previously reported (2). Plasma from the horses was fractionated with ammonium sulfate. The antivenin produced was then tested against venoms from ten species. The neutralization titers obtained indicate it would be useful in treating bites received from most of the important coral snake species in North and, namely: M. fuluius, M. alleni, M. carinicaudus dumerilii, M. corallinus, M. fron- talk, M. lemniscatus, M. mifiartitus, M. nigrocinctus, and M. spixik The authors note that appropriate cooperation by scientists in various countries would make production of this antivenin an easy matter, and that the product could conveniently be distributed via PAHO or other international agencies. They also note that the antivenin showed no significant neutralizing effect against M. surinamensis venom. This situation would appear to justify preparing a monovalent antivenin against M. surinamensis, or else including M. surinamensis venom in an immunization formula for a multivalent antidote. REFERENCES (I) Bolafios, R., L. Cerdas, and R. T. Taylor. Latin n Congress of Parasitology). Estudios inmunoldgicos de 10s venenos de las Antioquia Midica 23:518, 1973. principales Micrurus de Norte Am&rica, Centro (2) Bolafios, R., L. Cerdas, and R. T. Taylor., Panama y Colombia (Abstract, Third The production and characteristics of a coral

Bolafios et al. 9 CORAL SNAKE ANTIVENIN FOR THE AMERICAS 27 snake (Micrurus mipartitus hertwigi) antivenin. Toxicon 13:139, 1975. (3) Cohen, P., and E. B. Seligmann, Jr. Immunology studies of coral snake venom. Mem Znst Butantan 33:339, 1966. (4) Cohen, P., J. H. Dawson, and E. B. Seligmann, Jr. Cross neutralization of Micrurus fuluius f&&s (coral snake) venom by anti- Micrurus carinicauda dumerilii serum. Am J Trap Med Hyg 17:308, 1968. (5) Cohen, P., W. H. Berkeley, and E. B. Seligmann, Jr. Coral snake venoms: In vitro relation of neutralizing and precipitating antibodies. Am J Trap Med Hyg 20:646, 1971. (6) Hoge, A. R., and S.A.R.W.D.L. Romano. Neotropical pit vipers, sea snakes, and coral snakes. In: W. Biicherl and E. Buckley (eds.), Venomous Animals and Their Venoms: Venomous Vertebrates (Volume 2). Academic Press, New York, 1971, pp. 211-396. (7) Parrish, H. M. Bites by coral snakes: Reports of 11 representative cases. Am J Med Sci 253:561, 1967. (8) Raze, J. A. Micrurus. In: J. A. Peters and B. Orejas-Miranda (eds.), Catalogue of the Neotropical Squamata: Snakes (Part 1). Smithsonian Institution Press, Washington, D.C., 1970. (9) Russell, F. E. Bites by the Sonoran coral snake Micruroides euryxanthus. Toxicon 5:39, 1967.