Ecto-parasites such as ticks and mites transmit

Similar documents
PREVALENCE OF TICK INFESTATION IN DIFFERENT BREEDS OF CATTLE IN BALOCHISTAN ABSTRACT

PREVALENCE OF IXODID TICKS IN POST ACARICIDE TREATED CATTLE AND BUFFALOES AT SINNER DISTRICT NASHIK (M.S) INDIA.

PREVALENCE OF TICK INFESTATION IN DIFFERENT BREEDS OF CATTLE IN MAIDUGURI, NORTHEASTERN NIGERIA

PREVALENCE AND SEASONAL VARIATION IN IXODID TICKS ON BUFFALOES OF MATHURA DISTRICT, UTTAR PRADESH, INDIA

Hyalomma impeltatum (Acari: Ixodidae) as a potential vector of malignant theileriosis in sheep in Saudi Arabia

Slide 1. Slide 2. Slide 3

Ectoparasite Prevalence in Small Ruminant Livestock of Ginir District in Bale Zone, Oromia Regional State, Ethiopia Tesfaye Belachew 1 *

Epidemiological study of tick infestation in buffalo of various regions of district Khairpur, Pakistan

EPIDEMIOLOGY OF ECTOPARASITIC INFESTATIONS IN CATTLE AT BHAWAL FOREST AREA, GAZIPUR

Tick Infestation of Cattle in Three Markets in Makurdi, North-Central, Nigeria

ISSN: Corresponding Author E.mail:

EFFECT OF THE FED SHATAVARI ( ASPARAGUS RACEMOSUS) ON BODY WEIGHT AND PUBERTY OF SAHIWAL HEIFERS

Short Communication Species Diversity and Distribution of Ticks (Acari: Ixodidae) in Zabol County, Eastern Iran

Asian Journal of Medical and Biological Research ISSN (Print) (Online)

A cross sectional study on the prevalence and identification of major ixodid tick parasites of cattle in Gozamin Woreda, East Gojjam, Ethiopia

soft ticks hard ticks

1. INTRODUCTION. Ticks are obligate haematophagous ectoparasites with. worldwide distribution and they have a significant impact on human

A survey of tick control methods used by resource-poor farmers in the Qwa-Qwa area of the eastern Free State Province, South Africa

An epidemiological survey on diversity and seasonal distribution of hard ticks in sheep and goats in Multan, Pakistan

Livestock is the backbone of Pakistan s

Prevalence Of Ectoparasites Of Goats (Capra aegagrus hircus ) Slaughtered At Aduwawa Abattior In Benin City, Nigeria

Incidence of Haemoprotozoan diseases in Cattle in Southern Rajasthan, India

sanguineus, in a population of

Pakistan Veterinary Journal

both are fatal diseases. In babesiosis blood comes out with the urine and hence it is also known as Red water disease. Theileria vaccines are not

Study on Prevalence of Major Ixodid Ticks of Cattle, in Selected Sites of Harari Region, Eastern Ethiopia

Tick infestation of Borana cattle in the Borana Province of Ethiopia

Seasonal Dynamics and Distribution of Ticks in Rwanda: Implications for Tick Control Strategy in Rwanda

The role of parasitic diseases as causes of mortality in cattle in a high potential area of central Kenya: a quantitative analysis

EXHIBIT E. Minimizing tick bite exposure: tick biology, management and personal protection

Tick resistance of two breeds of cattle in Wolaita Zone, Southern Ethiopia

Prevalence of gastrointestinal parasitism of cattle in Banskhali upazilla, Chittagong, Bangladesh

PREVALENCE OF TICK INFESTATION IN GOATS UNDER DIFFERENT SYSTEM OF MANAGEMENT

THE EPIDEMIOLOGY OF CAPRINE FASCIOLIASIS IN JAMMU (J&K) INDIA

Epidemiological study of ixodid ticks infesting cattle reared by small holder farmers

THE EFFICACY OF DIFFERENT ACARICIDES AGAINST THE HARD TICK DERMACENTOR MARGINATUS ON INFESTED SHEEP

Prevalence of Ixodid Ticks on Cattle in and Around Jabitehnan Woreda, North Western Ethiopia

Bovine Ixodid Ticks: Prevalence, Distribution and Associated Risk Factors in Saylem, Gesha and Masha Districts, Southern Ethiopia

Infectivity of Theileria annulata in Hyalomma ticks of Eastern Terai districts, Nepal. Abstract

DESCRIPTIVE EPIDEMIOLOGY OF INSECTS INFESTING DOMESTIC SHEEP (Ovis aries) OF DISTRICT TOBA TEK SINGH, PUNJAB, PAKISTAN

Population dynamics of ticks infesting horses in north-west Tunisia

GLOBAL WARMING AND ANIMAL DISEASE

Preparation Unit 1 Basics of Domestic Animal Biology

AARJMD VOLUME 1 ISSUE 19 (MARCH 2014) ISSN : A Peer Reviewed International Journal of Asian Academic Research Associates AARJMD

Survey of Theileria lestoquardi antibodies among Sudanese sheep

PREVALENCE OF GASTRO-INTESTINAL NEMATODE PARASITES OF ECONOMIC IMPORTANCE IN DAIRY BUFFALOES IN PESHAWAR

J. Bio. & Env. Sci. 2015

The Prevalence of Ectoparasites on Sheep and Goats at EL Khoms Region Libya.

Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West-Africa

Prevalence of Ixodid Ticks on Cattle in Northwest Ethiopia

TEMPORAL DENSITY OF TRICHOSTRONGYLID LARVAE ON A COMMUNAL PASTURE IN A SUB-TROPICAL REGION OF PAKISTAN

Research Article Occurrence of Ticks in Cattle in the New Pastoral Farming Areas in Rufiji District, Tanzania

Prevalence of some parasitic helminths among slaughtered ruminants in Kirkuk slaughter house, Kirkuk, Iraq

Environmental associations of ticks and disease. Lucy Gilbert

International Journal of Science, Environment and Technology, Vol. 6, No 6, 2017,

DEWORMING PROCESS KRISHIMATE AGRO AND DAIRY PVT LTD NO.1176, 1ST CROSS, 12TH B MAIN, H A L 2ND STAGE, INDIRANAGAR BANGALORE , INDIA

Prevalence of sub clinical mastitis in small holder dairy farms in Selale, North Shewa Zone, Central Ethiopia

Estimation of Milk Losses due to Fasciolosis in Uttarakhand

Ticks and tick-borne pathogens Jordi Tarrés-Call, Scientific Officer of the AHAW unit

Investigation on Theileria lestoquardi infection among sheep and goats in Nyala, South Darfur State, Sudan

Detection of Gastrointestinal Helminthic and Protozoan Infections in Diarrhoeic Goats

FACULTY OF VETERINARY MEDICINE

Journal of Vector Ecology 224. Vol. 31, no. 2

Diseases and Health. Dairy Hub Training Booklets. Titles. Healthy Animals - Prosperous Farmers

Curriculum Vitae. University of Veterinary & Animal 2015 PhD (Final Thesis Submitted)

TEMPORAL AND SPATIAL DISTRIBUTION OF THE BLACK-LEGGED TICK, IXODES SCAPULARIS, IN TEXAS AND ITS ASSOCIATION WITH CLIMATE VARIATION

Evaluation of infestation level of cattle by the tick Rhipicephalus microplus in New-Caledonia : Test of a new assessment grid

Pure Appl. Bio., 4(1):50-56, March Research Article

A RETROSPECTIVE STUDY OF COMMON DISEASES AT VETERINARY TEACHING HOSPITAL, BANGLADESH AGRICULTURAL UNIVERSITY, MYMENSINGH

Cattle Ectoparasites and Their Control Rachel Mallet, Bimeda Professional Services Vet

Identification of Encountered Bovine Tick Species in and Around Gambela Town

Geographical Information System Based Approach to Monitor Epidemiological Disaster: 2011 Dengue Fever Outbreak in Punjab, Pakistan

AWARENESS OF FARMERS REGARDING HYGIENIC HANDLING OF THEIR CATTLE TO PREVENT ZOONOTIC DISEASES

Goats as alternative hosts of cattle ticks

Short Communication. Retrospective Assessment of Black Leg in Kafta Humera Woreda

Prevalence of Gastro-intestinal Nematodes Infection of Cattle in Bangladesh

What are Ticks? 4/22/15. Typical Hard Tick Life Cycle. Ticks of the Southeast The Big Five and Their Management

EBA Series FOOTHILL ABORTION UPDATE: PART I: THE TICK

EFFECTS OF GARLIC, TURMERIC AND BETEL LEAF AGAINST GASTROINTESTINAL NEMATODES IN CATTLE. M. R. Amin, M. Mostofa, M. A. Awal and M. A.

Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi 2

Prevalence of Gastrointestinal Parasite in Goats in Shillong, Meghalaya, India

STUDY ON CLINICAL MASTITIS IN BUFFALOES CAUSED STAPHYLOCOCCAL SPECIES

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

Research Article Detection of Amitraz Resistance in Rhipicephalus (Boophilus) microplus from SBS Nagar, Punjab, India

RETROSPECTIVE EPIDEMIOLOGIC STUDY OF DISEASES IN RUMINANTS IN KHAGRACHARI HILL TRACT DISTRICT OF BANGLADESH

Prevalence and Chemotherapy of Mites Infestation in Sheep: A Case Study of District Bolan, Balochistan

J.O. Adejinmi and O.A. Akinboade Department of Veterinary Microbiology and Parasitology,University of Ibadan, Ibadan, Nigeria

Tick infestation of dogs in Makurdi metropolis, Benue State-Nigeria

Insects, Rodents and Global Climate Change

OIE Collaborating Centre for Training in. Integrated Livestock and Wildlife Health and Management, Onderstepoort. Development of the Centre

UNIVERSITY OF NAIROBI SURVEY OF SPECIES OF TICKS INFESTING CATTLE ON KANYARIRI VETERINARY FARM, UNIVERSITY OF NAIROBI

A Cross Sectional Study on the Prevalence and Identification of Major Ixodid Tick Parasites of Cattle in Gondar Town, North West Ethiopia

Comparison of Resistance to Theileria sergenti Infection between Holstein and Japanese Black Cattle under Grazing Conditions

Ecology of RMSF on Arizona Tribal Lands

PREVALENCE OF BORDER DISEASE VIRUS ANTIBODIES AMONG NATIVE AND IMPORTED SHEEP HERDS IN ZABOL. Sari-Iran.

UNDERSTANDING THE TRANSMISSION OF TICK-BORNE PATHOGENS WITH PUBLIC HEALTH IMPLICATIONS

Invivo and Invitro Acaricide Efficacy Evaluation on Cattle Ticks in Selected Areas of Wolaita and Dawuro Zones, Ethiopia

RICKETTSIA SPECIES AMONG TICKS IN AN AREA OF JAPAN ENDEMIC FOR JAPANESE SPOTTED FEVER

Prevalence of ticks on local and crossbred cattle in and around Asella town, southeast Ethiopia

DYNAMICS OF GASTROINTESTINAL PARASITIC INFECTIONS AND PREDICTION OF HAEMONCHUS CONTORTUS

Transcription:

Pakistan J. Zool., vol. 48(2), pp. 563-567, 2016. Epidemiological Aspects of Bovine Tick Infestation in the River Ravi Region, Lahore Sadaqat Ali, 1 Muhammad Ijaz, 2* Aneela Zameer Durrani, 2 Azhar Maqbool, 3 Muhammad Mudassir Ali 4 and Khalid Mehmood 1 1 Department of Clinical Medicine and Surgery, University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 2 Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, 54000 3 Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, 54000 4 Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore A B S T R A C T A total of 1258 bovines (n =726 cattle; n =532 buffaloes), positive for ticks, were included in the study to check determinants of tick infestation. Hyalomma was significantly (P<0.05) the most prevalent tick genus 71.9 and 62.03%, followed by Boophilus 22.04 and 28.57% and mixed infection 6.06 and 9.4% in cattle and buffaloes, respectively. Mild tick infestation (1-20 ticks/animal) was found significantly (P< 0.05) high, followed by moderate (21-50 ticks/animal) and high tick infestation (>50 ticks/animal) in bovines. In cattle, crossbreds were significantly (P<0.05) the most affected, followed by Sahiwal, Cholistani, Holstein Friesian and non-descript, respectively, while in buffaloes, non-descriptive breed was more affected than Nili Ravi. Females were significantly (P<0.05) the most affected gender than males in bovines. Calves were significantly (P<0.05) the most affected age group in both, followed by adult, young and old, respectively in cattle, while followed by young, adult and old, respectively in buffaloes. Udder was significantly (P<0.05) the highest tick infested site in both, followed by inner thighs, perineum, legs and tail, and neck, respectively in cattle, while followed by neck, tail, perineum, inner thighs, legs, and back and ears, respectively in buffaloes. Summer was significantly (P<0.05) the most tick favorable season, followed by winter, spring and autumn, respectively in bovines. Article Information Received 11 December 2013 Revised 12 September 2015 Accepted 20 October 2015 Available online 1 March 2016 Authors Contributions MI, AZD and AM conceived and designed the study. SA executed the experiment work and wrote the article. MMA and KM analyzed the data. Key words Hyalomma, Boophilus, cattle, buffaloes, tick infestation, Nili Ravi, Bos indicus. INTRODUCTION Ecto-parasites such as ticks and mites transmit different pathogens, which lead to a number of threatening diseases (Aslam et al., 2015). Ticks, most important ecto-parasites of livestock in tropical and subtropical areas such as Pakistan, are responsible for substantial economic losses (Durrani and Shakoori, 2009). Ticks are blood suckers that damage skins, hides and predispose cattle to dermatophilosis and myiasis (Mtshali et al., 2004), induce paralysis or toxicosis, and cause physical damage to livestock. They are also vectors of a number of pathogenic microorganisms including viruses, bacteria, spirochetes, rickettsiae and protozoans (Jongejan and Uilenberg, 2004). In Pakistan, the prevalence of tick infestation has been observed to go beyond 50% (Durrani, 2008; Sajid et al., 2008, 2009a,b), but so far, only a few investigations concerning prevalence of tick infestation, taxonomy and acaricidal efficacy have been conducted (Sajid et al., 2009a). Higher prevalence of Hyalomma tick followed by * Corresponding author: mijaz@uvas.edu.pk 0030-9923/2016/0002-0563 $ 8.00/0 Copyright 2016 Zoological Society of Pakistan Boophilus, Haemaphysalis, and Rhipicephalus was reported in district Kasur (Durrani and Kamal, 2008), while higher prevalence of Hyalomma anatolicum anatolicum followed by Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Rhipicephalus annulatus and Haemaphysalis spp. was reported in districts Sargodha, Khushab, and Rawalpindi (Durrani and Shakoori, 2009). In India, Rhipicephalus was the most prevalent tick genus reported on cattle, followed by Hyalomma and Boophilus (Raut et al., 2008). Three species of ticks namely Boophilus microplus, Rhipicephalus sanguineus and Haemaphysalis bispinosa infesting cattle were documented in Bangladesh (Kabir et al., 2011). Hyalomma was major tick species in the livestock of Iran (Shemshad et al., 2012). Boophilus microplus and Amblyomma cajennense were identified predominant tick species on cattle in Guatemala (Teglas et al., 2005). Breed, age, geographical area and monthwise prevalence of tick infestation are significant associated determinants. Predilection sites vary with host and infesting tick specie. Perineum, udder and external genitalia are the most tick infested sites followed by dewlap, inner thighs, neck and back, tail, ears, around eyes, flanks, and legs (Atif et al., 2012). The knowledge about the extent of the bovine tick infestation is extremely insufficient especially in

564 S. ALI ET AL. buffaloes. Therefore, a study was designed to identify the most predominant tick genus and associated determinants in cattle and buffaloes. MATERIALS AND METHODS Study location Epidemiological studies were conducted in cattle and buffalo population in the outskirts of Lahore district. Lahore is located on a flat alluvial plain on the left bank of River Ravi. Lahore District lies between 31-15 and 31-45 north altitude, 74-01 and 74-39 east longitude. It is situated in the north-eastern part of Pakistan, and bounded on the east by India. The general altitude of the area is about 213 m in the north-east to 208 m in the south-west above mean sea level. Lahore experiences extremes of climate. Climate of Lahore features a hot semi-arid climate with rainy, long and extremely hot summers, dry and warm winters, a monsoon and dust storms. The mean maximum and minimum temperature during summer months are 40.4 C and 27.4 C, while 22 C and 5.9 C in winter season respectively. The average annual rainfall in Lahore is about 629 mm with 34 rainy days (LDA, 2004; RRCAP, 2011). Sampling strategy The study was conducted from January, 2012 to December, 2012 in the semi-arid zone of the district. A total of 1258 tick specimens, found on bovine population (n=726 cattle; n=532 buffaloes), were collected from the field, small-scale livestock integrated farms, public and private hospitals located in the vicinity of 34 villages of the study district. The farmers had not used any acaricide for control of tick infestation on their animals. The animals were selected for sampling based on the presence of ticks on their bodies and showing any clinical signs like intermittent fever, loss of appetite, anemia, weight loss, dyspnea, pale mucous membrane, jaundice, and recumbency. Collection, processing, and identification of tick specimens Adult hard tick specimens were collected from different body parts of cattle without damaging their mouth parts using forceps. Each specimen was placed in a separate vial containing 70% ethyl alcohol and the labeled specimens were dispatched to Department of Parasitology, UVAS, Lahore, for taxonomic identification. Morphological characters of ticks were studied and identified, using stereo microscope according to the characteristics mentioned by Walker et al. (2003). Epidemiological survey Data regarding species, breed, sex, age and predilection site of the host, and climatic condition of the area, were recorded on a pretested questionnaire. Tick infestations were categorized into the following groups: mild (1-20 ticks per animal), moderate (21-50 ticks per animal) or high infestation (more than 50 ticks per animal) described by Teglas et al. (2005). Categories of cattle or buffaloes (male/female) based on their age ranges were as follows: (1) calves (<1 year); (2) young stock (1-3 years); (3) adult stock (3-5 years); (4) old stock (5-10 years). The breeds studied included: (1) Sahiwal (Bos indicus); (2) Cholistani (B. indicus); (3) Nondescript (B. indicus); (4) Cross-bred (B. indicus B. taurus); (5) Holstein Friesian (B. taurus), while those of buffaloes (Bubalus bubalis) included: (1) Nili Ravi; (2) Non-descript. Four consecutive seasons were categorized as: (1) Spring (March to April); (2) Summer (May to August); (3) Autumn (September to October); (4) Winter (November to February). Statistical analysis Data regarding the prevalence of tick infestation and associated determinants by Non-parametric, Chi-square (χ 2 ) test were analyzed, using statistical product and service solutions (SPSS) version 16. Probability levels (P) of <0.05 were considered significant. RESULTS AND DISCUSSION Data regarding determinants affecting the prevalence of tick infestation and breed-wise prevalence in cattle and buffaloes is shown in Tables I, II. Prevalence of Hyalomma, Boophilus and mixed infection were found 71.9, 22.04 and 6.06% in cattle, while 62.03, 28.57 and 9.4% in buffaloes, respectively. Data showed the highest prevalence (P<0.05) of Hyalomma, followed by Boophilus and mixed infestation significantly, both in cattle and buffaloes. Durrani and Shakoori (2009) have also reported highest prevalence of Hyalomma ticks, followed by Boophilus, Haemaphysalis and Rhipicephalus, respectively in cattle of three districts; Rawalpindi, Lahore and Multan. Similar tick genera infestations were reported in Friesian cattle of district Kasur (Durrani and Kamal, 2008). Findings are also coincided with results of Sajid et al. (2009b), who reported that Hyalomma was the main tick genus found in cattle and buffaloes of Layyah and Muzaffargarh. Khan et al. (1993) has also been reported similar results for Faisalabad, Pakistan. Data regarding tick density revealed prevalence of mild, moderate and high tick infestation found 56.61, 32.64 and 10.74% in cattle, while 59.59, 30.64 and 9.77% in buffaloes. Mild tick infestation was

EPIDEMIOLOGICAL BASIS OF BOVINE TICK INFESTATION 565 Table I.- Determinants affecting the prevalence of tick infestation in cattle and buffaloes of Lahore district. Variable Category Cattle Buffaloes Frequency % P-value Frequency % P-value Tick genus Hyalomma 522 71.9 0.000* 330 62.03 0.000* Boophilus 160 22.04 152 28.57 Mixed infestation 44 6.06 50 9.4 Tick density Mild 411 56.61 0.000* 317 59.59 0.000* Moderate 237 32.64 163 30.64 High 78 10.74 52 9.77 Host sex Male 121 16.67 0.000* 95 17.86 0.000* Female 605 83.33 437 82.14 Host age (group) Calf 208 28.65 0.012* 168 31.58 0.000* Young 173 23.83 139 26.13 Adult 189 26.03 123 23.12 Old 156 21.49 102 19.17 Host predilection site Back 00 00 0.000* 42 7.89 0.000* Ears 00 00 42 7.89 Inner thighs 140 19.28 59 11.09 Legs 68 9.37 43 8.08 Neck 34 4.68 101 18.98 Perineum 106 14.6 60 11.28 Tail 68 9.37 80 15.04 Udder 310 42.7 105 19.74 Season Spring 133 18.32 0.000* 105 19.74 0.000* Summer 272 37.47 197 37.03 Autumn 130 17.91 69 12.97 Winter 191 26.31 161 30.26 *Significant difference (P<0.05) was observed between tick genus, tick density, sex, age groups, predilection site and various seasons. Mixed infestation, Hyalomma+Boophilus; Mild, 1-20; Moderate, 21-50; High, >50 ticks/animal. Spring, March-April; Summer, May-August; Autumn, September-October; Winter, November-February. Table II.- Host breed-wise prevalence of tick infestation in cattle and buffaloes of Lahore district. Species Frequency (%) P-value Cattle Sahiwal 173 (23.83) 0.000* Cholistani 124 (17.08) Non-descript 93 (12.81) Cross-bred 217 (29.89) Friesian 119 (16.39) Buffalo Nili Ravi 253 (47.56) 0.111 Non-descript 279 (52.44) *Significant difference (P<0.05) was observed among various breeds of cattle while non-significant difference (P>0.05) was seen in buffaloes. significantly (P<0.05) predominant, followed by moderate and high, both in cattle and buffaloes. The results of the present study are completely in line with the findings of Teglas et al. (2005), who also reported mild tick infestation in bovines. Cattle are likely to be more economically important to many subsistence farmers and therefore receive veterinary care more consistently (Teglas et al., 2005). Data regarding host breed showed that the highest prevalence was found in crossbreds (29.89%), followed in order by Sahiwal (23.83%), Cholistani (17.08%), Holstein Friesian (16.39%) and non-descript (12.81%) in cattle, while in buffaloes, prevalence was found the highest in non-descript (52.44%), as compared to Nili Ravi (47.56%). Breed was found to be a significant (P<0.05) determinant in cattle, while non-significant (P>0.05) in buffaloes affecting the prevalence of tick infestation. Present research on

566 S. ALI ET AL. determinants of host breeds showed that tick infestations were higher in crossbreds and exotic as compared to indigenous animals in case of cattle species, whereas non-descriptive buffaloes were more affected. It confirmed findings of L Hostis et al. (1996); Atif et al. (2012), they found higher tick infestation in crossbreds. Sajid and associates have reported higher prevalence of tick infestation in crossbred cattle of 5-10 years of age (Sajid et al., 2009b). Wambura et al. (1998) has noticed that B. indicus is relatively resistant to ticks as compared to B. indicus and B. taurus crosses. They associated the higher concentration of serum complements for tick resistance in zebu cattle. Indigenous cattle breeds are more resistant to tick infestation than European breeds (Sajid et al., 2009b). Tick resistance is an inherited trait in B. indicus cattle (Jongejan and Uilenberg, 2004). Data regarding host sex revealed the prevalence in males and females was 83.33 and 16.67% in cattle, while 82.14 and 17.86% in buffaloes, respectively. Data showed higher prevalence was found in females than males in both species. Sex was found a significant (P<0.05) risk factor both in cattle and buffaloes. Unlikely, Sajid et al. (2009b) reported higher prevalence of tick infestation in males than in females of cattle and buffaloes. This contradiction is due to the trend of using artificial insemination instead of natural service for better production and due to the revolution of modern dairy farming in Pakistan. Data regarding host age showed higher numerical figures of ticks in per unit of surface in calves (28.65%), followed by adults (26.03%), young (23.83%) and old ones (21.49%) in cattle, while in buffaloes, higher number of ticks were found in calves (31.58%), followed by young (26.13%), adults (23.12%), and old ones (19.17%). Age was a less significant (P<0.05) risk factor in cattle as compared to buffaloes. The results of present study on host determinants of age regarding tick infestation concluded that either cattle or buffaloes, calves were more susceptible age group. These results coincide with L Hostis et al. (1996) who depicted higher tick infestation in calves as compared to their elder members of young stock. Lack of immunity, softer tissues and thinner skin of young animals would help in the penetration of mouth parts for feeding (Sajid, 2007). Data regarding tick predilection site on host body revealed that udder is the highest (P<0.05) infested site of tick infestation (42.7%), followed by inner thighs (19.28%), perineum (14.6%) legs (9.37%) and tail (9.37%), and neck (4.68%) in cattle. In buffaloes, udder was found the highest infested site of tick infestation (19.74%), followed by neck (18.98%), tail (15.04%), perineum (11.28%), inner thighs (11.09%), legs (08.08%), and back and ears (7.89%), respectively. Predilection site was found to be a significant (P<0.05) risk factor both in cattle and buffaloes. Results confirmed the findings of Atif et al. (2012), who reported perineum, udder and external genitalia, the most tick infested sites in cattle followed by dewlap, inner thighs, neck and back, tail, ears, around eyes, flanks, and legs. Data regarding season revealed summer season (37.47%) was most favorable for tick infestation followed by winter (26.31%), spring (18.32%), and autumn (17.91%) in cattle, while in buffaloes, summer (37.03%) was most favorable season for tick infestation followed by winter (30.26%), spring (19.74%), and autumn (12.97%). Season is a significant (P<0.05) determinant in cattle and buffaloes affecting prevalence of tick infestation. Considering the higher number of ticks, summer season was the most favorable for tick infestation followed by winter, spring, and autumn both in cattle and buffaloes. These findings were correlated with Marufu et al. (2011), who reported that higher prevalence of cattle tick infestation in hot-wet season and Durrani (2008), who revealed Hyalomma spp. ticks were most abundant in June, in Pakistan. Rainfall influences microclimate by affecting vegetation growth and soil moisture. High rainfall and relative humidity during summer shape climate favorable for growth of ticks and their parasitic activity in livestock (Mooring et al., 1994). The prevalence of tick infestation varies from region to region. Host, management and environmental factors (agro-ecological and geo-climatic conditions) influence the prevalence of ticks (Kivaria, 2006). It is concluded that Hyalomma and Boophilus were the most prevalent tick genera in cattle and buffaloes in Lahore region, Pakistan, and preventive measures should be done to control infestation, especially during summer. REFERENCES Aslam, B., Hussain, I., Zahoor, M.A., Mahmood, M.S. and Rasool, M.H., 2015. Prevalence of Borrelia anserina in Argas ticks. Pakistan J. Zool., 47: 1125-1131. Atif, F.A., Khan, M.S., Iqbal, H.J., Ali, Z. and Ullah, S., 2012. Prevalence of cattle tick infestation in three districts of the Punjab, Pakistan. Pak. J. Sci.,64: 49-53. Durrani, A.Z., 2008. Epidemiology, serodiagnosis and chemoprophylaxis of theileriosis in cattle. Ph.D. thesis, University of Veterinary and Animal Sciences, Lahore, Pakistan, pp. 96, 102, 105-122. Durrani, A.Z. and Kamal, N., 2008. Identification of ticks and detection of blood protozoa in Friesian cattle by polymerase chain reaction test and estimation of blood parameters in district Kasur, Pakistan. Trop. Anim. Hlth. Prod., 40: 441-447. Durrani, A.Z. and Shakoori, A.R., 2009. Study on ecological growth conditions of cattle Hyalomma ticks in Punjab, Pakistan. Iranian J. Parasitol., 4: 19-25.

EPIDEMIOLOGICAL BASIS OF BOVINE TICK INFESTATION 567 Jongejan, F. and Uilenberg, G., 2004. The global importance of ticks. Parasitology, 129: 1-12. Kabir, M.H.B., Mondal, M.M.H., Eliyas, M., Mannan, M.A., Hashem, M.A., Debnath, N.C., Miazi, O.F., Mohiuddin, C., Kashem, M.A., Islam, M.R. and Elahi, M.F., 2011. An epidemiological survey on investigation of tick infestation in cattle at Chittagong District, Bangladesh. Afr. J. Microbiol. Res., 5: 346-352. Khan, M.N., Hayat, C.S., Iqbal, Z., Hayat, B. and Naseem, A., 1993. Prevalence of ticks on livestock in Faisalabad, Pakistan. Pak. Vet. J.,13: 182-184. Kivaria, F.M., 2006. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop. Anim. Hlth. Prod., 38: 291-299. L Hostis, M., Bureaud, A. and Gorenflot, A., 1996. Female Ixodes ricinus (Acari, Ixodidae) in cattle of Western France: infestation level and seasonality. Vet. Res., 27: 589-597. LDA, Lahore Development Authority, 2004. Marufu, M.C., Chimonyo, M., Mapiye, C. and Dzama, K., 2011. Ticks loads in cattle raised on sweet and sour rangelands in the low-input farming areas of South Africa. Trop. Anim. Hlth. Prod.,43: 307-313. Mooring, M.S., Mazhowu, W. and Scott, A.C., 1994. The effect of rainfall on tick challenge at Kyle Recreational Park, Zimbabwe. Exp. appl. Acarol., 18: 507-580. Mtshali, M.S., DeWall, D.T. and Mbati, P.A., 2004. A seroepidemiological survey of blood parasites in cattle in the north-eastern Free State, South Africa. Onderstepoort J. Vet. Res., 71: 67-75. Raut, P.A., Sonkhusale, V.G., Khan, L.A., Nakade, M.K., Pagrut, N.S. and Bodkhe, A.M., 2008. Haematological changes in cattle associated with arthropods infestation. Vet. World, 1: 338-339. RRCAP, Regional Resource Centre for Asia and the Pacific. 2011. Sajid, M.S., 2007. Epidemiology, acaricidal resistance of tick population infesting domestic ruminants. PhD thesis, University of Agriculture, Faisalabad, Pakistan, pp. 47. Sajid, M.S., Iqbal, Z., Khan, M.N. and Muhammad, G., 2008. Point prevalence of hard ticks infesting domestic ruminants of lower Punjab, Pakistan. Int. J. Agric. Biol., 10: 349-351. Sajid, M.S., Iqbal, Z., Khan, M.N. and Muhammad, G., 2009a. In vitro and in vivo efficacies of Ivermectin and Cypermethrin against the cattle tick Hyalomma anatolicum anatolicum (Acari: Ixodidae). Parasitol. Res., 105: 1133-1138. Sajid, M.S., Iqbal, Z., Khan, M.N., Muhammad, G. and Khan, M.K., 2009b. Prevalence and associated risk factors for bovine tick infestation in two districts of lower Punjab, Pakistan. Prev. Vet. Med., 92: 386-391. Shemshad, M., Shemshad, K., Sedaghat, M.M., Shokri, M., Barmaki, A., Baniardalani, M. and Rafinejad, J., 2012. First survey of hard ticks (Acari: Ixodidae) on cattle, sheep and goats in Boeen Zahra and Takistan countries, Iran. Asian Pac. J. trop. Biomed., 2: 489-492. Teglas, M., Matern, E., Lein, S., Foley, P., Mahan, S.M. and Foley, J., 2005. Ticks and tick-borne disease in Guatemalan cattle and horses. Vet. Parasitol.,131: 119-127. Walker, A.R., Bouatour, A., Camicas, J.L., Estrada-Pena, A., Harok, I.G., Latif, A.A., Pegram, R.G. and Preston, P.M., 2003.Ticks of domestic animals in Africa: A guide to identification species. The University of Edinburgh, UK. pp. 29-44. Wambura, P.N., Gwakisa, P.S., Silayo, R.S. and Rugaimukamu, E.A., 1998. Breed-associated resistance to tick infestation in Bos indicus and their crosses with Bos taurus. Vet. Parasitol., 77: 63-70.