Continued in vitro cefazolin susceptibility in methicillin susceptible Staphylococcus aureus

Similar documents
EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

Understanding the Hospital Antibiogram

January 2014 Vol. 34 No. 1

56 Clinical and Laboratory Standards Institute. All rights reserved.

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Process

Background and Plan of Analysis

Volume-7, Issue-2, April-June-2016 Coden IJABFP-CAS-USA Received: 5 th Mar 2016 Revised: 11 th April 2016 Accepted: 13 th April 2016 Research article

2019 COLLECTION TYPE: MIPS CLINICAL QUALITY MEASURES (CQMS) MEASURE TYPE: Process High Priority

Antimicrobial Susceptibility Testing: The Basics

STAPHYLOCOCCI: KEY AST CHALLENGES

Tel: Fax:

European Committee on Antimicrobial Susceptibility Testing

Concise Antibiogram Toolkit Background

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

Antimicrobial Stewardship Strategy: Antibiograms

Source: Portland State University Population Research Center (

Intrinsic, implied and default resistance

RESISTANCE OF STAPHYLOCOCCUS AUREUS TO VANCOMYCIN IN ZARQA, JORDAN

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Leveraging the Lab and Microbiology Department to Optimize Stewardship

Int.J.Curr.Microbiol.App.Sci (2016) 5(12):

Childrens Hospital Antibiogram for 2012 (Based on data from 2011)

Int.J.Curr.Microbiol.App.Sci (2018) 7(8):

EUCAST recommended strains for internal quality control

Appropriate Antimicrobial Therapy for Treatment of

Detection of inducible clindamycin resistance among clinical isolates of Staphylococcus aureus in a tertiary care hospital

2016 Antibiotic Susceptibility Report

What s new in EUCAST methods?

An Approach to Linezolid and Vancomycin against Methicillin Resistant Staphylococcus Aureus

Detection of Methicillin Resistant Strains of Staphylococcus aureus Using Phenotypic and Genotypic Methods in a Tertiary Care Hospital

Educating Clinical and Public Health Laboratories About Antimicrobial Resistance Challenges

Why we perform susceptibility testing

European Committee on Antimicrobial Susceptibility Testing

2017 Antibiogram. Central Zone. Alberta Health Services. including. Red Deer Regional Hospital. St. Mary s Hospital, Camrose

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Saxena Sonal*, Singh Trishla* and Dutta Renu* (Received for publication January 2012)

Should we test Clostridium difficile for antimicrobial resistance? by author

STAPHYLOCOCCI: KEY AST CHALLENGES

GENERAL NOTES: 2016 site of infection type of organism location of the patient

ENTEROCOCCI. April Abbott Deaconess Health System Evansville, IN

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

2015 Antibiotic Susceptibility Report

UNDERSTANDING YOUR DATA: THE ANTIBIOGRAM

Antibiotic Resistances Profile in Iran, Clinical Implication and Prospect for Antibiotic Stewardship Jafar Soltani

Chemotherapy of bacterial infections. Part II. Mechanisms of Resistance. evolution of antimicrobial resistance

Mercy Medical Center Des Moines, Iowa Department of Pathology. Microbiology Department Antibiotic Susceptibility January December 2016

Original Article. Hossein Khalili a*, Rasool Soltani b, Sorrosh Negahban c, Alireza Abdollahi d and Keirollah Gholami e.

This document is protected by international copyright laws.

The Nuts and Bolts of Antibiograms in Long-Term Care Facilities

Introduction to Pharmacokinetics and Pharmacodynamics

The Impact of meca Gene Testing and Infectious Diseases Pharmacists. Intervention on the Time to Optimal Antimicrobial Therapy for ACCEPTED

Original article DOI: Journal of International Medicine and Dentistry 2016; 3(3):

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Annual Report: Table 1. Antimicrobial Susceptibility Results for 2,488 Isolates of S. pneumoniae Collected Nationally, 2005 MIC (µg/ml)

Inducible clindamycin resistance among Staphylococcus aureus isolates

Staph Cases. Case #1

Antimicrobial Susceptibility Patterns

ESCMID Online Lecture Library. by author

Pushpa Bhawan Mal 1, Kauser Jabeen 1*, Joveria Farooqi 1, Magnus Unemo 2 and Erum Khan 1

Help with moving disc diffusion methods from BSAC to EUCAST. Media BSAC EUCAST

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Antimicrobial Pharmacodynamics

The Very Latest from the CLSI AST Subcommittee.

Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

There are two international organisations that set up guidelines and interpretive breakpoints for bacteriology and susceptibility

Original Article. Suwanna Trakulsomboon, Ph.D., Visanu Thamlikitkul, M.D.

STAPHYLOCOCCI: KEY AST CHALLENGES

Barriers to Intravenous Penicillin Use for Treatment of Nonmeningitis

DISCLAIMER: ECHO Nevada emphasizes patient privacy and asks participants to not share ANY Protected Health Information during ECHO clinics.

Surveillance for Antimicrobial Resistance and Preparation of an Enhanced Antibiogram at the Local Level. janet hindler

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

Marc Decramer 3. Respiratory Division, University Hospitals Leuven, Leuven, Belgium

Streptococcus pneumoniae. Oxacillin 1 µg as screen for beta-lactam resistance

Principles and Practice of Antimicrobial Susceptibility Testing. Microbiology Technical Workshop 25 th September 2013

SUPPLEMENT ARTICLE. S114 CID 2001:32 (Suppl 2) Diekema et al.

Lab Exercise: Antibiotics- Evaluation using Kirby Bauer method.

January 2014 Vol. 34 No. 1

Jasmine M. Chaitram, 1,2 * Laura A. Jevitt, 1,2 Sara Lary, 1,2 Fred C. Tenover, 1,2 and The WHO Antimicrobial Resistance Group 3,4

Performance Information. Vet use only

Compliance of manufacturers of AST materials and devices with EUCAST guidelines

Antimicrobial Susceptibility Testing: Advanced Course

Defining Resistance and Susceptibility: What S, I, and R Mean to You

IMPORTANCE OF GLOBAL HARMONIZATION OF ANTIMICROBIAL SUSCEPTIBILITY TESTING IN CANADA FOR DEFINING ANTIMICROBIAL RESISTANCE

Susceptibility Tests for Methicillin-Resistant (Heteroresistant) Staphylococci

Cefazolin vs. Antistaphyloccal Penicillins: The Great Debate

Evaluation of the BIOGRAM Antimicrobial Susceptibility Test System

Main objectives of the EURL EQAS s

EUCAST Expert Rules for Staphylococcus spp IF resistant to isoxazolylpenicillins

Practical approach to Antimicrobial susceptibility testing (AST) and quality control

Methicillin and Clindamycin resistance in biofilm producing staphylococcus aureus isolated from clinical specimens

Annual Surveillance Summary: Methicillin- Resistant Staphylococcus aureus (MRSA) Infections in the Military Health System (MHS), 2016

Compliance of manufacturers of AST materials and devices with EUCAST guidelines

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

Doxycycline staph aureus

CONTAGIOUS COMMENTS Department of Epidemiology

Le infezioni di cute e tessuti molli

Transcription:

https://doi.org/10.1186/s12941-018-0257-x Annals of Clinical Microbiology and Antimicrobials SHORT REPORT Open Access Continued in vitro cefazolin susceptibility in methicillin susceptible Staphylococcus aureus Benjamin H. Gern 1, Alexander L. Greninger 2, Scott J. Weissman 1, Jennifer R. Stapp 3, Yue Tao 4 and Xuan Qin 1,2,3* Abstract Objectives: In vitro trends of cefazolin and ceftriaxone susceptibilities from pediatric clinical isolates of methicillinsusceptible Staphylococcus aureus (MSSA) between 2011 and 2016 were analyzed for surveillance. Methods: Our laboratory continues to use agar disk diffusion for staphylococcal susceptibilities applying Clinical Laboratory Standard Institute s 2012 breakpoints. Results: A total of 3992 MSSA clinical isolates in the last 6 years were analyzed for their in vitro cefazolin and ceftriaxone susceptibilities. While all MSSA isolates exhibited cefazolin susceptibilities within the susceptible zone range, there have been a proportion of isolates with ceftriaxone susceptibilities falling in intermediate zones, ranging from 2.6% in 2011 to 8.3% in 2016. Conclusions: Cefazolin continues to be the recommended agent for MSSA treatment at our institution, reflected by the finding that only 2% (6/321) of patients who received ceftriaxone as definitive therapy for MSSA bacteremia during the study period. We have confirmed the cefoxitin-predicted MSSA susceptibility to cefazolin, but have found concerning drifts in ceftriaxone susceptibilities by continued in vitro monitoring over the last 6 years. Keywords: Staphylococcus aureus, MSSA, Cefazolin, Ceftriaxone, MIC Background The development of resistance of Staphylococcus aureus to β-lactam antibiotics has been well-characterized starting from the first uses of penicillin [1]. This first occurred starting with production of penicillinase, then meca- and vana-determined mechanisms to alter the components of cell wall synthesis [2, 3]. The gene meca confers the majority of resistance to penicillinase-stable β-lactams [4]. For over 20 years, the Clinical Laboratory Standard Institute (CLSI) has included all β-lactam agents, including all classes of cephalosporins against staphylococcal species, with minimum inhibitory concentration (MIC) or zone size breakpoint recommendations [5]. In January *Correspondence: xuan.qin@seattlechildrens.org 1 Department of Pediatrics, Seattle Children s Hospital, University of Washington, Seattle, WA, USA Full list of author information is available at the end of the article 2013, CLSI eliminated all β-lactam antibiotic breakpoints for methicillin-susceptible S. aureus (MSSA), except oxacillin, cefoxitin, penicillin, and ceftaroline [6]. This recommendation derives from the understanding that susceptibility to antistaphylococcal β-lactams can be inferred using the above agents. Following this recommendation, there have been a few small in vitro and clinical studies that have examined the question of inferred susceptibility for MSSA [7 10]. This study intends to use our existing in vitro susceptibility data to inform future practices. Methods The agar disk diffusion method has been consistently used in our laboratory for susceptibility testing of all Staphylococcus spp. for more than 20 years. The susceptibility panel included antibiotic disks (Remel, USA): penicillin (10 units), oxacillin (1 μg, prior to 2011) or cefoxitin The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Page 2 of 5 (30 μg after 2011), amoxicillin/clavulanate (20/10 μg), cefazolin (10 μg), ceftriaxone (10 μg), meropenem (10 μg), gentamicin (10 μg), erythromycin (15 μg), clindamycin (2 μg), ciprofloxacin (5 μg), rifampin (5 μg), sulfamethoxazole-trimethoprim (SMX-TMP, 1.25/23.75 μg), linezolid (30 μg), and vancomycin (30 μg disk prior to 2010 then MIC by Etest [BioMerieux, France]). Nitrofurantoin (300 μg) is tested and reported in urine isolates only, while erythromycin and clindamycin are not reported in urine isolates. Our lab has continued to test for, and report, cefazolin and ceftriaxone susceptibility for MSSA isolates using the 2012 CLSI breakpoints [5]. According to CLSI recommendations, we measure the zone diameters (except for trimethoprim-sulfamethoxazole) by holding the Petri plate a few inches above a black background illuminated with reflected light, except for linezolid, which was read with transmitted light [11]. Weekly quality controls are performed using S. aureus ATCC 25923 for disk diffusion and S. aureus ATCC 29213 for Etest tested on Mueller Hinton agar (Remel, USA) with acceptable in-range limits (Additional file 1: Figure S1). For this study, repeat isolates on the same patients within a calendar year were excluded, regardless of specimen source. We retrospectively examined the cefazolin and ceftriaxone susceptibility profiles of all MSSA isolates in our lab between 2011 and 2016. To assess ceftriaxone use among patients with MSSA infections, we used records maintained by our Antimicrobial Stewardship Program (ASP) to identify a subset of patients that had MSSApositive blood cultures and received ceftriaxone during this period. We then reviewed patient medical records to determine whether ceftriaxone was used as definitive therapy. Results and discussion General findings A total of 3992 MSSA isolates tested between 2011 and 2016 were included in the susceptibility analysis. Using 2012 CLSI criteria, we confirmed that cefazolin remained an active agent, with all zone interpretive range confined above the susceptible range of 19 mm (susceptible: 18 mm), and none in intermediate range of 15 17 mm (data not shown). We also found that a proportion of MSSA isolates produced ceftriaxone susceptibilities in intermediate zones ranges (14 20 mm) over the 6 year period, from 2.6% in 2011 to 8.3% in 2016 with the highest of 15.5% in 2014 (Fig. 1). None of the MSSA isolates produced ceftriaxone zone measurements in the resistant range (Fig. 1). When ceftriaxone susceptibilities were further broken down by site of culture, we found that while blood, respiratory, and wound/deep tissue infections had similar proportion of MSSA isolates with ceftriaxone intermediate at 6.30, 6.82, and 6.15% respectively, the MSSA strains isolated from urine cultures showed higher rate of non-susceptibility to ceftriaxone (11.27%, Table 1). From the same period, methicillin-sensitive coagulase-negative Staphylococcus species (MS-CoNS, n = 673), were observed to be 8.0% in intermediate range to ceftriaxone. This fraction reduced to 3.1% when S. saprophyticus isolates (n = 80) were excluded, which accounted for the majority of MS-CoNS ceftriaxone non-susceptibility in our study. No intermediate range susceptibility to cefazolin was observed in MS-CoNS isolates, which was 100% sensitive over the course of our study (data not shown). In vitro susceptibility patterns Upon closer examination, growth patterns of MSSA isolates around ceftriaxone disks characteristically meeting the CLSI description of a beach type of heterogeneous inhibitory zone, as opposed to a cliff inhibitory zone around cefazolin (Fig. 2) [11]. Post hoc crosscheck of zone characteristics around of cefazolin and ceftriaxone disks on clinical-convenient samples (n = 153) have confirmed the distinct inhibitory zone characteristics between the two as shown in Additional file 1: Figure S2. Clinical practices and current state of in vitro testing During the study period of 2011 2016, 321 patients with MSSA bacteremia were identified, in which only 6 patients received ceftriaxone as definitive therapy (after final susceptibility reports) without evidence of treatment failure. Our institutional Antimicrobial Stewardship Committee has implemented a Microbiology Result Comment of β-lactams like cefazolin and nafcillin are superior to vancomycin for treatment of MSSA since mid-2013. This has, in part, resulted in our low number of cases where ceftriaxone was used as the definitive therapy. This hinders our ability to assess the clinical implications of ceftriaxone non-susceptibility (or intermediate ), as all patients who received ceftriaxone as definitive therapy had known-susceptible isolates due to our cephalosporin susceptibility testing and reporting practices. Ceftriaxone is not a first-line agent for MSSA infections, but its favorable dosing parameters often makes it a favorable choice in outpatient management. While there are no randomized controlled trials examining its effectiveness in treating MSSA infections, there have been small observational studies examining clinical outcomes, though it is not apparent that these studies tested for in vitro ceftriaxone non-susceptibility. One retrospective study from Israel investigated treatment of MSSA bacteremia in 541 patients with different β-lactams, using

Page 3 of 5 Rate of ceftriaxone intermediate MSSA Rate: 2.6% 68% 2.8% 68% 5.7% 72% 15.5% 75% 12.8% 80% 8.3% 79% Fig. 1 Ceftriaxone zone diameters (mm) for MSSA isolates, separated by year collected. Black bars are zone diameters in Intermediate range (14 20 mm), light gray bars are zone diameters in Susceptible range ( 21 mm). Values in top left corner of each pane reflect percent intermediate of all MSSA isolates to ceftriaxone in each year. Values in top right corner of each pane reflect percent of S. aureus isolates that were methicillin susceptible (MSSA) in each year Table 1 Ratio of ceftriaxone susceptibilities against the 6-year MSSA isolates based on specimen source Specimen type (group) Ceftriaxone susceptibility Intermediate (%) Susceptible (%) Blood (n = 349) 6.30 93.70 Cerebrospinal fluid (n = 22) 100.00 Osteoarticular (n = 33) 3.03 96.97 Respiratory tract (n = 1642) 6.82 93.18 Urine (n = 213) 11.27 88.73 Wound and deep tissue infections (n = 3348) 6.15 93.85 inferred susceptibility [9]. Ceftriaxone therapy was associated with higher 30-day adjusted mortality odds, though this did not hold with 90-day mortality. Another retrospective cohort study from Texas investigated ceftriaxone versus cefazolin therapy for invasive MSSA infections in 122 patients who received outpatient parenteral antibiotic therapy, finding similar clinical outcomes and adverse events [8]. Lastly, investigators from Missouri retrospectively compared ceftriaxone versus oxacillin in 124 patients with MSSA osteomyelitis and/or septic arthritis, finding similar clinical outcomes, though acknowledging fewer medication side effects with ceftriaxone treatment [10]. These studies highlight the need for further clinical trials. The low historical prevalence of MSSA resistance to cefazolin, ceftriaxone and other antistaphylococcal β-lactams is well-described [12], and reflected in the recommendation to remove most β-lactam breakpoints from the 2013 CLSI (M100-S23) guidelines. As a result of this

Page 4 of 5 Cefazolin Ce riaxone 21mm Additional file Additional file 1: Figure S1. Quality control performances of weekly cefoxitin, cefazolin, and ceftriaxone disk diffusion the study period. Figure S2. Post hoc measurement of zones of inhibition generated from ceftriaxone and cefazolin disks against clinical isolates (n = 153) of MSSA. Heterogeneous or beach -type of zone phenotypes around ceftriaxone disk could be sized typically by either at ~ 80% growth inhibition or at the complete growth inhibition (Note: The measurement at the complete growth inhibition has been the standard for susceptibility interpretations). Insert graph shows cliff -type of homogeneous zone measurements around cefazolin disk. Abbreviations MSSA: methicillin-susceptible Staphylococcus aureus; MIC: minimum inhibitory concentration; MS-CoNS: methicillin-sensitive coagulase-negative Staphylococcus species; ASP: Antimicrobial Stewardship Program. 15mm Fig. 2 Characteristic Cliff versus Beach inhibitory zones associated with cefazolin and ceftriaxone respectively by disk diffusion method against MSSA isolates recommendation, cephalosporin agents such as cefazolin and ceftriaxone have been eliminated from most commercial antistaphylococcal susceptibility panels for surveillance information. Our data from continued testing of cefazolin and ceftriaxone using agar disk diffusion alone, without a precise MIC correlation clearly has limitations. It is possible there is a meca-independent mechanism in MSSA and MS-CoNS conferring their reduced susceptibility to certain β-lactams, similar to the ever-emerging multitude of resistance in Gram-negative bacteria. This may need to be addressed for surveillance purposes. Interestingly, ceftriaxone non-susceptibility was not as pronounced in MS-CoNS, except for S. saprophyticus, which has a low overall prevalence of meca positivity [13]. Conclusions This study affirms that cefazolin should continue to be the first line choice for the treatment of MSSA infections, and its inferred in vitro susceptibility from cefoxitin is still accurate. Our observed drift in ceftriaxone in vitro susceptibilities serves as an awareness call for closer surveillance. Additional studies at other institutions are necessary to determine if this trend is wide-spread. Consistent with CLSI recommendations, laboratory testing of antimicrobial susceptibility not only plays a role in patient care but also epidemiology surveillance for emergence of resistance. Authors contributions Drs. BHG, ALG, and XQ contributed to the study design and manuscript writing. Drs. SJW and YTcontributed to data analysis. Ms. JRJ contributed to data collection and organization. All authors read and approved the final manuscript. Author details 1 Department of Pediatrics, Seattle Children s Hospital, University of Washington, Seattle, WA, USA. 2 Seattle Children s Microbiology Laboratory, Seattle, USA. 3 Department of Laboratory Medicine, University of Washington, Seattle, WA, USA. 4 Present Address: Shanghai Children s Medical Center, Translational Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China. Acknowledgements We thank Seattle Children s Microbiology team for their high quality performance and quality documentation of susceptibility control results. We thank Mr. Paul Hiraiwa for his thorough investigation of Laboratory Information System records for data integrity. Competing interests All authors approved the current version of the manuscript for submission. All authors have no any commercial affiliations, are not consultants and do not have stock or equity interests, and patent-licensing arrangements that could be considered to pose a competing of interests regarding the submitted article. Availability of data and materials Susceptibility data used for this study is available electronically. Ethics approval and consent to participate This study was approved by the Institutional Review Board, Seattle Children s Hospital. Funding Dr. Benjamin H. Gern received an award by Academic Pediatric Infectious Disease NIH Training Grant: T32 HD007233 during the study period. Patient consent to participate Not applicable. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 12 October 2017 Accepted: 12 February 2018

Page 5 of 5 References 1. Kirby WM. Extraction of a highly potent penicillin inactivator from penicillin resistant Staphylococci. Science. 1944;99:452 3. 2. Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14:385 93. 3. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK, Vancomycin- Resistant Staphylococcus aureus Investigative T. Infection with vancomycin-resistant Staphylococcus aureus containing the vana resistance gene. N Engl J Med. 2003;348:1342 7. 4. Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis. 2001;7:178 82. 5. CLSI. Performance standards for antimicrobial susceptibility testing. M100-S22. Wayne: Institute CaLS, Clinical and Laboratory Standards Institute; 2012. 6. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. M100-S23. Wayne: Institute CaLS, Clinical and Laboratory Standards Institute; 2013. 7. Phe K, Dao D, Palmer HR, Tam VH. In vitro ceftriaxone susceptibility in methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2015;59:1370. 8. Winans SA, Luce AM, Hasbun R. Outpatient parenteral antimicrobial therapy for the treatment of methicillin-susceptible Staphylococcus aureus: a comparison of cefazolin and ceftriaxone. Infection. 2013;41:769 74. 9. Paul M, Zemer-Wassercug N, Talker O, Lishtzinsky Y, Lev B, Samra Z, Leibovici L, Bishara J. Are all beta-lactams similarly effective in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia? Clin Microbiol Infect. 2011;17:1581 6. 10. Wieland BW, Marcantoni JR, Bommarito KM, Warren DK, Marschall J. A retrospective comparison of ceftriaxone versus oxacillin for osteoarticular infections due to methicillin-susceptible Staphylococcus aureus. Clin Infect Dis. 2012;54:585 90. 11. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. M100. Wayne: Institute CaLS; 2017. 12. Dien Bard J, Hindler JA, Gold HS, Limbago B. Rationale for eliminating Staphylococcus breakpoints for beta-lactam agents other than penicillin, oxacillin or cefoxitin, and ceftaroline. Clin Infect Dis. 2014;58:1287 96. 13. Ferreira AM, Bonesso MF, Mondelli AL, Camargo CH, Cunha Mde L. Oxacillin resistance and antimicrobial susceptibility profile of Staphylococcus saprophyticus and other Staphylococci isolated from patients with urinary tract infection. Chemotherapy. 2012;58:482 91. Submit your next manuscript to BioMed Central and we will help you at every step: We accept pre-submission inquiries Our selector tool helps you to find the most relevant journal We provide round the clock customer support Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit