Quantification of Chloramphenicol in Chicken Using Xevo TQD with RADAR Technology

Similar documents
[ APPLICATION NOTE ] Analysis of Ketamine and Xylazine in Rat Tissues Using the ACQUITY UPLC with 2D Technology APPLICATION BENEFITS INTRODUCTION

Determination of Benzimidazole Residues in Animal Tissue by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry

Sensitive and selective analysis of fipronil residues in eggs using Thermo Scientific GC-MS/MS triple quadrupole technology

Determination, Confirmation and Quantitation of Multi-Class Antibiotic Residues in Milk by UHPLC MS/MS

Extraction and Cleanup Protocols for LC-MS/MS Multiresidue Determination of Veterinary Drugs in Tissue and Milk Samples

Rapid LC-MS/MS Method for the Analysis of Fipronil and Amitraz Insecticides and Associated Metabolites in Egg and Other Poultry Products

Veterinary Drug Detection in Pork and Milk

Ultra-Fast Analysis of Contaminant Residue from Propolis by LC/MS/MS Using SPE

Multi-residue Screening of Veterinary Drugs (I) and (II) in Meat According to the Japan Positive List Using Cartridge-based SPE and LC-MS/MS

Oasis PRiME HLB Food Applications Notebook

Multi-residue Method II for Veterinary Drugs by HPLC (Animal and Fishery Products)

Analysis of Multiclass Veterinary Drugs in Baby Food by Ultra Fast Chromatography with High Performance Triple Quadrupole Mass Spectrometry

Screening 36 Veterinary Drugs in Animal Origin Food by LC/MS/MS Combined with Modified QuEChERS Method

A Unique Approach to Managing the Problem of Antibiotic Resistance

Quantification of Several Acidic Drugs in Equine Serum Using LC MS-MS

An LC-MS/MS method to determine antibiotic residues in distillers grains

ANTIBIOTICS RESIDUES IN HONEY: VALIDATION PROCEDURE HONEY ANALYTICAL METHODS VALIDATION

International Journal of Pharmacy and Pharmaceutical Sciences. Research Article

Accepted Manuscript. Authors: Meritxell Gros, Sara Rodríguez-Mozaz, Damià Barceló

Journal of Integrative Agriculture 2018, 17(6): Available online at ScienceDirect

Stability of Tylosin in Honey Impact on Residue Analysis Don Noot, Tom Thompson

Pharma Research Library. 2013, Vol. 1(1):19-29

Available online at

Analysis of Contaminants in Food

HPLC method for simultaneous determination of Albendazole metabolites in plasma

Multi-residue Determination of Polar Veterinary Drugs in Livestock and Fishery Products by Liquid Chromatography/ Tandem Mass Spectrometry

Analytical Chemistry Insights 2014:9

C 22 H 28 FNa 2 O 8 Pıı516.4

Fluoroquinolones ELISA KIT

Quantitative and confirmatory analysis of veterinary drug residues in food of animal origin by UPLC- MS/MS after QuEChERS clean-up

Development and validation of a HPLC analytical assay method for amlodipine besylate tablets: A Potent Ca +2 channel blocker

Automated Online Multi-Residue LC-MS/MS Method for the Determination of Antibiotics in Chicken Meat

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE SIMULTANEOUS ESTIMATION OF ALISKIREN AND AMLODIPINE IN TABLET DOSAGE FORM

Detection of residues of quinolones in milk

A validated UPLC/ESI-MS/MS bioanalytical method for the quantification of Perindopril and Amlodipine in human plasma. Kalaiyarasi.

Determination of Acaricides in Korean Honey Bull. Korean Chem. Soc. 2008, Vol. 29, No

ANTIBIOTICS IN PLASMA

Analytica Chimica Acta 529 (2005)

Deptt of Pharma Science SGRR ITS Patel Nagar, Dehradun (UK)

Detection and confirmation of veterinary drug residues in commercially available frozen shrimp

Multi-residue Automated Turbulent Flow Online LC-MS/MS Method for the Determination of Antibiotics in Milk

Ensuring Customer Success

Oasis PRiME HLB - Introducing A New Sorbent for the Sample Cleanup of Food Matrices

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

VALIDATED RP-HPLC METHOD FOR THE SIMULTANEOUS DETERMINATION OF AMLODIPINE BESYLATE AND ATORVASTATIN CALCIUM IN BULK AND PHARMACEUTICAL FORMULATION

Journal of Applied Pharmaceutical Research ISSN No

Journal of Global Trends in Pharmaceutical Sciences

Chemical Residue Testing and the Role of Proficiency Testing Material at the Centre for Veterinary Drug Residues

Occurrence of Antibiotics in Drinking Water

Multi-residue Method I for Veterinary Drugs by HPLC (Animal and Fishery Products)

Compliance. Should you have any questions, please contact Praveen Pabba, Ph.D., ( or

DETERMINATION OF ACTIVE SUBSTANCES IN MULTICOMPONENT VETERINARY PREPARATIONS OF ANTIPARASITIC ACTION BY HPLC METHOD

One Analysis, One Column, Less than 9 Minutes for Over 60 Multiclass Antibiotics

PO. Vasan, Gandhinagar District, Gujarat, India, 3 Dean at Faculty of Pharmacy, Dharmsinh Desai University, Nadiad, Gujarat, India.

Development and Validation of Amlodipine Impurities in Amlodipine Tablets Using Design Space Computer Modeling

Determination of ofloxacin in bulk drug and pharmaceutical dosage form by high performance liquid chromatography method

Antibiotics Removal in Biological Sewage Treatment Plants

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF AMLODIPINE BESYLATE AND IRBESARTAN

ABSTRACT. Usharani N, Divya K and Ashrtiha VVS. Original Article

Should you have any questions, please contact Edith Chang, Ph.D., Senior Scientific Liaison ( or

European Public MRL assessment report (EPMAR)

Concentration of Enrofloxacin Residue from Tilapia (Oreochromis niloticus) Muscular That Infected by Aeromonas salmonicida

Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/l Level Utilizing Online Sample Preparation with LC-MS/MS

Simultaneous Determination of Danofloxacin and Difloxacin Residues in Poultry Meat using High Pressure Liquid Chromatography with PDA Detection

Streptomycin Sulfate According to USP

The absorption, distribution, metabolism and excretion study of radiolabelled meloxicam in sheep following trans-mucosal delivery

Analysis of Hormones & Anabolics

Multilaboratory Trial for Determination of Ceftiofur Residues in Bovine and Swine Kidney and Muscle, and Bovine Milk

DEVELOPMENT AND VALIDATION OF AMOXICILLIN AND CLAVULANATE BY USING LC-MS METHOD

Development of Analytical Methods for the Determination of Flunixin and Phenylbutazone Drug Residues in Edible Bovine Tissues

The mission of the U.S. Department of Agriculture

Isocratic Reverse Phase High Performance Liquid Chromatographic Estimation of Ramipril and Amlodipine in Pharmaceutical Dosage Form

IJCBS, 10(2016): International Journal of Chemical and Biochemical Sciences (ISSN )

Development and Validation of RP-HPLC Method for Determination of Related Substances of Medetomidine in Bulk Drug

Treball Final de Grau

AMOXICILLIN AND CLAVULANIC ACID TABLETS Draft proposal for The International Pharmacopoeia (February 2018)

MOXIFLOXACIN HYDROCHLORIDE (MOXIFLOXACINI HYDROCHLORIDUM) Draft proposal for The International Pharmacopoeia. (January 2018)

Accepted Manuscript. Andreia Freitas, Jorge Barbosa, Fernando Ramos. S (13) DOI: /j.idairyj Reference: INDA 3531

Development and Validation of UV Spectrophotometric Area Under Curve (AUC) method for estimation of Pyrantel Pamoate in Bulk and Tablet Dosage Form

Development and validation of HPLC method for simultaneous estimation of Amlodipine besylate and Enalapril maleate in solid dosage form

International Journal of Pharmaceutical Research & Analysis

Modeling and Control of Trawl Systems

* DRILLING MUD PROPERTIES RECORD

Flunixin is the only NSAID approved for use in cattle. Pharmacokinetics and tissue elimination of flunixin. in veal calves.

Determination of gentamicin and related impurities in gentamicin sulfate

Proficiency study for macrolides in porcine tissue

Research Article Phospholipid Adsorption Polymeric Materials for Detection of Xylazine and Metabolite in Blood and Urine

Kamepalli Sujana et al. / Journal of Pharmacy Research 2014,8(12), Available online through

COMMITTEE FOR MEDICINAL PRODUCTS FOR VETERINARY USE

Stability indicating HPLC Method Validation for the Assay of Dexmedetomidine in Dexmedetomidine Hydrochloride Injection

Validation of bee4sensor for Honey

Supplementary information

Available online International Journal of Pharmaceutical Research & Allied Sciences, 2016, 5(4):37-44.

Triline Pumps. Vacuum & Pressure Gas moving Engineers. Diaphragm Pumps EVM Series

SPECTROPHOTOMETRIC ESTIMATION OF MELOXICAM IN BULK AND ITS PHARMACEUTICAL FORMULATIONS

* * * * * INTRODUCTION

Quantification of Albendazole in Dewormer Formulations in the Kenyan market

Finnzymes Oy. PathoProof Mastitis PCR Assay. Real time PCR based mastitis testing in milk monitoring programs

Amlodipine, Valsartan, and Hydrochlorothiazide Tablets

Community Reference Laboratory for Pesticide Residues in Fruits and Vegetables. Amitraz Ring Test

Transcription:

Quantification of Chloramphenicol in Chicken Using Xevo TQD with RADAR Technology Dimple Shah, Marian Twohig, and Jennifer A. Burgess Waters Corporation, Milford, MA, U.S.A. A P P L I C AT ION B E N E F I T S Successful quantification of chloramphenicol in chicken muscle. Short analysis time, resulting in rapid throughput and faster results turnaround. Accurate quantification with MRMs and simultaneous full spectrum background monitoring using RADAR Technology. WAT E R S SO LU T IONS ACQUITY UPLC System Xevo TQD Oasis HLB Cartridge INT RO DU C T ION Chloramphenicol, an effective broad spectrum antibiotic, is widely used in medicinal and veterinary practices. Its use in humans is restricted due to potential harmful effects. Chloramphenicol is reported to be a cause of a potentially fatal blood condition called idiosyncratic aplastic anemia, and hypersensitivity to the drug affects around one in 3, people, regardless of dosage. 1 It is also anticipated to be carcinogenic. As a consequence, chloramphenicol is not approved for use in food-producing animals. However, due to its wide availability and low cost, it is used to prevent bacterial infections in aquaculture, apiculture, and poultry farming. Chloramphenicol levels in animal products are strictly monitored. In Europe, the minimum required performance limit (MRPL) for chloramphenicol is.3 µg/kg in any food of animal origin, 2 and similar limits have been adopted in other countries, including the United States. In this application note, chloramphenicol was analyzed with a three-minute runtime using Waters ACQUITY UPLC System, coupled with Xevo TQD and MassLynx Software. The Xevo TQD is a reliable, reproducible, and accessible tandem quadrupole mass spectrometer for routine quantitative and qualitative trace analysis. It incorporates RADAR Technology, which allows for the simultaneous acquisition of multiple reaction monitoring (MRM) transitions and full spectrum data. RADAR was used for method development and background monitoring during the analyses. MassLynx Software IntelliStart Technology TargetLynx Application Manager Waters PTFE Filter RADAR Technology K E Y W O R D S Chloramphenicol, chicken, food safety, quantitation 1

E X P E R IM E N TA L UPLC conditions UPLC system: Runtime: ACQUITY UPLC 3. min Column: ACQUITY UPLC BEH C 18 Column temp.: 55 C Sample temp.: 4 C Mobile phase A: Mobile phase B: Weak wash: Strong wash: Flow rate: 1.7 µm, 2.1 x 5 mm Water Methanol Injection volume: 1 µl Time (min) MS conditions MS system: Ionization mode: Capillary voltage: Flow rate (ml/min) 1:1 water:acetonitrile Acetonitrile.5 ml/min A B Curve Initial.5 95 5 N/A.4.5 95 5 6 1..5 1 6 1.5.5 1 6 1.55.5 95 5 6 3..5 95 5 6 Xevo TQD ESI negative 1. kv Standard preparation Chloramphenicol (CAS# 56-75-7) was purchased from Sigma-Aldrich. A 1-mg/mL solution of chloramphenicol-d5 in methanol, purchased from Cambridge Isotope Laboratories, was used as an internal standard. Each working solution was prepared at 1 ng/ml in methanol. The calibration curve was prepared with different concentrations of chloramphenicol standard ranging from.5 to 1. ng/ml, and a fixed amount of chloramphenicol-d5 at 5. ng/ml in water. Sample Preparation Sample preparation followed the protocol described by Xi Xia et al. 21 3 with minor modifications. The homogenized chicken was spiked with the internal standard, and extraction was performed with ethyl acetate. The supernatant was evaporated to dryness. The residue was re-dissolved in methanol then mixed with 1 ml 4 NaCl solution. Hexane was added and the resulting mixture was vortexed and centrifuged. The upper hexane layer was then discarded and the lower layer subjected to SPE cleanup. For SPE, an Oasis HLB (3 cc) Cartridge was preconditioned sequentially with 2 ml methanol and 2 ml water. The sample extract was loaded onto the cartridge and passed under vacuum. The cartridge was then rinsed with 3 ml water, followed by 2 ml of 2 methanol. The compounds were eluted from the cartridge using 4 ml of methanol. The eluate was evaporated to dryness at 4 C under a stream of nitrogen, and the residue was reconstituted in.5 ml of water. This solution was filtered through a Waters.2 µm PTFE filter prior to UPLC /MS/MS analysis. Compound name Parent (m/z) Daughter (m/z) Dwell (s) Cone (v) Collision (v) Chloramphenicol 321.2 152.2.2 25 15 Chloramphenicol 321.2 257.2.2 25 1 Chloramphenicol d5 326.2 157.2.2 25 2 Table 2. MRM transitions of chloramphenicol and internal standard. Source temp.: 15 C Desolvation temp.: 5 C Desolvation gas: 1 L/hr RADAR method: (see Figure 1) RADAR MS method MS2 full scan range: Scan time: Scan speed: 1 to 6 amu.5 sec 1, amu/s Figure 1. MS method showing RADAR function. The data were acquired and processed using MassLynx 4.1. Software with TargetLynx Application Manager. 2

R E SU LT S A N D D IS C U S S ION Method optimization Solutions of chloramphenicol and the internal standard at 1 µg/ml in 5 methanol were used to obtain tuning parameters with IntelliStart Technology. IntelliStart greatly simplifies the use of LC-MS systems by automating instrument setup, compound tuning, and performing system suitability checks. The m/z of both the analyte and internal standard, as well as the cone voltages resulting from this automated tuning are shown in Table 2. The resulting MRM chromatograms from a three-minute UPLC separation of chloramphenicol at 3 ng/ml (equivalent to.3 µg/kg in chicken), and the internal standard at 5 ng/ml are shown in Figure 2. 1 321.2>152.2 Chloramphenicol: quantification ion.5 1. 1.5 2. 2.5 1 321.2>257.2 Chloramphenicol: confirmation ion.5 1. 1.5 2. 2.5 1 326.2>157.2 Chloramphenicol-d5: internal standard.5 1. 1.5 2. 2.5 Time Figure 2. MRM chromatograms of standard chloramphenicol at 3 ng/ml (equivalent to.3 µg/kg in chicken) and internal standard at 5 ng/ml in water. The SPE protocol described by Xi Xia et al. 3 was optimized using a solution of chloramphenicol in water at 3 ng/ml. Following loading on to the Oasis HLB Cartridge, the cartridge was washed successively with 2 ml of 5, 1, 2, 3, 4, 5, 7, and 1 methanol in water. The elution profile of chloramphenicol from the cartridge is shown in Figure 3. Following the 3 wash step, chloramphenicol started to elute from the cartridge. A wash of 2 methanol was selected to prevent any breakthrough of the analyte. To ensure complete elution of chloramphenicol from the cartridge, 4 ml of 1 methanol was chosen for elution. 3. 2.5 2. Amount 1.5 1..5. methanol 5 methanol 1 methanol 2 methanol 3 methanol 4 methanol 5 methanol 7 methanol 1 methanol Figure 3. Chloramphenicol elution from Oasis HLB Cartridge using different methanol washes. 3

The best choice for a wash solvent in SPE is one that removes as many matrix interferences as possible without eluting the analyte. In this study, 2 methanol was selected as the wash. Using RADAR Technology, which provides the simultaneous acquisition of full scan and MRM transitions in one analysis, the impact of the selection of the weaker wash on the background matrix was monitored. In Figure 4, the BPI chromatograms from a spiked chicken breast sample following SPE with a 2 methanol wash and a 5 methanol wash are shown. From these data it can be seen that the 5 wash removes more interferences, but at the expense of the analyte, as shown in Figure 3. RADAR Technology can be further utilized in the method development to assess whether any matrix components interfere with the quantification of the analyte, as described below. 1 2 Methanol wash 1.36 1.56 1.1.97.5 1. 1.5 2. 2.5 1 5 Methanol wash 1.29.23 1.54.5 1. 1.5 2. 2.5 Time Figure 4. The BPI chromatograms from a spiked chicken breast sample following SPE with a 2 methanol wash and a 5 methanol wash. 4

Figure 5 shows MRM chromatograms of a blank chicken extract, chicken extract that was spiked with chloramphenicol prior to extraction (pre-spiked), and chicken extract that was spiked with chloramphenicol following SPE (post-spiked) equivalent to.3 µg/kg in tissue, i.e. at the MPRL. Blank chicken extract 321.2>152.2 Pre-spiked chicken extract 321.2>152.2 Post -spiked chicken extract 321.2>152.2 Figure 5. MRM chromatograms of pre-spiked chicken extract and post-spiked chicken extract at.3µg/kg with blank chicken extract. To quantify the chloramphenicol in chicken, calibration solutions were injected in triplicate. The resulting calibration showed excellent linearity across the range of concentrations with a correlation coefficient (r 2 ) of.999. An example is shown in Figure 6. Compound name: chloramphenicol Correlation coefficient: r =.99953, r 2 =.9997 14. 12. Response 1. 8. 6. 4. 2.. ng/ml. 1. 2. 3. 4. 5. 6. 7. 8. 9. 1. Figure 6. Chloramphenicol standard calibration curve range from.5 to 1. ng/ml (equivalent to.5 to 1. µg/kg in tissue). 5

Experimental repeatability To study the recovery of chloramphenicol in chicken, three chicken breasts were purchased from different stores. Each chicken breast sample was fortified with chloramphenicol at.3 µg/kg, and the internal standard was.5 µg/kg. Fortified and blank chicken breasts were treated following the previously described sample preparation protocol. Quantitative analysis was performed with ACQUITY UPLC coupled with the Xevo TQD. The data were processed with TargetLynx Application Manager, and recoveries were calculated against the response of the non-extracted analyte. As shown in Figure 7, the average percentage recovery of chloramphenicol from three different chicken matrices was 8. Recover 1. 9. 8. 7. 6. 5. 4. 3. 2. 1.. Chloramphenicol Chicken matrix 1 Chicken matrix 2 Chicken matrix 3 All combined Figure 7. Recoveries of three chicken breasts at.3 µg/kg. RADAR Technology Development of analytical methods for the detection of contaminants in food is often challenging due to the complexity of the matrix. In LC-MS/MS, co-eluting matrix components can compete with the analyte of interest during the ionization process, which can lead to ion suppression or enhancement of the analyte signal. It is therefore necessary to characterize these potential matrix effects during method development and eliminate or minimize their impact on the quantification of the analyte. Reducing matrix interference also helps to ensure method robustness. The ability to monitor matrix interferences by observing full scan background data during quantitative MS/MS experiments (RADAR) represents an important advancement in instrument design. 6

For the work presented in this application note, the Xevo TQD was operated in RADAR mode. This allowed for the simultaneous acquisition of MRMs and full scan data without any compromise in the MRM data quality or accuracy. The peak of chloramphenicol and its internal standard in the quantitative MRM chromatograms each have greater than 15 data points across the peak while simultaneously acquiring full scan data. This acquisition mode helps with making informed decisions during the process of method development and in routine analysis. Figure 8 shows the MRM chromatogram of chloramphenicol along with the full scan MS base peak ion (BPI) chromatogram for three different chicken matrices. The differences in matrix interferences among the three chicken breasts can clearly be seen. It is also apparent from Figure 8 that chloramphenicol elutes in the region that has less potential matrix interference in all three chicken samples, which leads to greater confidence in the robustness of the method. The ability to observe changes in the full scan data helps to troubleshoot any problem encountered within quantitative analyses of new samples. 1 1.3 BPI: Chicken matrix 1 1.1 1.35.8 1. 1.2 1.4 1.6 1.8 1 1.34 1.28 1.59 BPI: Chicken matrix 2 1.9 1.46 1.55 1.65.8 1. 1.2 1.4 1.6 1.8 1 1.35 1.56.8 1. 1.2 1.4 1.6 1.8 1 BPI: Chicken matrix 3.97 1.9 1.29 1.45 Chloramphenicol standard.8 1. 1.2 1.4 1.6 1.8 Time Figure 8. MRM chromatogram of chloramphenicol spiked in chicken matrix and base peak intensity (BPI) chromatograms of three different chicken breast samples fortified at.3 µg/kg. 7

C O N C LUSIONS This application note describes quantitative analysis of chloramphenicol in chicken breast. Short analysis times using ACQUITY UPLC provides faster sample turnaround times for food safety testing laboratories. Sample preparation using Oasis HLB SPE concentrates the analyte while removing potential sample matrix interferences. References 1. A Rapid Method For The Determination of Chloramphenicol Residues in Black Tiger Shrimp. Waters Application Note 72767EN, 23. 2. European Commission Decision (23/181/EC) (23) Off. J. Eur. Commun, L71, 17 18. 3. Xi Xia, Xiaowei Li, Shuangyang Ding, and Jianzhong Shen, Validation of a Method for the Determination of Chloramphenicol in Poultry and Swine Liver by Ultra-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry, Journal of AOAC international 93.5, 21. The combination of ACQUITY UPLC with Xevo TQD allows users to reach minimum performance limits and accurately quantify trace levels of chloramphenicol at the MPRL. TargetLynx allows data to be easily processed and it can automatically highlight samples that do not meet the regulatory requirements. Using the RADAR Technology, matrix interferences can be monitored and informed decisions made, leading to faster and more rugged method development. The Xevo TQD is a reliable, reproducible, and accessible solution for routine quantitative and qualitative trace analysis. Waters, Xevo, Oasis, ACQUITY UPLC, and UPLC are registered trademarks of Waters Corporation. IntelliStart, RADAR, MassLynx, TargetLynx, and The Science of What s Possible are trademarks of Waters Corporation. All other trademarks are the property of their respective owners. 212 Waters Corporation. Produced in the U.S.A. March 212 724262en AG-PDF Waters Corporation 34 Maple Street Milford, MA 1757 U.S.A. T: 1 58 478 2 F: 1 58 872 199 www.waters.com