Coyotes in Wolves' Clothing

Similar documents
Y-chromosome evidence supports asymmetric dog introgression into eastern coyotes

Dr. Roland Kays Curator of Mammals New York State Museum

Committee on the Status of Species at Risk in Ontario (COSSARO) Assessed by COSSARO as THREATENED. January Final

A GENETIC ASSESSMENT OF THE EASTERN WOLF (CANIS LYCAON) IN ALGONQUIN PROVINCIAL PARK

Brent Patterson & Lucy Brown Ontario Ministry of Natural Resources Wildlife Research & Development Section

HYBRIDIZATION DYNAMICS BETWEEN WOLVES AND COYOTES IN CENTRAL ONTARIO. Science

Field Immobilization of Raccoons (Procyon lotor) with Telazol and Xylazine

Assessment of coyote wolf dog admixture using ancestry-informative diagnostic SNPs

ASSESSING THE EFFECTS OF A HARVESTING BAN ON THE DYNAMICS OF WOLVES IN ALGONQUIN PARK, ONTARIO AN UPDATE

Limits to Plasticity in Gray Wolf, Canis lupus, Pack Structure: Conservation Implications for Recovering Populations

What is the taxonomic identity of Minnesota wolves?

Loss of wildlands could increase wolf-human conflicts, PA G E 4 A conversation about red wolf recovery, PA G E 8

Dirofilaria immitis in Coyotes and Foxes in Missouri

Of Wolves Wolf Hybrids And Children

Coyote. Canis latrans. Other common names. Introduction. Physical Description and Anatomy. Eastern Coyote

1 What makes a wolf. 1.1 Wolves in the beginning

Introduction Histories and Population Genetics of the Nile Monitor (Varanus niloticus) and Argentine Black-and-White Tegu (Salvator merianae) in

Re: Proposed Revision To the Nonessential Experimental Population of the Mexican Wolf

Describing a developing hybrid zone between red wolves and coyotes in eastern North

Department of the Interior

Ibridazione naturale e antropogenica

Is the Red Wolf a Listable Unit Under the US Endangered Species Act?

Cow Exercise 1 Answer Key

MICHIGAN WOLF MANAGEMENT PLAN UPDATED 2015

The Wolves of Algonquin Provincial Park A Report by the Algonquin Wolf Advisory Group. Table of Contents

Panmixia and Limited Interspecific Introgression in Coyotes (Canis latrans) from West Virginia and Virginia, USA

Persistent link to this record:

Lab 8 Order Carnivora: Families Canidae, Felidae, and Ursidae Need to know Terms: carnassials, digitigrade, reproductive suppression, Jacobson s organ

A Lymphosarcoma in an Atlantic Salmon (Salmo salar)

December 6, RE: Attn: FWS-R2-ES

Hybridization: the Double-edged Threat

The Canadian Field-Naturalist

January 31, Secretary Ken Salazar U.S. Department of Interior 1849 C. St. NW Washington, D.C Dear Secretary Salazar:

Bayesian Analysis of Population Mixture and Admixture

Nomadic Behavior of an Old and Formerly Territorial Eastern Coyote, Canis latrans*

PROGRESS REPORT for COOPERATIVE BOBCAT RESEARCH PROJECT. Period Covered: 1 April 30 June Prepared by

Status and Distribution of the Eastern Hoolock Gibbon (Hoolock leuconedys) in Mehao Wildlife Sanctuary, Arunachal Pradesh, India

Keywords: Canis latrans/canis lupus/coyote/evolution/genetic differentiation/genetics/genome/history/malme/snp genotyping/wolf

Hybridization Between European Quail (Coturnix coturnix) and Released Japanese Quail (C. japonica)

Evolution in dogs. Megan Elmore CS374 11/16/2010. (thanks to Dan Newburger for many slides' content)

Behavioral interactions between coyotes, Canis latrans, and wolves, Canis lupus, at ungulate carcasses in southwestern Montana

Inheritance of Livershunt in Irish Wolfhounds By Maura Lyons PhD

Why should we care about biodiversity? Why does it matter?

No tail (Manx) is a dominant trait and its allele is represented by M The presence of a tail is recessive and its allele is represented by m

WILDCAT HYBRID SCORING FOR CONSERVATION BREEDING UNDER THE SCOTTISH WILDCAT CONSERVATION ACTION PLAN. Dr Helen Senn, Dr Rob Ogden

A Genetic Comparison of Standard and Miniature Poodles based on autosomal markers and DLA class II haplotypes.

VIZSLA EPILEPSY RESEARCH PROJECT General Information

Bi156 Lecture 1/13/12. Dog Genetics

Coyote (Canis latrans)

Biology 164 Laboratory

The genetic structure of the Lithuanian wolf population

Duration of Attachment by Mites and Ticks on the Iguanid Lizards Sceloporus graciosus and Uta stansburiana

Dogs and More Dogs PROGRAM OVERVIEW

Mexican Gray Wolf Reintroduction

FW: Gray Wolf Petition (California Endangered Species Act) - Status Review for California CFW.doc; ATT00001.htm

Student Exploration: Mouse Genetics (One Trait)

PROGRESS REPORT OF WOLF POPULATION MONITORING IN WISCONSIN FOR THE PERIOD April-June 2000

Question 3 (30 points)

Structured Decision Making: A Vehicle for Political Manipulation of Science May 2013

Lack of Impact of Den Interference on Neonatal Red Wolves

7.013 Spring 2005 Problem Set 2

ANTAGONISM OF XYLAZINE HYDROCHLORIDE KETAMINE HYDROCHLORIDE IMMOBILIZATION IN GUINEAFOWL (NUMIDA MELEAGRIS) BY YOHIMBINE HYDROCHLORIDE

Homework Case Study Update #3

Evaluation of large-scale baiting programs more surprises from Central West Queensland

Summary of the Superior National Forest s 2017 Canada lynx (Lynx canadensis) DNA database October 12, 2017

Species assignment and hybrid identification among Scandinavian hares Lepus europaeus and L. timidus

Evolution and Selection

Compiled SME Questionnaires - 1

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata

+ Karyotypes. Does it look like this in the cell?

Clarifications to the genetic differentiation of German Shepherds

Can humans mate with dogs. Can humans mate with dogs

IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF MONTANA MISSOULA DIVISION

Oregon Wolf Conservation and Management 2014 Annual Report

Life History and Ecology of Coyotes in the Mid- Atlantic States: A Summary of the Scientifi c Literature

PARTIAL REPORT. Juvenile hybrid turtles along the Brazilian coast RIO GRANDE FEDERAL UNIVERSITY

In situ and Ex situ gene conservation in Russia

Executive Summary. DNR will conduct or facilitate the following management activities and programs:

Video-scats : combining camera trapping and non-invasive genotyping to assess individual identity and hybrid status in gray wolf

Occupancy of Large Canids in Eastern North Carolina A Pilot Study

Gray Wolf (Canis lupus) Dyad Monthly Association Rates by Demographic Group

Economically important trait. Increased demand: Decreased supply. Sheep milk cheese. 2007: $2.9 million for milk production (Shiflett, 2008)

Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1

Evolution and Selection

Fisher. Martes pennanti

The Rufford Foundation Final Report

1 - Black 2 Gold (Light) 3 - Gold. 4 - Gold (Rich Red) 5 - Black and Tan (Light gold) 6 - Black and Tan

Rocky Mountain Wolf Recovery 2010 Interagency Annual Report

Breeding Icelandic Sheepdog article for ISIC 2012 Wilma Roem

Shoot, shovel and shut up: cryptic poaching slows restoration of a large

Genetic Effects of Post-Plague Re-colonization in Black-Tailed Prairie Dogs

Fruit Fly Exercise 2 - Level 2

Regionally high rates of hybridization and introgression in German wildcat populations (Felis silvestris, Carnivora, Felidae)

Coexisting with Coyotes: Celebrating the Marin Coyote Coalition

Pavel Vejl Daniela Čílová Jakub Vašek Naděžda Šebková Petr Sedlák Martina Melounová

Lecture 11 Wednesday, September 19, 2012

A Conglomeration of Stilts: An Artistic Investigation of Hybridity

Genetic comparison of pure bred dogs in Sweden

2013 Holiday Lectures on Science Medicine in the Genomic Era

Wolf (Wildlife Of North America Series) By Michael Dahl READ ONLINE

Transcription:

Coyotes in Wolves' Clothing Author(s) :Tyler Wheeldon, Brent Patterson, and Dean Beyer Source: The American Midland Naturalist, 167(2):416-420. 2012. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/0003-0031-167.2.416 URL: http://www.bioone.org/doi/full/10.1674/0003-0031-167.2.416 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Am. Midl. Nat. (2012) 167:416 420 Notes and Discussion Coyotes in Wolves Clothing ABSTRACT. We report on three presumed wolf pups captured in Michigan s northern Lower Peninsula, potentially representing the first documented case of wolf reproduction in the Lower Peninsula since wolves were extirpated there a century ago. The pups, two females and one male, were assumed to be wolves based on physical characteristics. Genetic profiles assigned all three pups as coyotes but revealed evidence of maternal introgression from a Great Lakes wolf in their pedigree. These findings suggest that Great Lakes wolves are capable of interbreeding with coyotes when conspecifics are rare. INTRODUCTION Wolves recently re-colonized Wisconsin and the Upper Peninsula of Michigan (UPMI), after having been extirpated there during the last century (FWS, 2007). The recovery of wolves in these states is a success story for wildlife conservation and serves as a testament to the power of the protection offered by the Endangered Species Act. As the recovered wolf population continues to expand, it is expected that wolves will disperse and recolonize areas to the south, including the Lower Peninsula of Michigan (LPMI). Gehring and Potter (2005) estimated between 2200 4200 km 2 of favorable wolf range in northern LPMI and suggested that this area could support between 40 105 wolves. Although there have been reports of wolves in LPMI (Roell et al., 2010), researchers have yet to document wolf reproduction in-situ there. Recent genetic studies of wolves in the western Great Lakes region (WGLR; hereafter referred to as Great Lakes wolves) have revealed that hybridization with coyotes (Canis latrans) is rare but that Great Lakes wolves have a hybrid heritage from gray wolves (C. lupus) and eastern wolves (C. lycaon) (Fain et al., 2010; Wheeldon et al., 2010a). The limited evidence for wolf-coyote hybridization in the WGLR contrasts with the more extensive hybridization observed between Algonquin Provincial Park (APP) wolves and southeastern Ontario (SEON) coyotes (Sears et al., 2003; Rutledge et al., 2010). Given the phenotypic variability of hybridizing Canis and the high mobility of both wolves and coyotes, dispersing wolves and coyotes are expected to occasionally appear in previously unoccupied areas, sometimes confusing wildlife researchers and managers trying to identify them. We report on the phenotypic classification and genetic testing of three presumed wolf pups captured in northern LPMI, potentially representing the first documented case of wolf reproduction in LPMI since wolves were extirpated there circa 1910 (Beyer et al., 2009). METHODS In Mar. 2010, U.S.D.A. Wildlife Services (WS) biologists observed two sets of wolf-sized tracks in Cheboygan County, northern LPMI. Photos from trail cameras placed in the area captured images of a large canid, identified as a wolf. In Jul. and Aug. 2010, WS attempted to trap and radio-collar a wolf in this area as part of the Michigan Department of Natural Resources wolf-monitoring program. The first of three presumed wolf pups was captured on 19 Jul. 2010; it was a male. The animal was physically restrained, ear tagged, weighed, and measured. Measurements included total length, tail length, hind foot length, leading edge of ear length, shoulder height, chest girth, and upper right canine length. A blood sample for DNA analysis was collected by veni-puncture and several drops of blood were transferred to FTA TM paper (Whatman, Maidstone, Kent, UK) and stored at ambient room temperature. A coyote trapper captured the second and third presumed wolf pups on 10 Oct. 2010, less than 0.4 km from the first capture site; both were females. These individuals were immobilized with an approximate 3:1 (2.6 2.8 ml dose) combination of 100 mg/ml ketamine (KetasetH; Fort Dodge Laboratories, Inc., Fort Dodge, Iowa, USA) and 100 mg/ml xylazine (X-Ject E TM ; Butler Schein Animal Health, Dublin, Ohio, USA), then they were ear-tagged, weighed, measured, and blood sampled as described above. 416

2012 NOTES AND DISCUSSION 417 TABLE 1. Sex, weight, and morphological measurements of three pups from LPMI: male pup captured 19 Jul. 2010 and female pups captured 10 Oct. 2010 Field Code Sex Weight 1 (kg) Total Tail Hind Foot Ear Shoulder Height Chest Girth Upper Right Canine (mm) ET0426 M 10.4 109.2 35.6 20.3 10.2 48.3 50.8 5 ID#1602 F 22.2 137.2 48.3 22.2 12.7 66.0 62.2 21 ID#1603 F 19.1 134.6 50.8 21.6 12.1 66.0 59.7 19 1 Body condition of each pup at time of capture was good Genomic DNA was extracted from blood samples, then mitochondrial DNA (mtdna) control region sequences, a Y-chromosome haplotype (male only), and genotypes based on twelve autosomal microsatellite loci were generated as in Wheeldon et al. (2010a). The autosomal microsatellite genotypes of the pup samples were analyzed in the Bayesian clustering program STRUCTURE (v2.3, Pritchard et al., 2000; Hubisz et al., 2009) with genotypes of highly assigned individuals (i.e., Q-value.0.9) from reference populations: WGLR coyotes (n 5 47; Wheeldon et al., 2010a); SEON coyotes (n 5 98; not previously analyzed); APP wolves (n 5 67; Rutledge et al., 2010); UPMI wolves (n 5 82; Wheeldon et al., 2010a). The admixture model of STRUCTURE was run ten times at K 5 4 for 10 6 iterations following an initial burn-in of 250,000 iterations, using default settings with FREQSCORR 5 1 and ANCESTDIST 5 1 (90% probability intervals). The individual admixture proportions (i.e., Q-values) of the pups were taken from the run having the highest posterior probability and lowest variance. A non-model based factorial correspondence analysis (FCA) of the genotype data was performed using GENETIX (v4.05, Belkhir et al., 2004), and two factorial components, FC-1 and FC-2, which accounted for 7.17% and 4.29% of the total inertia respectively, were plotted to visualize the clustering of the pup samples relative to the reference populations. An exclusion test using 10,000 simulated genotypes and the frequencies-based method (Paetkau et al., 1995, 2004) was conducted on the pup genotypes in GeneClass (v2, Piry et al., 2004) to determine the probability of them originating from each reference population: this test does not require the assumption inherent to STRUCTURE that the true population of origin has been sampled in the dataset. RESULTS The WS biologist identified the first animal captured as a wolf pup based on dentition (Mech, 1970), size (especially length of legs and size of the feet and toes) and weight (Table 1). At the time of capture, tracks of what appeared to be an adult-sized wolf and pups were observed at the trap site. On 20 Jul. 2010, the WS biologist observed fresh adult wolf-sized tracks returning to the capture site and tracks of the adult and pup leaving on the same path. The following day he observed three presumed wolf pups on the edge of an old beaver (Castor canadensis) flooding about 0.4 km from the capture site. A Michigan Department of Natural Resources wildlife research assistant handled the second and third pups captured by the coyote trapper. He identified both individuals as wolf pups based on dentition (Mech, 1970), size and weight (Table 1). The STRUCTURE analysis assigned all three pups as SEON coyotes with minimal admixture to the other groups, but the 90% probability intervals of the Q-values for the pups indicated statistical uncertainty in assigning membership between the two coyote groups (Table 2; Fig. 1). The FCA revealed that the pups clustered with coyotes and away from wolves (Fig. 2). The GeneClass analysis excluded (i.e., P, 0.01) both APP wolf and UPMI wolf groups as probable populations of origin for the pup samples but did not exclude either of the coyote groups (Table 2). The concordance among the results of the genetic analyses performed clearly indicates that the pups had a closer genetic affinity to coyotes than wolves. The three pups had the same eastern wolf mtdna haplotype (C3), and the male pup had a Y- chromosome of coyote origin (CR) (Wheeldon et al., 2010a; Table 2). The microsatellite genotypes of the pups revealed extensive allele sharing across loci (67 79% alleles shared in pairwise comparisons), suggesting that they were putatively siblings from the same litter, as also suggested by their being captured in the same area.

418 THE AMERICAN MIDLAND NATURALIST 167(2) TABLE 2. Genetic profiles of three pups from LPMI, including STRUCTURE admixture proportions to four reference populations (90% probability intervals in brackets) and GeneClass exclusion test probabilities (P 5 X) Field Code mtdna Haplotype Y-chromosome Haplotype WGLR coyotes SEON coyotes APP wolves UPMI wolves ET0426 C3 CR 0.091 0.876 0.024 0.009 (0 to 0.875) (0.001 to 1) (0 to 0.186) (0 to 0.050) P 5 0.36 P 5 0.46 P, 0.01 P, 0.01 ID#1602 C3 n/a 0.134 0.833 0.019 0.013 (0 to 0.999) (0 to 1) (0 to 0.142) (0 to 0.087) P 5 0.25 P 5 0.18 P, 0.01 P, 0.01 ID#1603 C3 n/a 0.075 0.796 0.119 0.010 (0 to 0.612) (0 to 1) (0 to 0.609) (0 to 0.061) P 5 0.12 P 5 0.17 P, 0.01 P, 0.01 DISCUSSION The genetic assignments of the three pups as coyotes (Table 2; Figs. 1, 2) revealed an unexpected discordance with their phenotypic assignments as wolves. The sizes and weights of the female pups (Table 1) are at the upper limits reported for eastern coyotes and their weights overlap the range for APP wolves (Sears et al., 2003; Way, 2007; Rutledge et al., 2010). Considering that they were not fully developed, these coyote pups were unusually large. Eastern wolf mtdna haplotype C3 is common in Great Lakes wolves but rare in APP wolves and it has not been observed in coyotes (Koblmuller et al., 2009; Kays et al., 2010; Fain et al., 2010; Rutledge et al., 2010; Wheeldon et al., 2010a, b), indicating probable maternal introgression from a Great Lakes wolf into the pups pedigree. Although it is conceivable that a dispersing female APP wolf was the origin of the introgression, the relatively large distance between LPMI and APP wolves compared to that between LPMI and Great Lakes wolves makes the latter a much more likely source of the introgression. Considering the observed lack of admixture to UPMI wolves in the pups (Table 2; Fig. 1), we suggest that a female Great Lakes wolf hybridized with a male coyote and descendant female offspring backcrossed with male coyotes for an undetermined number of generations, culminating in the pups birth. In contrast to the evidence presented by the microsatellite genotypes, the observation of adult wolf-sized tracks at the capture site of the male pup suggests that the pups may have been the F1 progeny of a wolf-coyote mating. Considering the potential inaccuracies of hybrid detection in STRUCTURE (Vaha and Primmer, 2006), the pups being F1 hybrids is possible, but the concordance of the genetic assignments of the pups among analyses (Table 2; Figs. 1, 2) suggests that it is unlikely. Rather we suggest that the large tracks observed at the capture site of the male pup were from an unusually large adult coyote or wolf-coyote hybrid. FIG. 1. Plot of the individual proportional memberships to the K 5 4 reference populations analyzed in STRUCTURE

2012 NOTES AND DISCUSSION 419 FIG. 2. Factorial correspondence analysis of the autosomal microsatellite genotypes of the LPMI pups and reference population samples The wolf-coyote hybridization could have occurred in UPMI with a resulting descendant later dispersing into LPMI. Alternatively, the wolf-coyote hybridization could have occurred in LPMI if a recolonizing wolf encountered a coyote and mated with it in the absence of a conspecific. The latter scenario seems more probable considering that: (1) wolves are common in UPMI and thus more likely to encounter a conspecific and (2) wolf-coyote hybridization is rare where Great Lakes wolves are well established (e.g., Minnesota, Wisconsin, UPMI; Wheeldon et al., 2010a). Our findings stress the importance of employing multiple genetic markers for identification of Canis, because if we had relied solely on mtdna we would have misclassified the pups as wolves. The discordance between phenotypic and genetic assignment observed in this study highlights the phenotypic variability in hybridizing Canis, which complicates management and enforcement. Continued monitoring of LPMI may yet reveal recolonization by wolves in the form of in-situ conspecific reproduction, but genetic testing should be used to validate phenotypic classifications until wolves have re-established themselves in LPMI in significant numbers. Acknowledgments. We thank Don Lonsway and Jeff Lukowski for handling the pups and collecting blood samples. LITERATURE CITED BELKHIR, K., P. BORSA, L. CHIKHI, N. RAUFASTE AND F. BONHOMME. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, France.

420 THE AMERICAN MIDLAND NATURALIST 167(2) BEYER, D. E., R. O. PETERSON, J. A. VUCETICH AND J. H. HAMMILL. 2009. Wolf population changes in Michigan, p. 65 85. In: A. P. Wydeven, T. R. Van Deelen and E. J. Heske (eds.). Recovery of gray wolves in the Great Lakes region of the United States. Springer, New York, United States. FAIN, S. R., D. J. STRAUGHAN AND B. F. TAYLOR. 2010. Genetic outcomes of wolf recovery in the western Great Lakes states. Conserv. Genet., 5:1747 1765. FISH AND WILDLIFE SERVICE. 2007. Proposed Rules. Federal Register, 72:6052 6103. GEHRING, T. M. AND B. A. POTTER. 2005. Wolf habitat analysis in Michigan: an example of the need for proactive land management for carnivore species. Wildl. Soc. Bull., 33:1237 1244. HUBISZ, M. J., D. FALUSH, M. STEPHENS AND J. K. PRITCHARD. 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour., 9:1322 1332. KAYS, R. K., A. CURTIS AND J. J. KIRCHMAN. 2010. Rapid adaptive evolution of northeastern coyotes via hybridization with wolves. Biol. Lett., 6:89 93. KOBLMULLER, S., M. NORD, R.K.WAYNE AND J. A. LEONARD. 2009. Origin and status of the Great Lakes wolf. Mol. Ecol., 11:2313 2326. MECH, L. D. 1970. The wolf: the ecology and behavior of an endangered species. Doubleday Publishing, New York, United States. 389 p. PAETKAU, D., W. CALVERT, I.STIRLING AND C. STROBECK. 1995. Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol., 4:347 354., R. SLADE, M. BURDEN AND A. ESTOUP. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol. Ecol., 13:55 65. PIRY, S., A. ALAPETITE, J.-M. CORNUET, D. PAETKAU, L. BAUDOUIN AND A. ESTOUP. 2004. GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection. J. Hered., 95:536 539. PRITCHARD, J. K., M. STEPHENS AND P. DONNELLY. 2000. Inference of population structure from multilocus genotype data. Genetics, 155:945 959. ROELL, B. J., D. E. BEYER, P. E. LEDERLE, D. H. LONSWAY AND K. L. SITAR. 2010. Michigan wolf management 2009 report. Michigan Department of Natural Resources and Environment, Wildlife Division Report No. 3511. 20 p. RUTLEDGE, L. Y., C. J. GARROWAY, K. M. LOVELESS AND B. R. PATTERSON. 2010. Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity, 105:520 531. SEARS, H. J., J. B. THEBERGE, M. T. THEBERGE, I. THORNTON AND G. D. CAMPBELL. 2003. Landscape influence on Canis morphological and ecological variation in a coyote-wolf C. lupus x latrans hybrid zone, southeastern Ontario. Can. Field-Nat., 117:591 600. VAHA, J.-P. AND C. R. PRIMMER. 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol., 15:63 72. WAY, J. G. 2007. A comparison of body mass of Canis latrans (coyotes) between eastern and western North America. Northeast. Nat., 14:111 124. WHEELDON, T., B. PATTERSON AND B. WHITE. 2010a. Sympatric wolf and coyote populations of the western Great Lakes region are reproductively isolated. Mol. Ecol., 19:4428 4440.. 2010b. Colonization history and ancestry of northeastern coyotes. Biol. Lett., 6:246 247. TYLER WHEELDON 1 AND BRENT PATTERSON, Ontario Ministry of Natural Resources, Trent University, 2140 East Bank Drive, Peterborough K9J 7B8, Canada; and DEAN BEYER, Michigan Department of Natural Resources, Northern Michigan University, Room 3001 New Science Facility, Marquette 49855. Submitted 2 May 2011; Accepted 6 October 2011. 1 Corresponding author: e-mail: twheeldon@gmail.com