The recovery of added nematode eggs from horse and sheep faeces by three methods

Similar documents
Mini-FLOTAC, a new tool for copromicroscopic diagnosis of common intestinal nematodes in dogs

The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals

Haemonchus contortus: spatial risk distribution for infection in sheep in Europe

Effects of strategic anthelmintic treatments on the milk production of dairy sheep naturally infected by gastrointestinal strongyles

ANTHELMINTIC RESISTANCE IN EQUINE WORMS

Large Animal Topics in Parasitology for the Veterinary Technician Jason Roberts, DVM This presentation is designed to review the value veterinary

FLOTAC and Mini-FLOTAC for uro-microscopic diagnosis of Capillaria plica (syn. Pearsonema plica) in dogs

THE COPROLOGICAL DIAGNOSIS OF GASTROINTESTINAL NEMATODE INFECTIONS IN SMALL RUMINANTS

Research report Caroline Palmbergen Supervisor: Drs. Rolf Nijsse

Diagnosing gastrointestinal nematodes in livestock

Virginia Journal of Science, Vol. 61, No. 1, 2010

Presence of Parasite Larvae in Goat Manure for Use as Fertiliser

MURDOCH RESEARCH REPOSITORY.

REFERENCES AND RECOMMENDED READING

A comparison of faecal egg counts and body condition scores in young Peruvian alpacas

UPDATE ON ANTHELMINTIC RESISTANCE IN GASTROINTESTINAL NEMATODE PARASITES OF CATTLE: HOW DOES THIS CHANGE OPTIMAL APPROACHES TO CONTROL?

Genome-wide association analysis of resistance to gastro-intestinal parasites in dairy sheep

Diagnosis and monitoring of anthelmintic resistant gastro-intestinal nematodes of UK cattle: Development of a qpcr on L1 larvae of O.

Asian Journal of Phytomedicine and Clinical Research Journal home page:

Equine Cyathostominae can develop to infective third-stage larvae on straw bedding

A Field Study on Efficacy of Albendazole (Albezol ) Against Gastro-intestinal Nematodes in Ruminants

Relative effectiveness of Irish factories in the surveillance of slaughtered cattle for visible lesions of tuberculosis,

WAARD Project Wales Against Anthelmintic Resistance Development. Prosiect CYYG Cymru n Ymladd Ymwrthedd Gwrthlyngyrol

Pituitary pars intermedia dysfunction (ie, Cushing s

EFFECT OF SERICEA LESPEDEZA HAY ON GASTROINTESTINAL NEMATODE INFECTION IN GOATS

Project title: Evaluation of the prevalence of coccidia in Ontario suckling. piglets and identification of a preventive treatment

Afr. J. Trad. CAM (2007) 4 (2):

Parasite Control on Organic Sheep Farms in Ontario

STATISTICAL REPORT. Preliminary Analysis of the Second Collaborative Study of the Hard Surface Carrier Test

Dirofilaria immitis and Angiostrongylus vasorum: the contemporaneous detection in kennels

Incidence of Strongyle infection in cattle and pig with relevance to rainfall in Meghalaya

THE IDENTIFICATION OF GASTROINTESTINAL NEMATODES SPECIES IN SHEEP IN FIVE LOCALITIES FROM TIMIS COUNTY

Gastrointestinal parasites of working equids in Kaski District, Nepal

THE VETERINARIAN'S CHOICE. Compendium clinical Trials. Introducing new MILPRO. from Virbac. Go pro. Go MILPRO..

ECONOMICS OF DEWORMING BEEF CATTLE & HERD MONITORING WITH FECAL EGG COUNTS

International Journal of Science, Environment and Technology, Vol. 7, No 1, 2018,

ORIGINAL RESEARCH Evidence of Ivermectin Resistance by Parascaris equorum on a Texas Horse Farm

APPENDIX 8 - EXAMPLE DRENCH CHECK REPORT UNITED KINGDOM

Sustainable Worm Control Strategies for Sheep. LSSC Ltd

Københavns Universitet

FDA S ANTIPARASITIC RESISTANCE MANAGEMENT STRATEGY (ARMS)

Phenotyping and selecting for genetic resistance to gastro-intestinal parasites in sheep: the case of the Manech French dairy sheep breed

Seasonal patterns of gastrointestinal nematode infection in goats on two Lithuanian farms

EFFECT OF ENSILING ON ANTI-PARASITIC PROPERTIES OF SERICEA LESPEDEZA. Abstract

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Dog vaccination with EgM proteins against Echinococcus granulosus

SPECTROPHOTOMETRIC ESTIMATION OF MELOXICAM IN BULK AND ITS PHARMACEUTICAL FORMULATIONS

Technical Bulletin. Utilizing Fecal Egg Counts and Environmental Risk Assessment to Effectively Control Equine Internal Parasites

A Discrete-Event Simulation Study of the Re-emergence of S. vulgaris in Horse Farms Adopting Selective Therapy

The current state of anthelmintic resistance in the UK and simple messages to slow the progression

A PRELIMINARY STUDY TO DETERMINE THE EFFICACY OF A NEMATOPHAGOUS FUNGUS, ARTHRQBOTRYS OLIGOSPORA, AGAINST NEMATODE LARVAE IN CATTLE AND GOAT DUNG

Tools for worming sheep in a changing landscape

SUMMARY OF PRODUCTS CHARACTERISTICS

Famacha scores should not be handled as numerical data

THE PREVALENCE OF HELMINTH PARASITES IN HORSES RAISED IN MODERN CONDITIONS

The Prevalence of Some Intestinal Parasites in Stray Dogs From Tetova, Fyr Macedonia

PARASITOLOGY IN 2020 Where will we stand? EU Framework Programmes PARASOL & GLOWORM & PARAVAC

IDEXX PetChek IP A new approach to intestinal parasites in veterinary medicine

9.0 ANTHELMINTIC STUDIES

Gastrointestinal Nematode Infestations in Sheep

Answers to Questions about Smarter Balanced 2017 Test Results. March 27, 2018

SUMMARY OF PRODUCT CHARACTERISTICS

Efficacy of Moxidectin 6-Month Injectable and Milbemycin Oxime/Lufenuron Tablets Against Naturally Acquired Toxocara canis Infections in Dogs*

Review of the Parasites of Large Animals

Survey of co-infection by Salmonella and oxyurids in tortoises

Monitoring methods and systems

For the treatment and prevention of infections caused by:

DYNAMICS OF GASTROINTESTINAL PARASITIC INFECTIONS AND PREDICTION OF HAEMONCHUS CONTORTUS

Effects of Late-Summer Protein Supplementation and Deworming on Performance of Beef Calves Grazing Native Range

The Eye of the Farmer and Detection of Animals in Need of Anthelmintic Treatment in Organic Meat Sheep Flocks

Parasites in Sheep Flocks

Sheep Infection by Haemonchus Species: Effect on Haematocrit and Evaluation of the FAMACHA Method in Arsi Negele District, Oromia, Ethiopia

Fluoroquinolones ELISA KIT

Comparative studies of early season moxidectin treatment and conventional ivermectin/benzimidazole treatments in the control of cyathostomes in horses

SUMMARY OF PRODUCT CHARACTERISTICS

SETTING THE STANDARDS IN STRATEGIC WORMING YOUR GUIDE TO SUSTAINABLE AND EFFECTIVE EQUINE WORMING

The Scoop on Poop 2019 Country Living Expo Classes #123 & #223

Summary of Product Characteristics

UPDATE ON PARASITE DIAGNOSIS

Anthelmintic resistance of gastrointestinal nematodes in sheep in Piramagroon sub-district, Sulaymaniyah/Iraq

Ursula Gonzales-Barron 1, Ilias Soumpasis 1, Francis Butler 1 & Geraldine Duffy 2. UCD School of Agriculture, Food Sci. & Vet. Med.

Ultra-Fast Analysis of Contaminant Residue from Propolis by LC/MS/MS Using SPE

CARLA SALIVA TEST. Measuring parasite immunity in sheep

Helminths in horses: use of selective treatment for the control of strongyles

Ecology/Physiology Workgroup. Importance of Nematode Parasites in Cattle Grazing Research

Data were analysed by SPSS, version 10 and the chi-squared test was used to assess statistical differences. P < 0.05 was considered significant.

IN-VIVO EVALUATION OF ANTI-COCCIDIAL EFFICACY OF SALINOMYCIN AND AMPROLIUM IN COMMERCIAL CHICKEN

HAGENIA ABYSSINICA (KOSSO) FOR INTERNAL PARASITE CONTROL IN GOATS

Prevalence of gastro-intestinal strongyles in native beef cattle under small holder management condition in Udon Thani, Thailand

Sales survey of Veterinary Medicinal Products containing Antimicrobials in France

Evaluation of Horn Flies and Internal Parasites with Growing Beef Cattle Grazing Bermudagrass Pastures Findings Materials and Methods Introduction

PCR COMPARISON OF TRICHOSTRONGYLE GENERA PRESENT IN SOUTH DAKOTA CATTLE WITH AND WITHOUT SPRINGTIME DEWORMING

AARJMD VOLUME 1 ISSUE 19 (MARCH 2014) ISSN : A Peer Reviewed International Journal of Asian Academic Research Associates AARJMD

8/23/2018. Gastrointestinal Parasites. Gastrointestinal Parasites. Haemonchus contortus or Barber Pole Worm. Outline

Multiplexed-tandem PCR (MT-PCR) assay to detect and differentiate gastrointestinal nematodes of alpacas

Finnzymes Oy. PathoProof Mastitis PCR Assay. Real time PCR based mastitis testing in milk monitoring programs

Introducing the latest in worming technology...

Seroprevalence and risk factors of infections with Neospora caninum and Toxoplasma gondii in hunting dogs from Campania region, southern Italy

Development and Validation of UV Spectrophotometric Area Under Curve (AUC) method for estimation of Pyrantel Pamoate in Bulk and Tablet Dosage Form

Ecology/Physiology Workgroup. Nematode Parasites and Grazing Research

Transcription:

Bosco et al. BMC Veterinary Research (2018) 14:7 DOI 10.1186/s12917-017-1326-7 RESEARCH ARTICLE The recovery of added nematode eggs from horse and sheep faeces by three methods Open Access Antonio Bosco 1, Maria Paola Maurelli 1*, Davide Ianniello 1, Maria Elena Morgoglione 1, Alessandra Amadesi 1, Gerald C. Coles 2, Giuseppe Cringoli 1 and Laura Rinaldi 1 Abstract Background: Nematode infections in horses are widespread across the world. Increasing levels of anthelmintic resistance, reported worldwide in equine parasites, have led to the creation of programs for the control of nematodes based on faecal egg counts (FEC). To improve nematode egg counting in equine faecal samples and establish whether the matrix of equine faeces or the eggs affect the counts, the analytical sensitivity, accuracy and precision of Mini-FLOTAC (combined with Fill-FLOTAC), McMaster and Cornell-Wisconsin techniques were compared. Known numbers of eggs extracted from equine or ovine faeces were added to egg free ovine and equine faeces to give counts of 10, 50, 200 and 500 eggs per gram (EPG) of faeces. Results: The Cornell-Wisconsin significantly underestimated egg counts and McMaster showed a low analytical sensitivity, revealing 100% of sensitivity only for concentrations greater than 200 EPG. EPG values detected by Mini-FLOTAC did not differ significantly from expected counts at any level of egg density. Conclusions: Mini-FLOTAC combined to Fill-FLOTAC which provides an accurate method of weighing without need for a balance and filtering out debris, could be used for FEC on the farm as well as in the laboratory. Keywords: Mini-FLOTAC, Fill-FLOTAC, Nematodes, Horses, Sheep Background Nematodes which infect horses are clinically important across the world and anthelmintic resistance (AR) is becoming increasingly prevalent [1]. The problem of AR has led to the creation of programs for the control of nematodes based on faecal egg counts (FEC). More accurate and precise FEC methods need to be included in studies evaluating any parasite control program, emphasizing the requirement for simple, reliable and sensitive diagnostic tools and preferably suitable to assess both the intensity of infections and the efficacy of drugs on horse farms [1]. Sources of potential error include the method of sampling, flotation solution used, sample dilution, counting procedures [2 4], faecal moisture [5], and the storage or preservation of faeces [3, 6]. * Correspondence: mariapaola.maurelli@unina.it 1 Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy Full list of author information is available at the end of the article In order to evaluate which FEC technique is characterized by higher analytical sensitivity (the smallest number of parasitic elements in a sample that can be detected accurately by a given technique), accuracy (how well the observed value agrees with the true value) and precision (how well repeated observations agree with one another), eggs extracted from equine and ovine faecal samples and added to egg free samples were counted by three FEC techniques: Mini-FLOTAC, modified McMaster and Cornell-Wisconsin. Methods Faecal samples with positive and negative FEC were collected from adult sheep and horses stabled in paddock of farms located in southern Italy. Each sample was analyzed 5 times by the FLOTAC basic technique [7] with an analytical sensitivity of 1 egg per gram (EPG) of faeces to determine the presence/absence of nematode eggs, i.e. cyathostomes for horses and gastrointestinal nematodes The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Bosco et al. BMC Veterinary Research (2018) 14:7 Page 2 of 6 (Trichostrongylus, Haemonchus and Teladorsagia) for sheep. Nematode eggs were extracted from the positive samples using the mass recovery method, i.e., a method that employs 4 sieves of different dimension (1 mm, 250 μm, 212 μm and38μm) in order to separate the eggs from the faeces. Then ten aliquots of 0.1 ml each were taken and the number of eggs counted [8]. A series of cross-contaminations were performed: nematode extracted from horses faeces were used to contaminate negative horse and sheep faeces and vice versa. Theeggsuspensions were added to the negative faeces (250 g) and thoroughly homogenized to give four faecal samples (250 g each) for each EPG level (10, 50, 200 and 500). Each sample was analyzed using satured sodium chloride solution (specific gravity = 1.200) by three FEC techniques: Mini-FLOTAC combined with Fill-FLOTAC [9 11], modified McMaster technique [12] and Cornell-Wisconsin technique [13]. After a thorough homogenization from each faecal sample for each EPG level, 60 g were weighted for Mini-FLOTAC, 36 g for McMaster chamber, 36 g for McMaster grid and 60 g for Cornell-Wisconsin. In total twelve replicates were used for each method and for each EPG level (10, 50, 200 and 500) using single faecal samples. The weight of faeces used, dilution ratio, reading volume and analytical sensitivity of each technique are shown in Table 1. Fill-FLOTAC enables the first four step of the Mini-FLOTAC technique i.e. sample collection and weighing, homogenization, filtration and filling of Mini- FLOTAC chamber [9, 11]. The repeatability of the 5 g size of Fill-FLOTAC to measure 5 g of faeces using horse and sheep samples was measured 10 times. Statistical analysis A coefficient of variation [(standard deviation divided by mean count times) *100] was calculated for each set of replicate counts for each method and level of EPG. The coefficient of variation showed the precision of the method [14] that refers to the closeness of two or more measurements to each other. Mean of eggs (X) showed the accuracy of the method that describe the closeness of a measurement to the true value. The raw counts from each sample were multiplied by the appropriate multiplication factor (5 for Mini- FLOTAC, 50 for McMaster grid, 15 for McMaster chamber and 1 for Cornell-Wisconsin), and then, the mean of the replicate counts for each sample was calculated. The analytical sensitivity of tests across the different levels of egg excretion for each technique was evaluated using line graphs. Boxplots (indicating median, percentiles and outliers) were used to estimate the precision and accuracy of each technique for each of the four levels of egg crosscontamination. A no parametric test, i.e. Spearman rank correlation (rho), was used to examine any association between true and observed egg counts. For each FEC technique at each level of egg count, the percentage recovery was calculated to assess the level of over- or under- estimation of FEC result (measurement error) using the following formula: % egg recovery = 100 - (true FEC - observed FEC) / true FEC * 100. Significance testing was set at p < 0.05. Statistical analysis was performed in IBM SPSS Statistics 20. Results The study involving 768 counts showed that at all egg concentrations the Mini-FLOTAC and Cornell-Wisconsin had 100% analytical sensitivity (using either sheep or horse faeces contaminated with nematode eggs). Instead, McMaster grid and chamber showed an analytical sensitivity of 100% only for concentrations greater than 200 EPG (the analytical sensitivity ranged from 8.3% to 75.0% at lowest concentration of eggs) (Fig. 1a, b). Spearman s rank correlation showed a significant (p < 0.05) positive relationship between observed EPG values and true EPG values for all methods and for all types of crosscontamination, but the Rho values ranged from 0.91 for McMaster grid to 0.97 for Mini-FLOTAC. Additional files show mean of eggs (X), standard deviation (SD) and coefficient of variation (CV%) recovered by Mini-FLOTAC, McMaster and Cornell-Wisconsin for each EPG level and for each contamination [see Additional files 1, 2]. The mean of precision (CV%) and accuracy (X) for each method is presented in Tables 2 and 3. Fig. 2a-d show the boxplot of the observed EPG at each level of egg excretion for Mini-FLOTAC, McMaster grid, McMaster chamber and Cornell-Wisconsin, respectively. The length of boxplots of Mini-FLOTAC Table 1 Schematic features of Mini-FLOTAC, McMaster (grid and chamber) and Cornell-Wisconsin techniques FEC Techniques Amount of faeces used (grams) Dilution Ratio Reading Volume (ml) Reading Area (mm 2 ) Analytical sensitivity (EPG) Mini-FLOTAC 5 1:10 2.0 648 5 McMaster grid 3 1:15 0.30 200 50 McMaster chamber 3 1:15 1.0 648 15 Cornell-Wisconsin 5 1:10 10 324 1 The weight of faeces used for each replicate, dilution ratio, reading volume, reading area and analytical sensitivity of Mini-FLOTAC, two versions of McMaster (grid and chamber) and Cornell-Wisconsin egg counting

Bosco et al. BMC Veterinary Research (2018) 14:7 Page 3 of 6 Fig. 1 Analytical sensitivity (% of positive test results across the replicates) of each FEC technique using nematode egg suspensions of 10 EPG for the four cross-contaminations (a) and of 50 EPG for the four cross-contaminations (b) technique was very narrow for each contamination level and for all cross-contaminations showing a high precision and accuracy compared to the other techniques. Sheep faeces had a mean (± standard deviation, SD) of 5.1 ± 0.14 g (maximum 5.1 g, minimum 4.8 g), while horse faeces had an average (± SD) of 5.0 ± 0.11 (maximum 5.2 g, minimum 4.9 g), thus demonstrating a good repeatability of the Fill-FLOTAC for weighing faecal samples.. At the lower level of eggs (10 EPG), CV% was high and exceeded 100% in McMaster grid and chamber methods. Furthermore, using McMaster grid and chamber methods were found negative results from the analysis of replicates, whereas the other methods never detected negative results. Table 2 Mean CV% for Mini-FLOTAC, McMaster and Cornell- Wisconsin at the different egg count levels and for each method evaluated in this study Method 10 EPG 50 EPG 200 EPG 500 EPG Mini-FLOTAC 49.6% 10.9% 8.1% 3.1% McMaster grid 248.6% 90.5% 39.9% 17.3% McMaster chamber 135.6% 51.4% 23.1% 10.9% Cornell-Wisconsin 33.4% 16.6% 51.8% 5.2% Discussion Regarding the recovery of eggs, 100% of nematode eggs from sheep were recovered when added to egg-free sheep faeces, but only 91.0% were recovered from horse faeces. There was a significant difference between recovery of nematode eggs of sheep from sheep faeces and from horse faeces. When nematode eggs from horses were added to sheep faeces the recovery was 95.9%, but reduced egg counts (90.5%) were found when added to horse faeces. Noel et al. [15] performed a study on the percentage of recovery of eggs using Mini-FLOTAC technique for the diagnosis of equine strongyles and recovered 42.6% of the eggs. As discussed by Cringoli et al. [11], various factors might explain the difference between results presented in Table 3 Mean number of detected eggs for Mini-FLOTAC, McMaster and Cornell-Wisconsin at the different egg count levels and for each method evaluated in this study Method 10 EPG 50 EPG 200 EPG 500 EPG Mini-FLOTAC 9 45 192 409 McMaster grid 8 49 179 492 McMaster chamber 7 39 167 461 Cornell-Wisconsin 4 19 104 248

Bosco et al. BMC Veterinary Research (2018) 14:7 Page 4 of 6 Fig. 2 Boxplots of observed faecal egg counts (y axis) with: Mini-FLOTAC method (a), McMaster grid (b), McMaster chamber (c), Cornell-Wisconsin (d) for the four 4 levels of egg excretion (x-axis) this study and results presented by Noel et al. [15]; in fact, one of the main limitations of Mini-FLOTAC technique, as with any copromicroscopic technique based on flotation (e.g. simple flotation, Wisconsin, and McMaster), is that the selection of fixative and duration of faecal preservation before Mini-FLOTAC analysis, the procedure of egg isolation and the choice of the flotation solution might influence the performance of the Mini-FLOTAC technique, specifically affecting the percentage of parasitic elements recovered [11]. The very poor performance of the Cornell-Wisconsin method indicates that this should not be used in future for counting equine nematode eggs, a conclusion also reached for bovine nematodes [4]. The McMaster technique is adequate if egg counts are greater than 50 EPG, but it is not satisfactory for lower counts which could be important if looking for the beginning AR. These results are similar to Vadlejch et al. [16] who compared the accuracy and precision of different McMaster methods for diagnosis of Teladorsagia circumcincta in sheep and confirmed that this method detected negative samples at lower concentrations. Under-estimation of FEC occurred when the entire McMaster chamber was examined rather than limited to the gridded area (Fig. 2b, c) whereas over-estimation of FEC occurred when the gridded area was examined, due to high multiplication factor. This is in agreement with Cringoli et al. [2] who observed aggregation of eggs to the center of McMaster slides, Morgan et al. [17] who described the Poisson distribution of nematode eggs in faecal suspensions and Kochanowsky et al. [14] that showed that the best limit of detection and analytical sensitivity and the lowest coefficients of variation were obtained with the use of the whole McMaster chamber variant. Only counting eggs in the gridded area appears to account for this aggregation at higher levels of egg densities; the number of eggs present at lower densities, however, was still underestimated. Finally CVs for McMaster grid and chambers were higher than other techniques for ovine and equine faeces, especially for lower counts, as yet reported by Noel et al. [15]. Also Dias de Castro et al. [18] and Scare et al. [19] showed that SD

Bosco et al. BMC Veterinary Research (2018) 14:7 Page 5 of 6 and CV values for significantly lower for Mini-FLOTAC than McMaster for detection of gastrointestinal nematode eggs in cattle and horses. Conclusions In conclusion, Mini-FLOTAC combined with Fill- FLOTAC which provides an accurate method of weighing without need for a balance and filtering out debris, could be used for FEC on the farm as well as in the laboratory. Additional files Additional file 1: Mean of eggs (X), Standard Deviation (SD), Coefficient of variation (CV%) recovered by Mini-FLOTAC, McMaster and Cornell-Wisconsin from horse faeces containing a predetermined number of nematode eggs extracted from horse and sheep faeces. (DOCX 14 kb) Additional file 2: Mean of eggs (X), Standard Deviation (SD), Coefficient of variation (CV%) recovered by Mini-FLOTAC, McMaster and Cornell-Wisconsin from sheep faeces containing a predetermined number of nematode eggs extracted from horse and sheep faeces. (DOCX 14 kb) Abbreviations EPG: Eggs per gram; FEC: Faecal egg counts; SD: Standard deviation Acknowledgements The Authors would like to express sincere appreciation to Paola Pepe, Mario Parrilla and Mirella Santaniello for their technical collaboration. Funding No funding was obtained for this study. Availability of data and materials All data generated or analysed during this study are included in this published article [and its supplementary information files]. The datasets used and/or analysed during the current study available from the corresponding author on reasonable request. Authors contributions Conceived, designed and coordinated the study: GC and LR. Performed sampling and laboratory analyses: AB, MPM, DI, MEM, AA and GCC. All the authors contributed to the data analysis and interpretation, to preparation and final approval of the manuscript. Ethics approval and consent to participate We have obtained verbal informed consent from the owners of animals to collect the faecal samples. Consent for publication Not applicable Competing interests The FLOTAC and Mini-FLOTAC apparatus have been developed and are patented by G. Cringoli, but the patent will be handed over to the University of Naples Federico II. The fact that one of the authors is the current patent holder of the FLOTAC and Mini-FLOTAC apparatus played no role in the preparation and submission of the manuscript. Laura Rinaldi is a member of the editorial board (Section Editor) for BMC Veterinary Research, it didn t influence the reviewers. The remaining authors have no competing financial interests. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy. 2 University of Bristol, School of Veterinary Sciences, Langford House, Bristol BS40 5DU, UK. Received: 28 July 2017 Accepted: 21 December 2017 References 1. Andersen UV, Howe DK, Olsen SN, Nielsen MK. Recent advances in diagnosing pathogenic equine gastrointestinal helminths: the challenge of prepatent detection. Vet Parasitol. 2013;192:1 9. 2. Cringoli G, Rinaldi L, Veneziano V, Capelli G, Scala A. The influence of flotation solution, sample dilution and the choice of McMaster slide area (volume) on the reliability of the McMaster technique in estimating the faecal egg counts of gastrointestinal strongyles and Dicrocoelium dendriticum in sheep. Vet Parasitol. 2004; 131:121. 3. Rinaldi L, Coles GC, Maurelli MP, Musella V, Cringoli G. Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC for parasite egg counts in sheep. Vet Parasitol. 2011;177:345 52. 4. Levecke B, Rinaldi L, Charlier J, Maurelli MP, Bosco A, Vercruysse J, Cringoli G. The bias, accuracy and precision on faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods. Vet Parasitol. 2012;188:194 9. 5. Roeber F, Jex AR, Gasser RB. Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. Biotechnol Adv. 2013;31:1135 52. 6. Crawley JA, Chapman SN, Lummaa V, Lynsdale CL. Testing storage methods of faecal samples for subsequent measurement of helminth egg numbers in the domestic horse. Vet Parasitol 2016;221: 130-133. 7. Cringoli G, Rinaldi L, Maurelli MP, Utzinger J. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat Protoc. 2010;5:503 15. 8. Godber OF, Phythian CJ, Bosco A, Ianniello D, Coles G, Rinaldi L, Cringoli G. A comparison of the FECPAK and mini-flotac faecal egg counting techniques. Vet Parasitol. 2015;30:342 5. 9. Cringoli G, Rinaldi L, Albonico M, Bergquist R, Utzinger J. Geospatial (s)tools: integration of advanced epidemiological sampling and novel diagnostics. Geospat Health. 2013;7:399 404. 10. Rinaldi L, Levecke B, Bosco A, Ianniello D, Pepe P, Charlier J, Cringoli G, Vercruysse J. Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and mini-flotac. Vet Parasitol. 2014;205:216 23. 11. Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, Rinaldi L. The mini-flotac technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc. 2017;12:1723 32. 12. Whitlock HV. Some modifications of the McMaster helminth egg-counting technique and apparatus. J Counc Sci Ind Res. 1948;21:177 80. 13. Egwang TG, Slocombe JO. Evaluation of the Cornell-Wisconsin centrifugal flotation technique for recovering trichostrongylid eggs from bovine feces. Can J Vet Res. 1982;46:133 7. 14. Kochanowsky M, Dabrowska J, Karamon J, Cencek T, Osinski Z. Analysis of the accuracy and precision of the McMaster method in detection of the eggs of Toxocara and Trichuris species (Nematoda) in dog faeces. Folia Parasitologica (Praha). 2013;60:264 72. 15. Noel ML, Scare JA, Bellaw JL, Nielsen MK. Accuracy and precision of mini- FLOTAC and McMaster techniques for determining equine strongyle egg count. J Equin Vet Sci. 2017;48:182 187e. 16. Vadlejch J, Petrtyl M, Zaichenko I, Cadkova Z, Jankovska I, Langrova I, Moravec M. Which McMaster egg counting technique is the most reliable? Parasitol Res. 2011;109:1387 94. 17. Morgan ER, Cavill L, Curry GE, Wood RM, Mitchell ESE. Effects of aggregation and sample size on composite faecal egg counts in sheep. Vet Parasitol. 2005;131:79 87. 18. Dias de Castro L, Abrahao CLH, Buzatti A, Molento MB, Bastianetto E, Rodrigues DS, Lopes L, Xavier Silva M, Green de Freitas M, Conde MH, Borges F. Comparison of McMaster and mini-flotac fecal egg counting

Bosco et al. BMC Veterinary Research (2018) 14:7 Page 6 of 6 techniques in cattle and horses. Vet Parasitol Reg Studies and Re. 2017;10: 132 5. 19. Scare JA, Slusarewicz P, Noel ML, Wielgus KM, Nielsen MK. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and mini-flotac methods. Vet Parasitol. 2017;247:85 92. Submit your next manuscript to BioMed Central and we will help you at every step: We accept pre-submission inquiries Our selector tool helps you to find the most relevant journal We provide round the clock customer support Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit