Evaluating a natural outbreak of porcine proliferative enteropathy and treatment with tylosin in the grow-finish phase

Similar documents
CONTROLLING ILEITIS IN THE COLITIS COMPLEX

LUNG LESIONS IN LAMBS. South Dakota State University, Brookings, SD Columbus, OH 43210

Current dogma suggests that administration of

Effects of Late-Summer Protein Supplementation and Deworming on Performance of Beef Calves Grazing Native Range

Octagon Services Ltd, Old Windsor, Berkshire, United Kingdom

Preventing Sulfa Residues in Pork

Comparative efficacy of DRAXXIN or Nuflor for the treatment of undifferentiated bovine respiratory disease in feeder cattle

Feeding Original XPC TM can help reduce Campylobacter in broilers and turkeys

Effect of tylosin on an experimental Salmonella infection in pigs

Shearing Lambs Improves Growth Performance During Periods with Elevated Thermal Load

Managing the risk associated with use of antimicrobials in pigs

towards a more responsible antibiotics use in asian animal production: supporting digestive health with essential oil compounds TECHNICAL PAPER

ANTICOCCIDIALS USED FOR THE THERAPY OF COCCIDIOSIS IN CHICKENS, TURKEYS AND GEESE

Dr. Jerry Shurson Department of Animal Science University of Minnesota

Tylvax TIMES MORE POWERFUL. One step ahead. Tylvalosin (as tartrate) Poultry and Swine Division Agrovet Market Animal Health

PHARMACOKINETICS, MINIMAL INHIBITORY CONCENTRATIONS AND EFFICACY MODEL RELATIONSHIPS FOR SOME GUT INFECTIONS IN PIGS

MODELING THE CAUSES OF LEG DISORDERS IN FINISHER HERDS

Dr. Jerry Shurson 1 and Dr. Brian Kerr 2 University of Minnesota, St. Paul 1 and USDA-ARS, Ames, IA 2

THE VETERINARIAN'S CHOICE. Compendium clinical Trials. Introducing new MILPRO. from Virbac. Go pro. Go MILPRO..

Improves pig performance in a wide range of health and growing conditions. (neomycin/oxytetracycline)

(oxytetracycline HCI)

Enteric Clostridia 10/27/2011. C. perfringens: general. C. perfringens: Types & toxins. C. perfringens: Types & toxins

Single-Dose Toxicity Study in Beagle or Mixed Breed Dogs. MTD Determination with Repeat Dose Range-Finding in Beagle or Mixed Breed Dogs

TOTAL MIXED RATIONS FOR FEEDING DAIRY HEIFERS FROM 3 TO 6 MONTHS OF AGE. H. Terui, J. L. Morrill, and J. J. Higgins 1

Using Technology to Improve Calf Raising Sam Barringer, DVM Merck Animal Health

Nicholas Schneider, DVM Schneider Veterinary Services, LLC. Milliken, CO

Enteric Clostridia. C. perfringens: general

Bacterial Pneumonia in Sheep, The Domestic Bighorn Sheep Interface, and Research at ADRU

GENETICS INTRODUCTION. G. B. Havenstein,* 2 P. R. Ferket,* J. L. Grimes,* M. A. Qureshi, and K. E. Nestor

Prevalence of antibodies against Lawsonia intracellularis in dogs with and without gastrointestinal disease

Sarcoptic Mange in Pigs A review. Lee McCosker. 28 th August Introduction

Effect of EM on Growth, Egg Production and Waste Characteristics of Japanese Quail Abstract Introduction Experimental Procedures

2009 MN Cattle Feeder Days Jolene Kelzer University of Minnesota Beef Team

Biocontainment. Within populations. The Sandhills Calving System. Actions to prevent the spread of infectious agents.

Raised Without Antibiotics Analyzing the Impact to Biologic and Economic Performance

SZENT ISTVÁN UNIVERSITY. Doctoral School of Veterinary Science

Field Efficacy of J-VAC Vaccines in the Prevention of Clinical Coliform Mastitis in Dairy Cattle

Course Curriculum for Master Degree in Poultry Diseases/Veterinary Medicine

Sponsors. Logo Design Ruth Cronje, and Jan Swanson; based on the original design by Dr. Robert Dunlop. Cover Design Sarah Summerbell

10/3/2016. NRC reqt s for Replacement Ewes. Developing Replacement Ewe Lambs. Differences in Feeding Market Lambs vs Replacement Ewe Lambs

Global Overview on Antibiotic Use Policies in Veterinary Medicine

Parasite Prevention Strategies for Bison.

funded by Reducing antibiotics in pig farming

Frank Møller Aarestrup

FEEDLOT PERFORMANCE, HEALTH, AND CARCASS CHARACTERISTICS OF BEEF HEIFERS TREATED WITH CYDECTIN OR DECTOMAX AT PROCESSING

Bovine Viral Diarrhea (BVD)

Post-weaning Growth and Carcass Traits of St. Croix White and Dorper X St. Croix White Lambs Fed a Concentrate Diet in the U.S.

Fish Farms. DATCP Fish Health 4/21/2009. Myron Kebus, MS, DVM. State Aquaculture Veterinary Epidemiologist

SUMMARY OF PRODUCT CHARACTERISTICS. Pharmasin 250 mg/g Premix for medicated feeding stuff for pigs, broilers and pullets

1 of 9 7/1/10 2:08 PM

Multi-state MDR Salmonella Heidelberg outbreak associated with dairy calf exposure

Johne s Disease Control

FREEDOM OF INFORMATION SUMMARY

In this session you will learn:

PROJECT SUMMARY. Optimising genetics, reproduction and nutrition of dairy sheep and goats

Efficacy of DRAXXIN or Baytril for treatment of naturally occurring bovine respiratory disease in calves at 3 feedlots

Anti-microbial usage and Expectations. Gerald Stokka, DVM, MS Livestock Stewardship

FREEDOM OF INFORMATION SUMMARY

EFFECTS OF USING MICOTIL 300, LIQUAMYCIN 200 OR TERRAMYCIN AS MASS MEDICATION ON RECEIVING STOCKER CATTLE

Recommended for Implementation at Step 7 of the VICH Process on 15 December 2004 by the VICH Steering Committee

Course Curriculum for Master Degree in Internal Medicine/ Faculty of Veterinary Medicine

Transition to Antibiotic-Free Production: On- Farm Management Strategies

EVALUATION OF THE EFFICACY OF CYCOSTAT 66G AGAINST COCCIDIOSIS IN FATTENING RABBITS UNDER CONTROLLED FIELD CONDITIONS.

Multiple Species Certification

**RECORDS START WITH POSSESSION OF ANIMAL AND ENDS WITH ESTIMATES FOR FAIR WEEK. Year (example: 2007): Please circle your 4-H project:

TABLE OF CONTENT. 1. Introduction 2. Materials 3. Procedures 4. Personnel Safety 5. Animal Related Contingencies 6. References 7.

Changes to Antibiotic Labeling & Veterinary Feed Directive. Craig A. Payne, DVM, MS Director, Veterinary Extension & CE University of Missouri

Outline Changes to Antibiotic Labeling & Veterinary Feed Directive

Northern NY Agricultural Development Program 2016 Project Report

INTERNAL PARASITES (MOST IMPORTANT HELMINTHS)

Suckler cow management. Dai Grove-White.

Feedlot Performance and Carcass Characteristics of Lambs Sired by Texel, Romanov, St. Croix or Dorset Rams from Polypay and St.

Salmonella Dublin: Clinical Challenges and Control

4-H PORK PRODUCTION MANUAL

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Gross Pathology. Johne s disease. Johne s Disease: The ostrich approach just isn t working! The result: Damaged intestine

Efficacy of Moxidectin 6-Month Injectable and Milbemycin Oxime/Lufenuron Tablets Against Naturally Acquired Toxocara canis Infections in Dogs*

Research shows Original XPC TM reduces Salmonella load and improves body weight and feed conversion in challenged turkeys

Project title: Evaluation of the prevalence of coccidia in Ontario suckling. piglets and identification of a preventive treatment

NEWS FROM SEGES, PIG HEALTH

Why individually weigh broilers from days onwards?

SHEEP. nd if appropriate/applicable)

9081V 9082V 9032V 9291V 9310V 9321V V

Management to Prevent Drug Residue Problems in Pork

RELATIONSHIPS AMONG WEIGHTS AND CALVING PERFORMANCE OF HEIFERS IN A HERD OF UNSELECTED CATTLE

Doug Carithers 1 William Russell Everett 2 Sheila Gross 3 Jordan Crawford 1

Relationship between hatchling length and weight on later productive performance in broilers

Rearing heifers to calve at 24 months

Agricultural Antibiotics David Wallinga, MD, MPA Natural Resources Defense Council January 2017

VALERIA C. ARTUSO-PONTE DVM, PhD Candidate Curriculum Vitae

Salmonella Initiatives: SIP, Poultry Slaughter Rule, NRTE Comminuted Poultry

ZOETIS INC. 333 PORTAGE STREET, KALAMAZOO, MI, Telephone: Customer Service: Website: EXCEDE FOR SWINE

Changes in Antibiotic Labeling Veterinary Feed Directive

Salmonella Heidelberg: An Emerging Problem in the Dairy Industry

Changes in Antibiotic Labeling Veterinary Feed Directive. Changes in Antibiotic Regulations. Concerns with Antibiotic Use 2/29/2016

Pharmacokinetics. Absorption of doxycycline is not significantly affected by milk or food, but coadministration of antacids or mineral supplements

Changing Trends and Issues in Canine and Feline Heartworm Infections

Acutely Restricting Nutrition Causes Anovulation and Alters Endocrine Function in Beef Heifers

Findings at slaughter following a reduction in antimicrobial use

Managing the risk associated with use of antimicrobials in pigs

Transcription:

ORIGINAL RSARCH Veenhuizen MF, Mowrey DH, Moore GM, et al. valuating a natural outbreak of porcine proliferative enteropathy and treatment with tylosin in the grow-finish phase. Swine Health and Production. 1998;6(2):67 72. valuating a natural outbreak of porcine proliferative enteropathy and treatment with tylosin in the grow-finish phase Melissa Fleck Veenhuizen, DVM, MS; Daniel H. Mowrey, PhD; Gregory M. Moore, DVM; Lee. Watkins, PhD Summary Objective: To determine approximate time and severity of a porcine proliferative enteropathy (PP) outbreak in a herd with a history of PP; to compare average daily gain (ADG), average daily feed intake (ADFI), feed efficiency (F:G), and clinical impression of disease in clinically affected nonmedicated controls versus pigs medicated with 11 ppm (1 g per ton) of tylosin for 21 days followed by 44 ppm (4 g per ton) tylosin for an additional 21 days; and to follow pigs to market to determine effects of the outbreak on clinical PP lesions detected at slaughter. Methods: One hundred and twelve pigs with clinical signs of PP were randomly assigned to either a control group receiving nonmedicated feed or to a medicated group receiving feed with 11 ppm (1 g per ton) of tylosin for 21 days. The feed of the medicated group was then changed from 11 to 44 ppm (1 g to 4 g per ton) tylosin for another 21 days. Then all pigs (in both medicated and control groups) were placed on 22 ppm (2 g per ton) tylosin (for growth promotion) until market. Average daily gain, ADFI, and F:G were compared for the first 21-day phase, the second 21-day phase, and throughout the 42-day trial period. Pigs were also rated with a clinical impression score (CIS) ranging from = clinically normal to 3 = severely infected for the first 21- day phase. Results: Clinical impression scores improved more rapidly in medicated pigs than in nonmedicated controls during the first 21 days. Growth performance, although it tended to be improved for ADG (P <.9) and F:G (P <.7), did not differ significantly between treatment groups in the first 21-day phase, in the second 21-day phase, or for the overall trial period. Implications: Tylosin in this study was effective in treating PP when administered at a dosage of 11 ppm (1 g per ton) for 21 days. There was no significant advantage to medicating pigs with 44 ppm (4 g per ton) tylosin for an additional 21 days. Ileal thickening at slaughter was observed in 26% of the pigs in this study, suggesting that palpation of ileal thickening at slaughter may detect previous PP outbreaks. Keywords: swine, porcine proliferative enteropathy, Lawsonia intracellularis, tylosin Received: February 23, 1997 Accepted: November 1, 1997 orcine proliferative enteropathy (PP) is a commonly recognized condition in grower-finisher pigs and breeding animals worldwide. stimates of the prevalence of this disease in Spain 1 and Denmark 2 range from 29% 88%, and in Australia the disease is estimated to affect 15% of herds. 3,4 In the United States, ahnson, et al., 5 found palpable lesions of PP in 35% of herds evaluated at the slaughter plant and in 5% 2% of the pigs in those herds. According to the NAHMS Swine 95 survey, 6 6.5% of all swine operations and 18.5% of large operations (those marketing > 1, pigs per year) reported having experienced PP outbreaks. Little is known about the epidemiology and pathogenesis of PP, 7 although clinical reports often refer to either an acute or a chronic infection, with clinical signs often inapparent in the chronic form. 8 1 The causative agent has recently been identified as an obligate MFV, DHM, GMM, LW: lanco Animal Health, PO ox 78, Greenfield, Indiana 46285, email: mfv@lilly.com This article is available online at http://www.aasp.org/shap/ issues/v6n2/index.html intracellular bacterium Lawsonia intracellularis. 11,12 Recent breakthroughs in antemortem diagnostics may contribute to our understanding of the course of PP in herds experiencing problems. 5,12,13 Few controlled studies have been reported that document the effects of a clinical outbreak of PP on morbidity, mortality, or growth performance, nor have any studies evaluated the time of onset or risk factors possibly associated with clinical disease. Much of the difficulty in accurate clinical outbreak documentation has been related to the lack of readily available antemortem or confirmatory postmortem diagnostic tools. 12,13 We conducted this clinical field trial to: evaluate a natural infection of PP (i.e., time of onset and severity) by placing genetically similar pigs in a facility that had a history of PP outbreaks in previous groups; compare average daily gain (ADG), average daily feed intake (ADFI), feed efficiency (F:G), and the clinical impression of the Swine Health and Production Volume 6, Number 2 67

disease in nonmedicated controls versus pigs medicated with tylosin; and follow pigs to market to determine the effects of the outbreak on clinical PP lesions detected at slaughter. Materials and methods Throughout this study (during the pretrial phase, the first 21-day phase, the second 21-day phase, and in the post-trial phase until slaughter), the pigs were fed a commercially pelleted corn soybeanmeal base ration containing 18% crude protein with 5% added fat offered on an ad libitum basis. All feed additives were incorporated by the commercial feed manufacturer and were within acceptable assay limits. During the trial, affected pigs were only given feed medication; no injectable or water soluble antibiotics were administered. Pretrial period Immediately prior to the present study, 18 commercial crossbred pigs, each weighing approximately 19.5 kg (43 lb), were moved into a facility that had a history of clinical outbreaks of PP (Figure 1). The pigs were placed in four large pens and ear tagged for identification. Half the pigs received a nonmedicated base ration, and half were given the base ration to which 55 ppm (5 g per ton) of carbadox (Mecadox, Pfizer, Inc.; Animal Health, Groton, Connecticut) had been added. The pigs remained in the pretrial facility for 3 weeks. Figure 1 Day 35: 18 pigs enter PP-contaminated pretrial facility, half receive carbadox in feed, other half receive no medications. Day 14: 18 pigs moved to PP-contaminated trial facility. All receive nonmedicated feed and are observed daily for clinical signs of PP infection Days 21: Medicated group pigs receive 11 ppm tylosin (1 g per ton). CIS scores are recorded every 48 hours for pigs in both control and medicated groups. Days 21 42: Medicated group pigs receive 44 ppm tylosin (4 g per ton). Day : Pigs in all pens demonstrating clinical signs consistent with PP infection. Pigs given first clinical impression score (CIS), weighed, and 112 pigs allocated to either the medicated treatment or the control treatment. PP infection confirmed. Day 21: Pigs and feed are weighed. Fecal samples collected and pooled by pen and tested for PP by dot blot hybridization. Tylosin dosage switched in feed of medicated group pigs to 44 ppm (4 g per ton). Day 42: Pigs and feed weighed. All pigs (controls and medicated group) switched to a ration containing 22 ppm tylosin (2 g per ton), which continues until slaughter. Day 125: One-half of pigs (randomly selected) sent to slaughter. PigMON techniques used to score intestinal lesions. Day 142: The remaining pigs sent to slaughter and monitored for lesions using PigMON techniques. Study timeline 68 Swine Health and Production March and April, 1998

Natural infection Two weeks before the trial began, 18 of the pigs were moved into the study facility, which also had a history of previous PP outbreaks. The pigs were commingled into nine pens and placed on nonmedicated feeds. Pigs were observed daily for the clinical signs of a natural infection of PP. y the first day of the trial (day ), some pigs had diarrhea in all pens. On day, the day the clinical outbreak of PP was first observed, pigs were given a clinical impression score (CIS) of disease severity based on a scale from 3, so that: = clinically normal (Figure 2); 1 = pigs exhibiting decreased abdominal fill and semi-solid fecal material (Figure 3); 2 = pigs with semi-liquid feces and exhibiting signs of weight loss (Figure 4); and 3 = pigs with liquid feces and a rough hair coat that were gaunt to moribund (Figure 5). One hundred twelve pigs were assigned to one of eight pens of 14 pigs per pen, so that each treatment had pigs from all four of the CIS categories. To achieve a stocking density equivalent to what is standard in commercial herds, pigs were equally allocated among the pens according to weight, gender, and whether or not they had received medicated feed during the pretrial phase. The pens of pigs were randomly assigned to one of two treatment groups: Four pens served as controls, and received the same base ration as in the pretrial phase. No medication was added for the 42-day trial period. The other four pens of pigs received the same base ration as the controls. During the first 21-day phase of the trial, (phase 1, days 21), 11 ppm (1 g per ton) of tylosin was added to the base ration. For phase 2 (days 21 42 of the study), these pigs received a base ration to which 44 ppm (4 g per ton) of tylosin was added to the base ration. Three pigs were not allotted to pens because they were judged to be too severely infected to compete with penmates for feed. Two of the three pigs were humanely euthanized and underwent postmortem examinations. The third pig was treated and removed from the study. The pigs were fed the treatment rations for 42 days. Starting on day 43, all pigs (including the controls) were fed the base ration to which 22 ppm (2 g per ton) tylosin was added as a growth promotant until slaughter (half of the pigs were slaughtered on day 125 and the remaining half on day 142 of the study). Clinical impression scores were recorded for individual pigs every 48 hours for days 21 only by one unblinded rater. Confirmation of PP infection Fecal samples were collected randomly from several pens at day 21, pooled by pen, and evaluated for the presence of the PP organism Figure 2 CIS = : Clinically normal pigs Figure 3 CIS = 1: Pig in middle showing decreased abdominal fill. Semi-solid to liquid feces can be seen in pen. (Pig on right appears clinically normal; CIS =.) Figure 4 CIS = 2: Pigs showing signs of weight loss, semi-liquid feces, pig in left photo straining to defecate Figure 5 CIS = 3: Pig with liquid diarrhea, gaunt and moribund (euthanized) Swine Health and Production Volume 6, Number 2 69

using dot blot hybridization (Dr. Gary Jones conducted sample evaluation at the University of Minnesota, Department of Pathoiology, St. Paul, Minnesota). In addition, feces and intestinal tissues were cultured according to standard bacterial culture procedures at the Ohio Department of Agriculture State Veterinary Diagnostic Laboratory for the presence of Salmonella spp. and Serpulina spp. In addition to the two pigs deemed too ill to participate in the study, one other pig was euthanized and submitted for postmortem examination. Intestines from all three pigs were observed for gross lesions. Intestinal lesions were also histologically analyzed using hematoxylin and eosin (H & ) and Warthin-Starry stains (Dr. Harold Stills conducted the histopathology and silver staining at The Ohio State University, Department of Preventive Medicine, Columbus, Ohio). Growth Feed and water were provided ad libitum during the trial. The pigs and feed were weighed at the beginning of phase 2 (when the tylosin levels were switched) and at day 42. The pigs were again weighed on the day they were shipped to market. Average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (F:G) were calculated for both treatment groups for phase 1, phase 2, and the entire trial. Slaughter checks At slaughter, the accurate identity of 11 pigs was established and those pigs were evaluated for lesions of PP: ileal thickening and the presence of PP lesions, using PigMON 14 procedures. The inspector was not aware of the identity of the pigs or treatment group at the time of slaughter evaluation. Statistical analysis Pen means for ADG, ADFI, and F:G for: phase 1, phase 2, and the entire 42-day study period were analyzed for treatment effects after adjusting for initial weight and block effects (least squares means). 15,16 Clinical impression scores were analyzed using regression and ANOVA. Scores for each pig were regressed against time and slopes were estimated for each pig (profile analysis). To determine whether the mean CIS for the medicated versus the control pigs were different, slopes were analyzed for treatment differences after adjusting for block effects. Figure 6 6 number of pigs number of pigs 5 4 3 2 1 6 5 4 3 2 1 3 5 7 9 11 13 15 17 19 21 Day (unmedicated group) 3 5 7 9 11 13 15 17 19 21 Day (medicated group) Clinical impression score: 3 2 1 Daily record of number of pigs assigned to each clinical impression score (CIS) category in first 21 days 7 Swine Health and Production March and April, 1998

Results Clinical signs of enteric disease were observed in pigs 2 3 weeks after they were moved to the study facility; however, no differences attributable to previous treatment (carbadox) were observed. Natural infection Natural infection with PP was confirmed by the following observations: gross intestinal lesions were characteristic of infection with L. intracellularis; lesions were also consistent with those characteristic of PP by histologic examination using hematoxylin and eosin (H & ) and Warthin-Starry stains; microbiologic examination of tissue from small and large intestines and fecal samples failed to culture Salmonella spp. or Serpulina spp.; fecal samples from five of the nine pens were positive by dot blot hybridization for L. intracellularis. Clinical impression scores The average clinical impression score for the nonmedicated pigs (1.51) was higher (P=.2) than the average score for the medicated pigs (.75) (Figure 6). The distribution of pigs in each CIS category (, 1, 2, and 3) was very nearly the same at the start of the trial (Figure 6). However, as the trial continued, the CIS of the pigs receiving tylosin at 11 ppm (1 g per ton) decreased more quickly than those of the unmedicated controls (P=.2). Further examination shows that the CIS of many of the nonmedicated pigs never returned to, while by the end of day 11, the CIS of tylosin-treated pigs were back to normal. Growth performance From phase 1 of the trial, the ADG (P=.9) and F:G (P=.7) of pigs in the medicated groups tended to differ from that of the controls (Figure 7). Average daily feed intake did not differ significantly between the medicated and control groups (P=.32). For phase 2 of the trial, none of the growth performance parameters differed between medicated- and control-group pigs (ADG: P=.25; ADFI: P=.17; F:G P=.78) (Figure 7). Growth performance for the entire 42-day trial also did not differ significantly between the medicated- and control-group pigs (ADG: P=.11; ADFI: P=.32; F:G: P=.13) (Figure 7). Slaughter lesions The prevalence of palpable PP lesions at slaughter did not differ between medicated groups (26%) and controls (26%). Discussion Figure 7 Feed:Gain ratio Average Daily Feed Intake (kg) Average Daily Gain (kg).7.6.5.4 1.6 1.4 1.2 1 3 2.5 2 P=.25 P=.11 P=.9.61.53 1.47 1.4.64.63.57 ADG medicated ADG unmedicated 21 22 42 42 Day range P=.17 P=.32 P=.32 1.52.55 1.49 1.37 1.39 ADFI medicated ADFI unmedicated 21 22 42 42 Day range P=.7 P=.13 2.66 P=.78 2.54 2.42 2.39 2.39 2.39 F:G medicated F:G unmedicated 21 22 42 42 Day range The initial intent of this study was to allow pigs to break with PP, sacrifice those affected, and freeze the affected tissues for use in future studies. After the pigs were received, however, it was decided that a Least-squares means for performance variables Swine Health and Production Volume 6, Number 2 71

natural outbreak and treatment study would be more applicable clinically. Once this was decided, carbadox medication was removed from the feed, and all pigs were moved to the trial facility and placed on a nonmedicated ration. The trial facility was designed for individual weighing of pigs, feed, and feeders and allowed us to include more experimental units. Thus, we were able to make some observations on the effects of carbadox in controlling PP when incorporated into the base ration at the pretrial facility. In this study, pigs introduced into facilities with a history of previous PP outbreaks began to show clinical signs of disease 4 6 weeks after arrival. Feeding and withdrawal of carbadox had no observable impact on preventing a PP outbreak. The PP observed in this trial may be more severe than is typically seen clinically, for several reasons. PP had been diagnosed historically at both the pretrial and trial facilities, but possible differences in exposure by site based on cleaning and hygiene, and resultant organism load may have occurred. The stress of moving pigs a second time into the trial facility may have decreased the pigs ability to resist the infection. Pigs in this study appeared to be infected with the chronic form of PP based upon gross lesions at necropsy. Other investigators have found that clinical signs of PP vary by site, age of pigs involved, and clinical form of the disease. 8 1 Although we didn t detect statistically significant differences between tylosin-medicated and control group pigs, the growth performance of the medicated pigs was consistently improved over nonmedicated controls. Differences in ADG and F:G between the medicated and control groups were calculated based on pen measures rather than on an individual pig basis; if we had had a larger sample size, it is possible that we would have been able to detect statistically significant differences between medicated and control group pens. Detecting lesions of ileitis in 26% of the pigs evaluated at slaughter was somewhat surprising compared to published estimates. 5,1,13 Most other estimates of herd prevalence were based on samples from the general population and not selected from pigs known to be exposed. The lack of differences in lesion prevalence at slaughter between treatment groups in our study may be because tylosin (22 ppm) was included in the feed of pigs in both medicated and control groups from day 42 to market. This may have helped to resolve lesions in those pigs in the finishing phase. Our observations suggest that lesions due to PP may be present at slaughter in pigs known to be infected, even in those that received tylosin during the growing phase. However, estimates at slaughter based on ileal palpation are not highly accurate 14 and we may not have been able to ascertain actual differences between the treatment groups at slaughter due to limitations in sample size, number of pigs evaluated, and the healing of lesions from the time of exposure to evaluation. Implications Tylosin administered at 11 ppm (1 g per ton) was an effective dose for treating PP in this study. Average daily gain and F:G tended to be improved in pigs during the period when they received tylosin at 11 ppm (1 g per ton), but not during the phase when they received tylosin at 44 ppm (4 g per ton). No treatment differences were noted in percent of pigs exhibiting ileal thickening at slaughter. Although slaughter evaluation is neither a sensitive nor a specific indicator of herd infection with PP, it may be one parameter to include on a more routine basis when screening for overall herd health at slaughter. Additional research on the use of tylosin in prevention, control, and treatment of PP is warranted. References 1. Lanza I, Pozo J, Muno M, Rubio P, Carmenes P. pidemiological study of porcine proliferative enteropathy in Spain. Proc IPVS Cong. 1996; 259. 2. Moller K, Jensen TK, Jorsal S. acteriological examination and PCR analysis of feces from growing pigs originating from herds with and without diarrhea. Proc IPVS Cong. 1996; 325. 3. Pointon AM. Campylobacter-associated intestinal pathology in pigs. Austr Vet J. 1989; 66:9. 4. Holyoake PK, Cutler RS, Caple IW. Prevalence of proliferative enteritis on pig farms in Australia. Austr Vet J. 1994; 71:418. 5. ahnson P, Pointon AM, Dial GD, Marsh W. Prevalence of lesions at slaughter at a Minnesota swine slaughter plant (abstr), in Proc IPVS Cong. 1992;585. 6. USDA-NAHMS. Swine 95:Grower/Finisher, Part II: Reference of 1995 US Grower/ Finisher Health and Management Practices, June 1996. 7. McOrist S, Roberts L, Jasni S, Rowland AC, Lawson GHK, Gebhart CJ, osworth. Developed and resolving lesions in porcine proliferative enteropathy: Possible pathogenic mechanisms. J Comp Path. 1996: 115;35. 8. Ward G, Winkelman NL. Diagnosing, treating, and controlling proliferative enteritis in swine. Vet Med. 199; 85 (3):312 319. 9. Ward G, Winkelman NL. Recognizing the three forms of proliferative enteritis in swine. Vet Med. 199; 85 (2):197. 1. Winkelman NL, Dee S. Ileitis: An update. The Compendium. 1996; 18(1):S19. 11. McOrist S. Proliferative Ileitis: Culture of etiologic agent, reproduction of the disease, and sensitivity testing. Proc AASP Ann Meet. 1995; 385 386. 12. Gebhart CJ, Jones GF, McOrist S, Lawson G. Porcine proliferative enteropathy: tiology and diagnosis. SHAP. 1993; 1(6): 24 25. 13. Holyoake PK, Cutler RS, Caple IW. A diagnostic dilemma: Detecting proliferative enteritis in pigs at slaughter. Austr Vet J. 1994; 32 (8):38. 14. PigMON Slaughter monitoring program Procedures Manual, University of Minnesota, St. Paul, MN 1992 15. Harvey WR. Least squares means of data with unequal subclass numbers. Report no. ARS 2 8 (revised as report no. H-4, 1975). ARS eltsville, Maryland: USDA. 196. 16. Proc Mixed, SAS. SAS/STAT Software Changes and nhancements: Statistics Release 6.9. Cary, North Carolina:SAS Institute, Inc. 1996. 72 Swine Health and Production March and April, 1998