THE HUMAN MICROBIOME: THE INFECTION PREVENTIONIST S BEST FRIEND

Similar documents
Raw Meat Diet. Transcript:

Antimicrobial Stewardship

Introduction to Chemotherapeutic Agents. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The university of Jordan November 2018

The War on Microbes. Chapter Four

Exclusion zone for harmful bacteria! Aviguard FOR BROILERS, LAYERS, TURKEYS AND GAMEBIRDS

copyright Joette Calabrese, Inc.

Antimicrobial Therapy

Section 10: Antimicrobial Stewardship and Clostridium difficile Infection: A Primer for the Infection Preventionist

مادة االدوية المرحلة الثالثة م. غدير حاتم محمد

WENDY WILLIAMS, MT(AMT) MSAH DIRECTOR LABORATORY AND PATHOLOGY SERVICES. Appalachian Regional Healthcare System apprhs.org

number Done by Corrected by Doctor Dr.Malik

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

Preventing Multi-Drug Resistant Organism (MDRO) Infections. For National Patient Safety Goal

Principles of Antimicrobial therapy

Curricular Components for Infectious Diseases EPA

Please distribute a copy of this information to each provider in your organization.

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents

PROVIABLE-FORTE.com. ls your pet having issues with loose stool? Proviable-Forte probiotic can help reestablish intestinal health.

PROVIABLE-FORTE.com. ls your pet having issues with loose stool? Proviable-Forte probiotic can help reestablish intestinal balance.

We Are Not Alone: The Unseen World of the Human Microbiome

Antibiotic Protocol. What to do if you must use an antibiotic

Community-Associated C. difficile Infection: Think Outside the Hospital. Maria Bye, MPH Epidemiologist May 1, 2018

Antibiotic resistance and the human-animal interface: Public health concerns

Antibiotic Stewardship in the Neonatal Intensive Care Unit. Objectives. Background 4/20/2017. Natasha Nakra, MD April 28, 2017

Antibacterial Agents & Conditions. Stijn van der Veen

Antibiotic Resistance. Antibiotic Resistance: A Growing Concern. Antibiotic resistance is not new 3/21/2011

Overview of Infection Control and Prevention

MDR Acinetobacter baumannii. Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta

Chapter 12. Antimicrobial Therapy. Antibiotics 3/31/2010. Spectrum of antibiotics and targets


Antibiotics in the future tense: The Application of Antibiotic Stewardship in Veterinary Medicine. Mike Apley Kansas State University

ESCHERICHIA COLI RESISTANCE AND GUT MICROBIOTA PROFILE IN PIGS RAISED WITH DIFFERENT ANTIMICROBIAL ADMINISTRATION IN FEED

Microbiology : antimicrobial drugs. Sheet 11. Ali abualhija

Healthcare-associated Infections Annual Report December 2018

Antimicrobial Resistance and One Health: Research Needs

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Lecture 6: Fungi, antibiotics and bacterial infections. Outline Eukaryotes and Prokaryotes Viruses Bacteria Antibiotics Antibiotic resistance

Antibiotic Symposium National Institute of Animal Agriculture Atlanta, Georgia

Overview of C. difficile infections. Kurt B. Stevenson, MD MPH Professor Division of Infectious Diseases

Clostridium difficile Colitis

Running head: CLOSTRIDIUM DIFFICILE 1

11/22/2016. Antimicrobial Stewardship Update Disclosures. Outline. No conflicts of interest to disclose

11/2/2015. Update on the Treatment of Clostridium difficile Infections. Disclosure. Objectives

FDA Announcement. For Immediate Release. Contact. Announcement. February 13, Consumers

Healthcare Facilities and Healthcare Professionals. Public

SYN-004 (ribaxamase) Sheila Connelly. Digestive Disease Week 2017 Chicago, IL May 7, 2017

3.0 Treatment of Infection

International Food Safety Authorities Network (INFOSAN) Antimicrobial Resistance from Food Animals

12 TIPS HOW TO TREAT BACTERIAL INFECTION WITHOUT ANTIBIOTICS

UPDATE ON ANTIMICROBIAL STEWARDSHIP REGULATIONS AND IMPLEMENTATION OF AN AMS PROGRAM

Antibiotics & Resistance

Martin Chénier, Ph.D. Microbiology. Antibiotics in Animal Production: Resistance and Alternative Solutions

Q1. (a) Clostridium difficile is a bacterium that is present in the gut of up to 3% of healthy adults and 66% of healthy infants.

Infection Control and Standard Precautions

MICRO-ORGANISMS by COMPANY PROFILE

Aminoglycosides. Spectrum includes many aerobic Gram-negative and some Gram-positive bacteria.

towards a more responsible antibiotics use in asian animal production: supporting digestive health with essential oil compounds TECHNICAL PAPER

Could Preventing Crohn's be This Easy? By Eugene L. Heyden, RN

Antimicrobial Stewardship in the Hospital Setting

Antimicrobial Stewardship in the Long Term Care and Outpatient Settings. Carlos Reyes Sacin, MD, AAHIVS

Principles of Anti-Microbial Therapy Assistant Professor Naza M. Ali. Lec 1

Course: Microbiology in Health and Disease

running head: SUPERBUGS Humphreys 1

Course: Microbiology in Health and Disease Office Hours: Before or after Class or by appointment

Preventing Clostridium difficile Infection (CDI)

ANTIBIOTICS IN AQUACULTURE: A (FISH) VETERINARIAN S PERSPECTIVE

Learning Objectives 6/1/18

Understanding and prevention of transmission of antibiotic resistance between bacterial populations and One Health reservoirs

Antibiotic Prophylaxis Update

Twenty Years of the National Antimicrobial Resistance Monitoring System (NARMS) Where Are We And What Is Next?

Nursing Home Online Training Sessions Session 2: Exploring Antibiotics and Their Role in Fighting Bacterial Infections

Originally posted February 13, Update: March 26, 2018

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

Antimicrobial Resistance

Antimicrobial Resistance Acquisition of Foreign DNA

Using Data to Track Antibiotic Use and Outcomes

CHAPTER:1 THE RATIONAL USE OF ANTIBIOTICS. BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY

ANTIMICROBIAL STEWARDSHIP: THE ROLE OF THE CLINICIAN SAM GUREVITZ PHARM D, CGP BUTLER UNIVERSITY COLLEGE OF PHARMACY AND HEALTH SCIENCES

Safety of Lactic Starter Cultures used in Algerian Dairy Industry Case Study: Antibiotic Resistance

AVIAN PROBIOTIC AVI-CULTURE-2 REDUCES NEONATAL MORTALITY AND HELPS TO IMPROVE BREEDING PERFORMANCE DGTDVM-2012 by Dr Gianluca Todisco, DVM, PhD Italy

A hypothetical case of nasal microbiome transplantation

Multi-Drug Resistant Organisms (MDRO)

STAGE 1 DESIRED RESULTS

American Association of Feline Practitioners American Animal Hospital Association

Project Summary. Impact of Feeding Neomycin on the Emergence of Antibiotic Resistance in E. coli O157:H7 and Commensal Organisms

SOFT Movement Survey of FMT Programs

Epidemiology and Economics of Antibiotic Resistance

Changing Practices to Reduce Antibiotic Resistance

BIOL 2900 D 4.00 Microbiology in Health/Disease

How your body decides if bacteria are friends or foes

Pharmacology Week 6 ANTIMICROBIAL AGENTS

An Immune System is a Terrible Thing to Waste

8/17/2016 ABOUT US REDUCTION OF CLOSTRIDIUM DIFFICILE THROUGH THE USE OF AN ANTIMICROBIAL STEWARDSHIP PROGRAM

Human health impacts of antibiotic use in animal agriculture

Antimicrobial Stewardship

Inhibiting Microbial Growth in vivo. CLS 212: Medical Microbiology Zeina Alkudmani

Challenges Emerging resistance Fewer new drugs MRSA and other resistant pathogens are major problems

SURGICAL ANTIBIOTIC PROPHYLAXIS GUIDELINES WITHIN ORTHOPAEDIC SURGERY FOR ADULT PATIENTS

Protecting the Gut Microbiome from Antibiotics. Christian Furlan Freguia

Transcription:

THE HUMAN MICROBIOME: THE INFECTION PREVENTIONIST S BEST FRIEND Michigan Communicable Disease Conference May 4, 2017 Richard A. Van Enk, Ph.D., CIC Director, Infection Prevention and Epidemiology vanenkr@bronsonhg.org

What you will learn Describe the new science of human microbiome studies Define the terms and techniques used in microbiome science Identify important characteristics of the human microbiome Identify ways we harm the patient s microbiome through medicine List things we can do to protect the patient s microbiome 2

Why study the human 90% of the cells in the human body are bacteria Some viruses and fungi 3% of body mass 99% of the genes in the human body are microbial 10,000 unique species, most have never been cultured Our microbiome has evolved with us, is in constant interaction with us and contributes to health and disease Understanding our microbiome will open up a new world of medicine microbiome? 3

The human microbiome project http://www.hmpdacc.org/ Started in 2008 as a 5-year project Modeled on the human genome project that maps every gene on the human chromosome Focused on five body sites; mouth, skin, vagina, gut, and respiratory tract Uses 16s rrna and metagenomic sequencing to develop a map of the entire human microbiome 4

What do we know about the human microbiome? It is like another organ Can be core and transient Parts of the body we thought were sterile have a microbiome Can change over time Differences within the population Similarities with race and family Relationship to health and disease Unstable up to age 2-3, then stabilizes Protects us from infection 5

Human Microbiome Project goals Develop a reference set of microbial genome sequences and characterize the normal human microbiome (finished 6/13/2012) Explore the relationship between disease and changes in the microbiome Develop new technologies and tools for computational analysis Establish a resource repository Study the ethical, legal and social implications of human microbiome research 6

Microbial ecology definitions Diversity; how many different strains live in a community Invasion; establishment of a foreign organism in a community Metagenomics; a culture-independent method used for functional and sequence-based analysis of a community Microbiome; the sum of microbial genes in a community Microbiota; the sum of the microorganisms in a community Metabolome; the microbiota s metabolic capability Stability; the ability of a community to maintain its structure over time Resilience; the ability of a community to return to its native state after a perturbation Dysbiosis; disruption of the normal microbiome structure 7

Ways to study the human microbiome The Human Microbiome Project uses new methods to study complex microbial communities and their ecological relationships Simple metagenomics; what species are present Taxonomic diversity; how many different types and which types of microorganism are present; the community structure, described as alpha, beta and gamma Functional metagenomics; the metabolic capability of the population, regardless of the species All of these are very important to health 8

How the human microbiota begins The fetus is almost sterile, has a small microbiome Most colonization begins at birth Vaginal delivery gives the baby the mother s vaginal and intestinal flora immediately, becomes stable quickly Cesarean delivery deprives the baby of normal flora, acquires normal flora randomly and incompletely, longer period of instability and less colonization resistance As the baby encounters new microorganisms, their microbiome matures, depending on their environment Breast-fed babies have very different gut microbiota than formula-fed babies The human microbiota is quite mature by about age 2 and remains stable for life 9

Benefits of the human microbiota Protection from infection by competitive exclusion (colonization resistance) By occupation of binding sites, receptors By consuming or sequestering essential nutrients from pathogens (siderophores) By production of bacteriocins Development of a healthy immune system Normal flora in infancy induce T supressor cells that down-regulate the immune response, producing immune tolerance and avoiding hypersensitivity 10

Unexpected findings Effects on the immune system More, and more types of bacteria are better Effects on nutrition Microbiome changes with diet Proposed three human enterotypes based on the predominant microbiota Microbiota metabolize nutrients, produce vitamins Effects on the neurologic system Proposed neurologic microbiome-gut-brain axis of communication Gut bacteria produce neural signals that may be connected to autism, depression, anxiety, stress 11

The vaginal microbiota The microbiomes of normal and vaginosis patients are drastically different The normal microbiome is dominated by Lactobacillus The vaginal microbiome contributes to the baby s microbiome Vaginitis is mostly a disease of dysbiosis 12

The gut microbiota The intestinal microbiome correlates more than others with health and disease (largest microbiota) Gut flora have 150 times more DNA and enzymes than human enterocytes Key to nutrition; synthesize vitamins and amino acids, harvest energy Three enterotypes Pronounced differences in the gut microbiomes of normal humans and those with obesity, malnutrition and inflammatory bowel disease Currently an association; causation is not clear Transplanting normal GI flora into diseased patients cures some diseases 13

Question The effect of an antibiotic on a patient ends: 1. When the drug level in the patient drops below the minimum inhibitory concentration for bacteria (hours) 2. When all the antibiotic is metabolized or excreted (days) 3. When the patient s insurance pays the bill (weeks) 4. When the patient s microbiota returns to normal (months to years, maybe never) 14

Antibiotics and the microbiome The effects of antibiotics on the human microbiome are drastic and long-lasting One dose of antibiotic can change the microbiome for a month, sometimes for 2 years The number of doses and courses matters A study showed that the patients microbiome recovered after one course of ciprofloxacin but not two Antibiotics kill components of the normal flora Reducing the total number Reducing the susceptible strains Reducing the population diversity Summarized as dysbiosis Some taxa are difficult to recover 15

Antibiotics and the microbiome 16

Antibiotics and the microbiome The effect is cumulative; combinations of antibiotics cause more dysbiosis than monotherapy Subclinical antibiotics also do this (antibiotics in our food; how does that happen?) Many common infections are caused by dysbiosis or the risk increases with antibiotics Antibiotic-associated diarrhea Clostridium difficile colitis Bacterial and yeast vaginitis Foodborne bacterial infections (Salmonella, Shigella, Campylobacter) 17

Antibiotic resistance and the microbiome Exposure of the human microbiome to antibiotics does shifts the community to a more resistant population; increases the prevalence of resistance genes in the population; the resistome Resistance genes can be on mobile genetic elements (plasmids) and hide in non-culturable bacteria Macrolide resistant genes persisted in the intestine microbiome for up to 4 years following macrolide treatment Antibiotic resistant bacteria do not have an advantage and will not spread in the absence of antibiotics 18

Example of microbiota management in clinical medicine Fecal Microbiota Transplantation (FMT) FDA-approved for C. difficile colitis Replace dysbiotic GI microbiota with healthy microbiota through an NJ tube Cures much better, faster and safer than antibiotic Patient improves the same day, has normal GI function in 24 hours 19

Question The most important factor preventing hospital-acquired infections in patients is: 1. How clean their room is at admission 2. Handwashing by staff 3. Giving prophylactic antibiotics for surgery 4. Daily chlorhexidine bathing 5. Reducing dysbiosis 20

What does this mean for infection prevention? The dominant belief in infection prevention has been that microorganisms are the threat and the answer to infection is to kill them all The answer to multi-drug-resistant pathogens is more, and more powerful antibiotics Now, we need to change our paradigm: Cleaner is not necessarily better Antibiotics, disinfectants, hand sanitizer, have unintended consequences Fighting antibiotic resistance with more antibiotics is doomed to fail 21

What does this mean for infection One of the most important things we can do to reduce the risk of infection in our patients is to support antimicrobial stewardship programs in our hospitals Your pharmacist is your friend Optimize antibiotic use to minimize exposure prevention? 22

Who is more susceptible to infection (and allergies)? 23

Changes in medical practice Reduce antibiotic exposure to patients Non-therapeutic courses (surgery, dental procedures, empiric use) Shorten the course Look at surgical prophylaxis Target antibiotic treatment as narrowly as possible (versus broader is better ) Discontinue using antimicrobial soap for bathing and handwashing Discontinue antibiotics in animal feeds 24

Changes in medical practice Consider the role of prebiotics and probiotics Prebiotics; functional foods; vegetable fiber that changes the microbiota Asparagus, artichokes, bananas, oatmeal, legumes. Probiotics; consuming live good bacteria to displace unwanted species yogurt 25

Changes in medical practice Fecal Microbiota Transplantation (FMT, stool transplant) for microbiota-related enteric disease Accepted for C. difficile colitis Antibiotics are not the answer to perturbed intestinal flora, they are the problem Procedure has become mainstream Extremely effective Approved by the FDA, there is a billing code for it Doctors still don t know about it or recommend it 26

Human microbiome future directions We will better understand the effects of the microbiome on health and disease by comparing healthy controls with disease patient data to identify differences We may be able to reverse some diseases by restoring healthy microbiomes We will understand the effect of antibiotics on the patient and develop more targeted therapies toward pathogens that protect more of the microbiome 27

Human microbiome research applications to medicine The treatment and prevention of infectious diseases may evolve to include not just using antibiotics and vaccines but using probiotics and prebiotics to manage the patient s microbiome The diagnosis of some diseases may involve metagenomic microbiome analysis instead of doing cultures for specific pathogens Stool analysis for microbiome to assess the gut ecology rather than looking for a few pathogens The normal flora we ignore in the clinical laboratory may have the answer to the patient s disease, not the pathogens 28

What do physicians need to do? Own the patient s microbiome and protect it as much as you can Realize that all antibiotics are toxic Do not give antibiotics when not absolutely necessary; consider other approaches Use the most narrow spectrum and shortest course you need to cure the infection Remember the resistome 29

30 Thank you! bronsonhealth.com