A review of tuberculosis at the wildlife-livestock-human interface in Zambia

Similar documents
Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia

Tuberculosis in humans and cattle in Ethiopia: Implications for public health. Stephen Gordon UCD College of Life Sciences

General principles of surveillance of bovine tuberculosis in wildlife

Tuberculin screening of some selected Fulani lactating cows in north-central Nigeria.

Surveillance programmes for terrestrial and aquatic animals in Norway. The surveillance and control programme for bovine tuberculosis in Norway 2013

Study on the impact and control of disease of tethered goats in Morogoro Region, Tanzania

The surveillance programme for bovine tuberculosis in Norway 2017

Relative effectiveness of Irish factories in the surveillance of slaughtered cattle for visible lesions of tuberculosis,

Musso Munyeme, 1 Hetron Mweemba Munang andu, 2 Andrew Nambota, 1 John Bwalya Muma, 1 Andrew Malata Phiri, 3 and King Shimumbo Nalubamba 3

Bovine Tuberculosis Slaughter Surveillance in Albania, Importance of Its Traceback Investigation Based on Singel Cervical Comparative Skin Test

Farmers Beliefs and Risks of Bovine Tuberculosis in Cattle

(2015). A study of naturally acquired canine babesiosis

Bovine tuberculosis in wildlife in Africa: Where is the source or the sink at wildlife/livestock (/human) interfaces?

Raghvendra. et al. / International Journal of Phytopharmacology, 1(2), 2010, International Journal of Phytopharmacology

Risk assessment of the re-emergence of bovine brucellosis/tuberculosis

Prevalence and zoonotic implications of bovine tuberculosis in Northwest Ethiopia

Wisconsin Bovine TB Update

Report and Opinion 2017;9(11) Birara Ayalneh 1, Balemual Abebaw 2

Prevalence of Bovine Tuberculosis (BTB) in Imo State, Southeastern Nigeria

LABORATORY CAPACITY OF BOTH HUMAN AND VETERINARY NATIONAL TUBERCULOSIS REFERENCE LABORATORIES IN EAST AFRICA TO DIAGNOSE MYCOBACTERIUM BOVIS.

Setting the Thresholds of Potential Concern for Bovine Tuberculosis

Study on gross pulmonary lesions in lungs of slaughtered animals and their economic importance in Tigray, Ethiopia

TB IN GOATS - REDUCING THE RISK IN THE LARGER HERD

Research Article Bovine Tuberculosis and Brucellosis in Traditionally Managed Livestock in Selected Districts of Southern Province of Zambia

Evolution of French policy measures to control bovine tuberculosis in regards to epidemiological situation

Modernisation of meat inspection: Danish experience regarding finisher pigs

Investigation of bovine tuberculosis outbreaks by using a trace-back system and molecular typing in Korean Hanwoo beef cattle

A survey of Tuberculosis and Brucellosis in

TRYPANOSOMIASIS IN TANZANIA

FAO-APHCA/OIE/USDA Regional Workshop on Prevention and Control of Neglected Zoonoses in Asia July, 2015, Obihiro, Japan.

Research Article Factors Affecting Herd Status for Bovine Tuberculosis in Dairy Cattle in Northern Thailand

REVIEW ARTICLE A review of bovine tuberculosis at the wildlife livestock human interface in sub-saharan Africa

AWARENESS OF FARMERS REGARDING HYGIENIC HANDLING OF THEIR CATTLE TO PREVENT ZOONOTIC DISEASES

Research Article Tuberculosis in Goats and Sheep in Afar Pastoral Region of Ethiopia and Isolation of Mycobacterium tuberculosis from Goat

A Survey of Disease Conditions in Sheep and Goats Slaughtered at Coimbatore District Slaughter House, Tamil Nadu, India

Assessment of bovine tuberculosis and its risk factors in cattle and humans, at and around Dilla town, southern Ethiopia

Prevalence of Liver Fluke in Sheep and Goat Slaughtered at Abattoirs in Zaria, Kaduna State, Nigeria

of Conferences of OIE Regional Commissions organised since 1 June 2013 endorsed by the Assembly of the OIE on 29 May 2014

THE PREVALENCE OF BOVINE TUBERCULOSIS IN SLAUGHTERED CATTLE AT GARKI ABATTOIR F.C.T ABUJA, NIGERIA

Veterinary Public Health (VPH)

Hosted by Dr. Benedetta Allegranzi, WHO Patient Safety Agency A Webber Training Teleclass

The 36 th Session of the Regional Workshop on the Use of Antimicrobials in Livestock Production and Antimicrobial Resistance in the Asia-Pacific

ANIMAL HEALTH STANDARDS AND INTERNATIONAL TRADE

Clinical and Economic Impact of Urinary Tract Infections Caused by Escherichia coli Resistant Isolates

Control of neglected zoonotic diseases: challenges and the way forward

Dog ecology studies oral vaccination of dogs Burden of rabies

VETERINARY SERVICES ARE A WORKING COMMUNITY WHICH, IN EVERY COUNTRY OF THE WORLD, PROTECTS THE HEALTH AND WELFARE OF ANIMALS.

Development of the New Zealand strategy for local eradication of tuberculosis from wildlife and livestock

OIE Collaborating Centre for Training in. Integrated Livestock and Wildlife Health and Management, Onderstepoort. Development of the Centre

TUBERCULOSIS OUTBREAK MALTA

Zoonotic diseases spotlight EGYPT

Zoonotic Tuberculosis and Food Safety 2nd Edition

Report by the Director-General

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

Assessment of Community Knowledge, Attitude and Practice on Zoonotic Disease in and Around Dodola Town, West Arsi Zone, Ethiopia

History. History of bovine TB controls

Downloaded from irje.tums.ac.ir at 0:08 IRST on Saturday February 23rd (Longitudinal)

LIVESTOCK DISEASES OF ZOONOTIC IMPORTANCE IN NEW MEXICO. Ralph Zimmerman, DVM New Mexico State Veterinarian New Mexico Livestock Board

TEXTS ADOPTED Provisional edition. P8_TA-PROV(2018)0429 Animal welfare, antimicrobial use and the environmental impact of industrial broiler farming

LAO PEOPLE S DEMOCRATIC REPUBLIC. Instruction on the Regulation on Livestock Management in the Lao PDR

Activities of OIE on Zoonoses and Food- borne Diseases in the Asia-Pacific Region

World Organisation for Animal Health (OIE) Sub-Regional Representation for Southern Africa

Guideline for Prevention of Brucellosis in Meat Packing Plant Workers

Assessment of awareness on food borne zoonosis and its relation with Veterinary Public Health Services in and around Addis Ababa, Ethiopia

Promoting One Health : the international perspective OIE

The role of parasitic diseases as causes of mortality in cattle in a high potential area of central Kenya: a quantitative analysis

Preliminary assessment of bovine tuberculosis at the livestock-wildlife interface in two protected areas of Northern Botswana.

Assessment of Routine and Detailed Inspection of Tuberculous Lesions in Tuberculin Reactor Cattle

Prevalence of Bovine Tuberculosis Using Abattoir Meat Inspection in Cattle Slaughtered at Gondar Elfora Abattoir, North Ethiopia

Approaches to Bovine Tuberculosis Control in India

Prevalence of some parasitic helminths among slaughtered ruminants in Kirkuk slaughter house, Kirkuk, Iraq

THE DEVELOPMENT OF A RISK BASED MEAT INSPECTION SYSTEM SANCO / 4403 / 2000

Dr. P. P. Doke. M.D., D.N.B., Ph.D., FIPHA. Professor, Department of Community Medicine, Bharati Vidyapeeth Medical College, Pune

Surveillance of animal brucellosis

Conference on meat inspection

Food-borne Zoonoses. Stuart A. Slorach

Prevention and Control of Bovine Tuberculosis and Brucellosis In Japan

de Garine-Wichatitsky M, Miguel E, Mukamuri B, Garine-Wichatitsky E, Wencelius J, Pfukenyi DM, Caron A

Assessment of Community Awareness Towards Zoonotic Tuberculosis in West Shoa, Ethiopia

Council Conclusions on Antimicrobial Resistance (AMR) 2876th EMPLOYMENT, SOCIAL POLICY, HEALTH AND CONSUMER AFFAIRS Council meeting

Current status of some zoonoses in Togo

Ireland 2014 Eradication Programme for Bovine Tuberculosis Standing Committee on Plants, Animals, Food and Feed. May 2015

Brucellosis and Yellowstone Bison

Ireland 2016 Eradication Programme for Bovine Tuberculosis Standing Committee on the Food Chain and Animal Health (SCOFCAH)

OIE global strategy for rabies control, including regional vaccine banks

Second Meeting of the Regional Steering Committee of the GF-TADs for Europe. OIE Headquarters, Paris, 18 December 2007.

Investing in Human Resources in Veterinary Services

Diseases of Small Ruminants and OIE Standards, Emphasis on PPR. Dr Ahmed M. Hassan Veterinary Expert 7 9 April, 2009 Beirut (Lebanon)

Aimee Massey M.S. Candidate, University of Michigan, School of Natural Resources and Environment Summer Photo by Aimee Massey

Global Conference on Rabies Control: Towards Sustainable Prevention at the Source

EUROPEAN COMMISSION HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL BLOOD AND CARCASS WHEN APPLYING CERTAIN STUNNING METHODS.)

Bovine TB: Do you know how to reduce your risk?

A Professional Certificate in Global Animal Health an opportunity to combine one health training with traditional veterinary education

CONTAGIOUS BOVINE PLEURO- PNEUMONIA steps towards control of the disease. Rose Matua -Department of Veterinary Services, Kenya

Research & Reviews: Journal of Medical and Health Sciences

WHO s first global report on antibiotic resistance reveals serious, worldwide threat to public health

General Q&A New EU Regulation on transmissible animal diseases ("Animal Health Law") March 2016 Table of Contents

Benson Ameda President of the Association of Veterinary Technicians in Africa

CIMTRADZ. Capacity building in Integrated Management of Trans-boundary Animal Diseases and Zoonoses

Estimation of Milk Losses due to Fasciolosis in Uttarakhand

Transcription:

Malama et al. Infectious Diseases of poverty 2013, 2:13 SCOPING REVIEW A review of tuberculosis at the wildlife-livestock-human interface in Zambia Sydney Malama 1,3*, John Bwalya Muma 2 and Jacques Godfroid 3 Open Access Abstract Zambia s estimated incidence of all forms of human tuberculosis (TB) is 707/100,000. High prevalence of bovine tuberculosis (BTB) infection with Mycobacterium bovis in cattle and the Kafue lechwe antelopes (Kobus leche Kafuensis) has been reported in the Kafue basin. Consumption of unpasteurised milk and meat products from infected animals poses a risk of transmitting zoonotic tuberculosis to people living at the human-animal interface. Despite the reported high prevalence of BTB in both livestock and wildlife, information on the proportion of human patients infected with M. bovis is unknown in Zambia. This paper reviews the available information in English on human, livestock and wildlife TB in Zambia with the purpose of assessing the burden of animal infections with M. tuberculosis complex and its public health implications. Keywords: Bovine tuberculosis, Kafue lechwe, Interface, Zoonotic tuberculosis Multilingual abstracts Please see Additional file 1 for translations of the abstract into the six official working languages of the United Nations. Review Introduction Human tuberculosis (TB), although an ancient disease, has re-emerged with devastating consequences on global public health and is currently one of the most widespread infectious diseases. In addition, it is the leading cause of death due to a single infectious agent among human adults in the world [1]. Tuberculosis is caused by members of the Mycobacterium tuberculosis complex (MTC), which includes Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, Mycobacterium caprae, Mycobacterium microti, Mycobacterium pinnipedii and Mycobacterium canettii [1]. Approximately one third of the world s population is infected with bacteria belonging to the MTC complex, with Sub-Saharan Africa having the highest annual incidence since the advent of HIV and AIDS [2]. The TB bacilli are non-motile, non-sporulating, * Correspondence: malamask@yahoo.com 1 Institute of Economic and Social Research, University of Zambia, PO Box 30900, Lusaka, Zambia 3 Department of Food Safety and Infection Biology, Section Biostatistics and Epidemiology, Norwegian School of Veterinary Science, Ullevalsveien 72, Oslo, Norway Full list of author information is available at the end of the article weakly Gram-positive acid-fast bacilli (AFB) that appear microscopically as straight or slightly curved rods [3]. The World Health Organization (WHO) estimates that the incidence of all forms of TB in Zambia stands at 707/100,000 [4]. Mycobacterium tuberculosis is usually transmitted to a human by inhalation of aerosol droplets containing tubercle bacilli which are expectorated from infected individuals with open pulmonary TB [3]. Mycobacterium bovis (M. bovis), the bovine tubercle bacilli, is the cause of bovine tuberculosis (in this paper, it will be referred to as BTB when talking about infection to animals and zoonotic tuberculosis when talking about infection to humans). It has a wide range of host animal species, which includes cattle, goats, bisons, antelopes, humans and non-human primates, and can cause disease in susceptible hosts [5]. High prevalence of BTB in cattle and the Kafue lechwe antelopes (Kobus leche Kafuensis) has been reported at the wildlife-livestock interface in the Kafue basin [6,7]. Despite the evidence indicating that cultural and socio-economic factors (among others) increase the likelihood of M. bovis transmission between species sharing the same environment (cattle, wildlife and humans), zoonotic tuberculosis remains significantly underrepresented as causal agents of extra pulmonary and pulmonary TB in developing countries, especially in rural regions at the human-animal interface [8]. Humans and animals (both livestock and wildlife) share the same micro-environments and water 2013 Malama et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Malama et al. Infectious Diseases of poverty 2013, 2:13 Page 2 of 5 Figure 1 Showing the interface of Kafue basin. points within the Kafue basin (see Figure 1), particularly during the dry season, thereby increasing the risk of TB transmission between infected and susceptible hosts [9]. The purpose of this paper is to review the available information on TB in livestock and wildlife in order to identify knowledge gaps, and to assess the burden of animal infections with M. tuberculosis and M. bovis in addition to their public health importance in Zambia. Human demography in Zambia Zambia is located in south-central Africa and covers an area of about 752,618 square kilometres. The population of Zambia has increased from 7,759,161 in 1990 to 9,885,591 in 2000 and to 13,046,508 in 2010, resulting in an average annual growth rate of 2.8% between 2000 and 2010 [10]. According to the 2010 population figures, 49% of the population is male and 51% is female. The country spopulationis characterised by extreme youth with 49.6%of the population being under 15 years of age [10]. The regional population distribution illustrates that 7,978,274 people (61%) reside in rural areas and 5,068,234 (39%) live in urban areas [10]. The rural population in Zambia have based their culture and livelihood around the collection and utilisation of natural resources from the environment [11], which includes activities as diverse as animal husbandry and crop production [12]. BTB in cattle in the Kafue basin of Zambia Zambia has approximately three million head of cattle, with an estimated 80% of the national cattle population being held by traditional farmers [13]. The concentration of livestock farming is mainly in three provinces: the Southern, Western and Eastern Provinces. The Kafue Basin area, which is one of the few lacustrine wetlands, supports almost 300,000 cattle [14]. According to Musso et al. (2012), three types of herding systems exist within the Kafue basin. These include village resident herding, with herds kept in the villages; the moving of cattle from villages into the flood plains with regard to the water levels in the plains; and interface herding, where herds are always present within the floodplains and rarely return to the villages, thus being under constant contact with BTB infected wildlife within the floodplains [15]. Bovine tuberculosis (BTB) has been reported to be endemic in the Zambian traditional cattle sector with a high herd prevalence of 49.8% recorded from areas within, and adjacent to, the Kafue basin as far back as 1947 [16,17]. Reports from abattoirs in the Namwala district, located within the Kafue basin, indicate that 16.8% of the cattle slaughtered were infected with BTB based on the presence of typical TB lesions [6]. BTB in the wildlife in the Kafue basin The Kafue lechwe (Kobus leche Kafuensis) is a mediumsized, semi-aquatic antelope with a population of 44,000 that is endemic to the Kafue flats [18]. The history of BTB in the Kafue lechwe dates as far back as 1954 when it was diagnosed from the Lochinvar National Park, which is located within the Kafue basin [19]. In 1972, Gallagher et al. estimated that BTB was responsible for the deaths of at least 20% of lechwe annually on the southern bank of the Kafue flats [19]. A recent study has shown a magnitude of 27.7% of BTB in the Kafue lechwe

Malama et al. Infectious Diseases of poverty 2013, 2:13 Page 3 of 5 [18]. This level of BTB in the Kafue lechwe represents a potential risk of transmission of M. bovis to livestock, wildlife and local communities. A resident population of the African buffalo (Syncerus caffer) is present in the Kafue basin. In 2011, a study reported that no BTB positive reactors were found in the comparative intradermal tuberculin test (CIDT), suggesting an absence of M. bovis infection in buffaloes [20]. In addition, this study reported that the buffaloes do not come into direct contact with cattle like the lechwe antelopes do. All the cattle keepers and herdsmen in the Kafue basin reported the same observation that cattle will never go near buffaloes and vice versa; however, lechwe and cattle are often observed grazing together. Diagnosis of bovine tuberculosis (BTB) in Zambia Diagnosis of BTB in cattle and wildlife in Zambia offers numerous challenges and difficulties. The presumptive ante mortem diagnosis of TB is made using the CIDT (see Table 1) [7], as recommended by the World Organisation for Animal Health (OIE). This test is usually performed by the veterinary services. However, given that no compensation scheme is in place, farmers are reluctant to slaughter their animals, resulting in this diagnosis test not being routinely implemented in Zambia. Therefore, BTB is diagnosed post mortem and is based on the presence of gross lesions compatible with BTB in the lungs and/or associated lymph nodes found during meat inspection in the abattoir. Carcasses are declared fit for human consumption once the organs showing gross lesions are removed according to standard regulations [21]. The laboratory procedures (AFB staining, culture and typing, including molecular methods) (see Table 2) [18,22] are only implemented in the Veterinary Research Institutes and the Faculty of Veterinary Science at the University of Zambia in Lusaka. Furthermore, no resources are allocated for BTB testing and control at the national level as it is not considered a disease of national economic importance. Table 1 Herd prevalence of BTB in cattle determined by cross-section study around the Kafue basin Study site Prevalence (%) Method Reference Blue lagoon 48 CIDT Munyeme et al. 2009 Lochinvar 43 CIDT Munyeme et al. 2009 Kazungula 4 CIDT Munyeme et al. 2009 Monze 33 CIDT Cook et al. 1996 Livingstone 1 Necropsy Anonymous, 1957 Mazabuka 5 Necropsy Anonymous, 1957 Lusaka 2 Necropsy Anonymous, 1957 Namwala 17 Necropsy Anonymous, 1957 Table 2 Prevalence of BTB by area based on gross postmortem examination, Ziehl-Neelsen and culture results from Kafue lechwe tissue samples (n=119) (Munyeme et al. 2010) Study area Test method Prevalence (%) Lochnivar/Blue lagoon Necropsy 24.34 Lochnivar/Blue lagoon Ziehl-Neelsen 17.6 Lochnivar/Blue lagoon Culture 27.7 Source: Munyeme et al. /Preventive Medicine 95 (2010) 305 308. Public health importance of Mycobacterium tuberculosis infections in animals Mycobacterium tuberculosis has been incidentally reported from cattle and other livestock animals and may have a negative public health impact. For example, in a study conducted by Ameni et al. on grazing cattle in central Ethiopia, 11.5% of the isolated bacteria, M. tuberculosis, was identified [23]. It has also been isolated from livestock and wildlife across the world [1,24-26]. The isolation of M. tuberculosis from livestock raises a number of questions relating to the role of livestock as a source of human infections. Of relevance is a study by Srivastava et al. (2008), where M. tuberculosis was isolated from milk samples obtained from cattle in India, suggesting that infections may spill back to humans through consumption of unpasteurised milk [27]. Public health importance of zoonotic tuberculosis in Zambia In 1998, the WHO reported that 3.1% of tuberculosis cases in humans worldwide are attributable to M. bovis and that 0.4-10% of sputum isolates from patients in African countries may be M. bovis. This is despite the fact that M. bovis is mainly associated with extra pulmonary disease in humans [28]. Data on the prevalence of human disease due to M. bovis in Zambia and other developing countries is limited, owing to technical problems posed by identification of this species, such as trained personnel and laboratory facilities [16,29]. Indeed, as a general rule, only Ziehl-Neelsen staining is performed on sputum samples to identify AFB. This technique cannot differentiate between the different species from the genus Mycobacterium [30]. However, zoonotic tuberculosis is acquiring increasing recognition in developing countries, including Zambia, as animals and humans share the same environment. This has prompted researchers to evaluate its impact on human health, particularly among pastoral communities. An additional factor that these developing countries are now facing is the HIV/AIDS pandemic, which may favour human-to-human transmission of M. bovis leading rapidly to disease [29]. In a more recent study, Gumi et al. (2012) documented, by using molecular tools, an epidemiological link in the zoonotic transmission between livestock and pastoralists

Malama et al. Infectious Diseases of poverty 2013, 2:13 Page 4 of 5 of south-east Ethiopia [31]. Zoonotic tuberculosis is an economical and public health threat in developing countries [32]. However, very few studies quantify its economical and public health burden. Recently, a preliminary study suggested that the cost of controlling BTB always exceed the calculated benefits if considered from a purely monetary viewpoint. However, the benefits are likely to outweigh the costs if wider implications of BTB on humans, e.g. avoiding infirmity-related production losses (indirect costs such as time away from farming and on livestock and wildlife) are taken into account [33]. In the Kafue basin, consumption of raw and soured milk is one of the common practices in the local communities. This, therefore, poses a health risk in the event that the milk is drawn from infected animals [34]. Physical contact with cattle and sharing of shelter/space is another common practice in these communities. Lastly, the Kafue lechwe is hunted for meat, trophies and hides. It is estimated that approximately 80% of lechwe carcasses hunted for meat may be infected with BTB. However, poaching levels specific to lechwe are speculated at 50% of the official annual hunting quota [35]. This places both the poachers and consumers of the meat at risk of contracting zoonotic tuberculosis. Unfortunately, information on zoonotic tuberculosis in humans is virtually absent from the Kafue basin where there is a high prevalence of BTB in livestock and wildlife. Conclusion This review has identified the knowledge gaps in the management of BTB in Zambia. No molecular epidemiological information linking the observed BTB in cattle and wildlife is available. In addition, the review noted that information on the incidences of zoonotic TB is also unavailable despite the reported cultural practices by the people living at the interface. Finally, the review noted that no molecular epidemiological study has been conducted on TB patients living at the interface area and that no information on the presence of M. tuberculosis in animals exists. The way forward There is a need to document epidemiological links of M. bovis infections in humans, cattle and Kafue lechwe in the Kafue basin. This could be done by molecular characterisation of isolates obtained from these three species (human, cattle and Kafue lechwe), as well as from milk and the environment [36,37]. Although M. tuberculosis infection has not yet been reported from cattle in Zambia, it has been documented elsewhere [38]. This highlights a need to isolate and differentiate the MTC isolates from cattle to ascertain the presence of M. tuberculosis, and to evaluate its epidemiological significance in transmission to humans. The interaction of cattle, lechwe and other wildlife, such as buffaloes, at water and grazing points has been documented in the Kafue Basin. Therefore, there is need to conduct BTB field and molecular studies in order to draw epidemiological links between BTB in the different species and to study the risk factors for the transmission of M. bovis. The fact that buffaloes are not infected with M. bovis suggests that environmental contamination is not the preferential route by which wildlife gets contaminated [15]. Moreover, infected lechwe primarily show lesions in the lungs suggesting that infection is acquired by the respiratory route, and the chance of infection increases when lechwe share the same pasture with the infected cattle. Studies on the ecology of M. bovis in the Kafue basin are warranted in order to clarify the most important transmission routes at the livestock/wildlife interface. Given the high prevalence of BTB in traditional cattle, it is important that surveillance is conducted in communities to ascertain the impact of zoonotic tuberculosis. Additional file Additional file 1: Multilingual abstracts in the six official working languages of the United Nations. Abbreviations ABF: Acid-fast bacilli; BTB: Bovine tuberculosis; CIDT: Comparative intradermal tuberculin test; MTC: Mycobacterium tuberculosis complex; OIE: World Organisation for Animal Health; TB: Tuberculosis; WHO: World Health Organization. Competing interests The authors declared that they have no competing interests. Authors contributions SM contributed to the conception and drafting of the manuscript, JBM and JG contributed to the conception and writing of the manuscript. All authors have read and approved the final manuscript. Acknowledgements The authors would like to thank Dr Tone Bjordal Johansen, Dr Francisco Olea-Popelka, Mr Are Berentsen and Dr Melanie Andrews for proofreading the manuscript. Author details 1 Institute of Economic and Social Research, University of Zambia, PO Box 30900, Lusaka, Zambia. 2 Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia. 3 Department of Food Safety and Infection Biology, Section Biostatistics and Epidemiology, Norwegian School of Veterinary Science, Ullevalsveien 72, Oslo, Norway. Received: 23 April 2013 Accepted: 24 June 2013 Published: 9 July 2013

Malama et al. Infectious Diseases of poverty 2013, 2:13 Page 5 of 5 References 1. Jenkins AO, Cadmus SIB, Venter EH, Pourcel C, Hauk Y, Vergnaud G, et al: Molecular epidemiology of human and animal tuberculosis in Ibadan, Southwestern Nigeria. Vet Microbiol 2011, 151:139 147. 2. Chihota V, Apers L, Mungofa S, Kasongo W, Nyoni IM, Tembwe R, et al: Predominance of a single genotype of Mycobacterium tuberculosis in regions of Southern Africa. Int J Tuberc Lung Dis 2007, 11:311 318. 3. Sakamoto K: The Pathology of Mycobacterium tuberculosis Infection. Vet Pathol 2012, 49:423 439. 4. who: World Health Organisation. Geneva, Switzerland: WHO/HTM/TB: Global Tuberculosis Control WHO Report; 2009:411. 5. O'Reilly LM, Daborn CJ: The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis 1995, 76(Supplement 1):1 46. 6. Munyeme M, Munang'andu HM: A review of Bovine tuberculosis in the Kafue Basin Ecosystem. Veterinary Medicine International 2011, 2011:1 9. 7. Munyeme M, Muma JB, Samui KL, Skjerve E, Nambota AM, Phiri IGK, et al: Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/ wildlife interface areas of Zambia. Trop Anim Health Prod 2009, 41:345 352. 8. Thoen C, Lobue PA, de Kantor I: Why has zoonotic tuberculosis not received much attention?. Int J Tuberc Lung Dis 2010, 14:1073 1074. 9. Phiri AM: Common conditions leading to cattle carcass and offal condemnations at 3 abattoirs in the Western Province of Zambia and their zoonotic implications to consumers. Journal of the South African Veterinary Association-Tydskrif Van Die Suid-Afrikaanse Veterinere Vereniging 2006, 77:28 32. 10. CSO: Zambia 2010 census of population and housing 2011. Lusaka, Zambia: Central Statistical Office (CSO; 2011. 11. Carney D: Implementing the sustainable livelihoods approach: what contribution can we make?. London, UK: Department for International Development; 1998. 12. Garrett Kenneth O: (Master of Science thesis) Forests and Farming: an analysis of rural livelihood programs for poverty reduction in Eastern Zambia. Montana, USA: The university of Montana Missoula; 2007. 13. UKaid: What would it take for Zambias beef and daily industry to achieve their potential?. The world Bank: UKaid; 2011. http://www.worldbank.org/zambia. 14. Munyeme M, Muma JB, Munang'andu HM, Kankya C, Skjerve E, Tryland M: Cattle owners' awareness of bovine tuberculosis in high and low prevalence settings of the wildlife-livestock interface areas in Zambia. BMC Vet Res 2010:6. 15. Munyeme M, Muma JB, Skjerve E, Nambota AM, Phiri IGK, Samui KL, et al: Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia. Prev Vet Med 2008, 85:317 328. 16. Cook AJC, Tuchili LM, Buve A, Foster SD, GodfreyFaussett P, Pandey GS, et al: Human and bovine tuberculosis in the Monze District of Zambia - a cross-sectional study. Br Vet J 1996, 152:37 46. 17. Munyeme M, Rigouts L, Shamputa IC, Muma JB, Tryland M, Skjerve E, et al: Isolation and characterization of Mycobacterium bovis strains from indigenous Zambian cattle using Spacer oligonucleotide typing technique. BMC Microbiol 2009:9. 18. Munyeme M, Muma JB, Siamudaala VM, Skjerve E, Munangandu HM, Tryland M: Tuberculosis in Kafue lechwe antelopes (Kobus leche Kafuensis) of the Kafue Basin in Zambia. Prev Vet Med 2010, 95:305 308. 19. Gallagher J, Macadam I, Sayer J, Van Lavieren L: Pulmonary tuberculosis in free-living lechwe antelope in Zambia. Trop Anim Health Prod 1972, 4:204 213. 20. Munang'andu HM, Siamudaala VM, Matandiko W, Nambota AM, Muma J, Mweene A, et al: Comparative intradermal tuberculin testing of free-ranging African Buffaloes (Syncerus caffer) captured for Ex Situ conservation in the Kafue Ecosystem in Zambia. Veterinary Medicine International 2011, 2011:1 5. 21. Gracey JF, Collins DS, Huey RJ, In Meat Hygiene: Animal slaughter: meat inspection statistics. London, New York: W.B.Saunders & Company Toronto: Edited by Gracey JF; 1999:190 202. 22. Hang'ombe M, Munyeme M, Fukushima Y, Suzuki H, Matandiko W, Suzuki Y, et al: Mycobacterium bovis infection at the interface between domestic and wild animals in Zambia. BMC Vet Res 2012:8. 23. Ameni G, Vordermeier M, Firdessa R, Aseffa A, Hewinson G, Gordon SV, et al: Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia. Vet J 2011, 188:359 361. 24. Ocepek M, Pate M, Zolnir-Dovc M, Poljak M: Transmission of Mycobacterium tuberculosis from human to cattle. J Clin Microbiol 2005, 43:3555 3557. 25. Obanda V, Poghon J, Yongo M, Mulei I, Ngotho M, Waititu K, et al: First reported case of fatal tuberculosis in a wild African elephant with past human - wildlife contact. Epidemiol Infect 2013, 244:1 5. 26. Angkawanish T: Mycobacterium tuberculosis Infection of Domesticated Asian Elephants, Thailand (vol 16, pg 1949, 2010). Emerg Infect Dis 2011, 17:758. 27. Srivastava K, Chauhan DS, Gupta P, Singh HB, Sharma VD, Yadav VS, et al: Isolation of Mycobacterium bovis & M. tuberculosis from cattle of some farms in north India - possible relevance in human health. Indian J Med Res 2008, 128:26 31. 28. Michel AL, Muller B, van Helden PD: Mycobacterium bovis at the animalhuman interface: a problem, or not?. Vet Microbiol 2010, 140:371 381. 29. Moda G, Daborn CJ, Grange JM, Cosivi O: The zoonotic importance of Mycobacterium bovis. Tuber Lung Dis 1996, 77:103 108. 30. Grange JM, Yates DM, De Kantor NI: Guidelines for speciation within the Mycobacterium tuberculosis complex. Geneva, Switzerland: WHO/EMC/ZOO/ 96; 1996:4. 31. Gumi B, Schelling E, Berg S, Firdessa R, Erenso G, Mekonnen W, et al: Zoonotic transmission of tuberculosis between pastoralists and their livestock in South-East Ethiopia. EcoHealth 2012, 9:139 149. 32. Ayele WY, Neill SD, Zinsstag J, Weiss MG, Pavlik I: Bovine tuberculosis: an old disease but a new threat to Africa. Int J Tuberc Lung Dis 2004, 8:924 937. 33. Mwachalimba KK, Mumba C, Munyeme M: Cost benefit analysis of tuberculosis control in wildlife-livestock interface areas of Southern Zambia. Prev Vet Med 2012, 110:274 279. 34. Grange JM, Yates MD: Zoonotic aspects of Mycobacterium bovis infection. Vet Microbiol 1994, 40:137 151. 35. Siamudaala VM, Muma J, Munang'andu HM, Mulumbu M, In Conservation and Development Interventions at the Wildlife/Livestock Interface; Implication for Wildlife, Livestock and Human Health: Disease challenges concerning the utilization of the Kafue lechwe(kobus leche kafuensis) in Zambia. Switzerland and Cambridge, UK: Cambridge: IUCN, Gland: edition. Edited by Osofsky AS; 2005:75 80. 36. Fine EA, Bolin AC, Gardiner CJ, Kaneene BJ: A study of the persistence of Mycobacterium bovis in the Environment under Natural Weather Conditions in Michigan. USA. Veterinary Medicine International 2011, 2011:1 12. 37. Ben Kahla I, Boschiroli ML, Souissi F, Cherif N, Benzarti M, Boukadida J, et al: Isolation and molecular characterisation of Mycobacterium bovis from raw milk in Tunisia. Afr Health Sci 2011, 11:S2 S5. 38. Spicic S, Pate M, Duvnjak S, Katalinic-Jankovic V, Obrovac M, Dezdek D, et al: Molecular epidemiology of Mycobacterium tuberculosis transmission between cattle and man - a case report. Veterinarski Arhiv 2012, 82:303 310. doi:10.1186/2049-9957-2-13 Cite this article as: Malama et al.: A review of tuberculosis at the wildlife-livestock-human interface in Zambia. Infectious Diseases of poverty 2013 2:13.