Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)

Similar documents
WATER plays an important role in all stages

Does Variation in Soil Water Content Induce Variation in the Size of Hatchling Snapping Turtles (Chelydra serpentina)? MICHAEL S.

and hydration of hatchling Painted Turtles, Chrysemys picta

JEZ Part A: Comparative Experimental Biology. An experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination

A Three Year Survey of Aquatic Turtles in a Riverside Pond

The influence of propagule size and maternal nest-site. selection on survival and behaviour of neonate turtles. J. J. KOLBE* and F. J.

Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta)

Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures

SNAPPING turtles (Chelydra serpentina) of various

THE adaptive significance, if any, of temperature-dependent

Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA)

Microgeographic Variation in Response of Red- Eared Slider (Trachemys scripta elegans) Embryos to Similar Incubation Environments

EXPERIMENTAL ANALYSIS OF AN EARLY LIFE-HISTORY STAGE: SELECTION ON SIZE OF HATCHLING TURTLES

Can natural phenotypic variances be estimated reliably under homogeneous laboratory conditions?

CALCIUM METABOLISM IN EMBRYOS OF THE OVIPAROUS SNAKE COLUBER CONSTRICTOR

Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field

Phenotypic Effects of Thermal Mean and Fluctuations on Embryonic Development and Hatchling Traits in a Lacertid Lizard, Takydromus septentrionalis

Age and Season Impact Resource Allocation to Eggs and Nesting Behavior in the Painted Turtle

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats

Water exchange in reptile eggs: mechanism for transportation, driving forces behind movement, and the effects on hatchling size

Effects of low-oxygen conditions on embryo growth in the painted turtle, Chrysemys picta

Egg environments have large effects on embryonic development, but have minimal consequences for hatchling phenotypes in an invasive lizard

Egg water exchange and temperature dependent sex determination in the common snapping turtle Chelydra serpentina

Influence of egg aggregation and soil moisture on incubation of flexible-shelled lacertid lizard eggs

Parental Investment in the Red-Eared Slider Turtle, Trachemys scripta

Rookery on the east coast of Penins. Author(s) ABDULLAH, SYED; ISMAIL, MAZLAN. Proceedings of the International Sy

, SHUI-YU FU 2, magnesium from the yolk but withdraw approximately 35.6% of their total calcium requirements from the eggshell.

EMBRYONIC TEMPERATURE INFLUENCES JUVENILE TEMPERATURE CHOICE AND GROWTH RATE IN SNAPPING TURTLES CHELYDRA SERPENTINA

LookSmart's FindArticles - Ecology: Nest-site selection: microhabitat variation and its... Page 1 of 13

Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination

Administrative Rules GOVERNOR S OFFICE PRECLEARANCE FORM

mm w Scientific Investigations on the Red-Eared Turtle, Trachemys scripta elegans Reprint 97-R012 Long Term Resource Monitoring Program

Use of Posthatching Yolk and External Forage to Maximize Early Growth in Apalone mutica Hatchlings

Wen SHEN 1, Jianchi PEI 2, Longhui LIN 3* and Xiang JI Introduction

Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination

Diane C. Tulipani, Ph.D. CBNERRS Discovery Lab July 15, 2014 TURTLES

Diel Activity Patterns of the Turtle Assemblage of a Northern Indiana Lake

EGG size and composition can be the target

Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards

Canadian Journal of Zoology. Thermal consequences of subterranean nesting behavior in a prairie-dwelling turtle

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

Relationship between hatchling length and weight on later productive performance in broilers

Genotypic and phenotypic relationships between gain, feed efficiency and backfat probe in swine

Nest depth may not compensate for sex ratio skews caused by climate change in turtles

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

Weaver Dunes, Minnesota

IMPACT OF NEST-SITE SELECTION ON NEST SUCCESS AND NEST TEMPERATURE IN NATURAL AND DISTURBED HABITATS

The problems with oxytocin alone

ILLINOI PRODUCTION NOTE. University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007.

Cold-Tolerance of Hatchling Painted Turtles (Chrysemys picta bellii) from the Southern Limit of Distribution 300 SHORTER COMMUNICATIONS

Section 6. Embryonic Development and Hatchery Management Notes

Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae)

Incubation temperature in the wild influences hatchling phenotype of two freshwater turtle species

Administrative Rules GOVERNOR S OFFICE PRECLEARANCE FORM

Effects of Incubation Temperature on Growth and Performance of the Veiled Chameleon (Chamaeleo calyptratus)

The significance of predation in nest site selection of turtles: an experimental consideration of macro- and microhabitat preferences

Notes on Road-Killed Snakes and Their Implications on Habitat Modification Due to Summer Flooding on the Mississippi River in West Central Illinois

MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE)

Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard

Author's personal copy

VARIATION IN INCUBATION PERIOD WITHIN A POPULATION OF THE EUROPEAN STARLING ROBERT E. RICKLEFS AND CYNTHIA

Effects of early incubation constancy on embryonic development: An experimental study in the herring gull Larus argentatus

Brooke L. Bodensteiner 251 Bessey Hall Iowa State University, Ames, IA

*Iowa DNR Southeast Regional Office 110 Lake Darling Road Brighton, IA O: Status of Iowa s Turtle Populations Chad R.

Phenotypic plasticity of nest timing in a post- glacial landscape: how do reptiles adapt to seasonal time constraints?

Temperature-dependent sex determination and the evolutionary potential for sex ratio in the painted turtle, Chrysemys picta

What s new in 2017 for TSD? Marc Girondot

A Roadway Wildlife Crossing Structure Designed for State-threatened Wood Turtles in New Jersey, United States

Low Temperature Effects on Embryonic Development and Hatch Time 1

Canadian Journal of Zoology. The Effects of Climate on Annual Variation in Reproductive Output in Snapping Turtles (Chelydra serpentina).

Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia

Egg mass determines hatchling size, and incubation temperature influences post-hatching growth, of tuatara Sphenodon punctatus

The Ecology of Freshwater Turtle Communities on the Upper-Coastal Plain of South Carolina

Tree Swallows (Tachycineta bicolor) are breeding earlier at Creamer s Field Migratory Waterfowl Refuge, Fairbanks, AK

Rigid Shells Enhance Survival of Gekkotan Eggs

Geographic variation in lizard phenotypes: importance of the incubation environment

United States Turtle Mapping Project with a Focus on Western Pond Turtle and Painted Turtle

phenotypes of hatchling lizards, regardless of overall mean incubation temperature

First Report of Twinning in the Haw. Author(s) JUNCHOMPOO, CHALATIP; PENPIAN, CHAT

Animal Information Michigan Turtles Table of Contents

FREDRIC J. JANZEN. URL:

Testing Ideal Free Distribution in Animals & Humans. By: The Majestic Jaguars

Relationships of incubational hatching egg characteristics to posthatch body weight and processing yield in Ross Ross 708 broilers 1,2

Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming?

EDUCATION PROFESSIONAL EXPERIENCE

The righting response as a fitness index in freshwater turtles

Hatching Behavior in Turtles

Journal of Zoology. Staying cool, keeping strong: incubation temperature affects performance in a freshwater turtle. Abstract.

in the Common Musk Turtle, Sternotherus odoratus

FREDRIC J. JANZEN. URL:

Consequences of Extended Egg Retention in the Eastern Fence Lizard (Sceloporus undulatus)

Phenotypic Responses of Hatchlings to Constant Versus Fluctuating Incubation Temperatures in the Multi-banded Krait, Bungarus multicintus (Elapidae)

REPORT OF ACTIVITIES 2009 TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 3 to 26 June 2009

Effects of Dietary Modification on Laying Hens in High-Rise Houses: Part II Hen Production Performance

S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

SHORT COMMUNICATION. Nicole Valenzuela & Takahito Shikano. Introduction

Transcription:

Zoology and Genetics Publications Zoology and Genetics 2001 Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans) John K. Tucker Illinois Natural History Survey Gary L. Paukstis Fredric J. Janzen Iowa State University, fjanzen@iastate.edu Follow this and additional works at: http://lib.dr.iastate.edu/zool_pubs Part of the Aquaculture and Fisheries Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Tucker, John K.; Paukstis, Gary L.; and Janzen, Fredric J., "Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)" (2001). Zoology and Genetics Publications. 6. http://lib.dr.iastate.edu/zool_pubs/6 This Article is brought to you for free and open access by the Zoology and Genetics at Iowa State University Digital Repository. It has been accepted for inclusion in Zoology and Genetics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans) Abstract We exposed eggs of the red-eared slider turtle (Trachemys scripta elegans) to short duration (i.e., 48 hours) changes in water potential at two embryonic ages (20 and 40 days). Survivorship to hatching did not differ by substrate water potential or among treatments. Net change in egg mass, a measure of net water exchange between the egg and substrate, was affected by treatments. However, treatments had no effect on hatchling mass, carcass mass, yolk mass, or incubation period. Eggs and embryos are able to exploit beneficial shortterm increases in water potential and withstand adverse ones. Disciplines Aquaculture and Fisheries Population Biology Terrestrial and Aquatic Ecology Zoology Comments This article is from Transactions of the Illinois State Academy of Science 94 (2001): 27. Posted with permission. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/zool_pubs/6

Transactions of the Illinois State Academy of Science received 3/18/99 (2001), Volume 94, #1, pp. 27-35 accepted 12/26/00 Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans) John K. Tucker* Illinois Natural History Survey, Great Rivers Field Station Long Term Resources Monitoring Program-Reach 26 8450 Montclaire Avenue, Brighton, Illinois 62012, USA Gary L. Paukstis 1404 143rd Place NE Bellevue, Washington 98007, USA and Fredric J. Janzen Department of Zoology and Genetics Iowa State University Ames, Iowa 50011, USA * Corresponding author Phone: 618-466-9690, FAX: 618-466-9688, e-mail: John_K_Tucker@usgs.gov ABSTRACT We exposed eggs of the red-eared slider turtle (Trachemys scripta elegans) to short duration (i.e., 48 hours) changes in water potential at two embryonic ages (20 and 40 days). Survivorship to hatching did not differ by substrate water potential or among treatments. Net change in egg mass, a measure of net water exchange between the egg and substrate, was affected by treatments. However, treatments had no effect on hatchling mass, carcass mass, yolk mass, or incubation period. Eggs and embryos are able to exploit beneficial short-term increases in water potential and withstand adverse ones. INTRODUCTION The microclimate within natural turtle nests varies on a daily and seasonal basis (e.g., Packard et al., 1985; Ratterman and Ackerman, 1989; Cagle et al., 1993). Such variation can influence survivorship of embryos and phenotypes of hatchlings (e.g., Cagle et al., 1993; Packard et al., 1993). This phenotypic variation is biologically significant because variation in hatchling size, incubation period, and survivorship results.

28 Cagle et al. (1993) found that significant variation in water potential can occur due to short-term phenomena such as a single heavy rainfall. They also found water potential to be the best predictor of water exchange by eggs, of the length of incubation, and of hatchling body size in natural nests despite the daily and seasonal variation in nest temperatures (Cagle et al., 1993). We exposed eggs of the red-eared slider (Trachemys scripta elegans) to short-term (i.e., 48 h) fluctuations in water potential by moving eggs from dry to wet substrates or vice versa. We investigate responses of embryos after 20 and 40 days of incubation. We ask whether short duration fluctuations in water potential are sufficient to influence hatchling phenotypes. METHODS AND MATERIALS Twenty female turtles were collected between 4 and 8 May, 1995 on their nesting migrations at Stump Lake, Jersey County, Illinois (Tucker, 1997). We induced oviposition with intramuscular injections of oxytocin (Ewert and Legler, 1978). After the eggs were patted dry, they were uniquely numbered with carbon ink and weighed on an electronic balance to 0.01 g. We prepared 20 individual plastic boxes (32.5 X 19.4 X 10 cm). Eight boxes contained the wetter substrate, a mixture of 150 g perlite and 170 ml water (-60 kpa) and twelve boxes received a dry mixture made from 150 g perlite and 27 ml water (-189 kpa). Water potential for the mixtures was determined by thermocouple psychrometry (Tucker et al., 1998). We prepared more dry boxes because we anticipated that mortality would be higher on drier substrates. Each clutch of 12 eggs was placed into one of the 20 boxes. Thus, one box contained all 12 eggs from a single clutch. Aluminum foil placed under the box lid retarded moisture loss. All eggs in each box were reweighed seven times during incubation with the final measurement made after 52 days incubation. We maintained hydration in each box by periodically reweighing the box and its contents. Water was added to replace water absorbed by the eggs along with water lost to evaporation. During incubation, all boxes were kept together at the same vertical height. Boxes were rotated to spread potential effects of undetected thermal gradients over all boxes (and clutches). Incubation temperature fluctuated as it does in natural nests. We recorded temperatures daily with maximum-minimum thermometers. Incubation temperature averaged about 29 C. Three experimental treatments were conducted on eggs in each box. Four eggs were designated as controls and remained at the same water potential throughout incubation. Four eggs were either moved from a wet substrate to a dry one or vice versa for 48 h after eggs had incubated for 20 days (= 20-day eggs). Four other eggs were either moved from a wet substrate to a dry one or vice versa for 48 h after eggs had incubated for 40 days (= 40-day eggs). Eggs from each clutch were randomly assigned to each treatment.

29 Eggs were moved to boxes containing newly made-up substrate of the correct kpa for 48 h. Eggs were then returned to their original boxes to continue incubation. We excluded all eggs that failed to whiten (Ewert, 1985); unfertilized eggs fail to whiten. Once the first egg pipped, we placed a bottomless waxed paper cup over each egg (Janzen, 1993). We recorded pip date and defined incubation period as initial date minus pip date (Gutzke et al., 1984). We weighed hatchlings with an electronic balance to 0.01 g. Hatchlings were then killed by freezing. The carcass and yolk were separated. We weighed residual yolk with an electronic balance (to 0.01 g), and determined carcass mass by subtracting the mass of residual yolk from hatchling mass. Statistical analyses were conducted using SAS 6.12 (SAS Institute, 1996). We used Fisher's exact test (two-tailed) to test for differences in survivorship due to substrate and treatment effects. We calculated least significant difference (LSD) for Figs. 1 and 2 using harmonic means because cell sizes differed (Snedecor and Cochran, 1986). We cannot distinguish clutch from box effects. However, Packard and Packard (1993) previously found that clutch effects generally are more important than box effects. Moreover, box and clutch effects were not variables of interest in this experiment. For both experiments, we used a mixed model for analysis. The model specified treatment (i.e., control, 20-day, or 40-day) as the fixed effect. Clutch and the interaction between clutch and treatment were identified as random effects. Each variable (i.e., net change in egg mass during incubation, incubation period, hatchling mass, carcass mass, and yolk mass) was entered into the General Linear Model (GLM) Procedure and the Mixed Procedure (SAS Institute, 1996) following the method of Packard et al. (1999). The Mixed Procedure estimated variance components using the restricted maximum likelihood method (REML) and Satterthwaite s approximation to correctly compute denominator degrees of freedom. The GLM Procedure was needed to obtain least squares means to assess the magnitude of differences observed among treatments for each variable. The GLM Procedure was also required to assess the significance levels for the covariance parameters of random effects derived from the Mixed Procedure. The GLM model statement included treatment, clutch, their interaction, and initial egg mass as the covariate. Treatment, clutch, and their interactions were also included as random effects with the test option of SAS version 6.12 selected. RESULTS AND DISCUSSION Survivorship to hatching did not differ by substrate water potential. For eggs on dry substrate, 94.29% of all eggs (n = 72) hatched whereas 91.67% of all eggs (n = 72) hatched on the wet substrate (Fisher's exact test, Χ 2 = 0.372, p = 0.745). We also found that combined survivorship for all clutches among treatments did not differ significantly (Χ 2 = 0.468, p = 1.00 for dry substrate and Χ 2 = 4.364, p = 0.154 for wet substrate). Survivorship by substrate and treatment ranged from 83.33% of all eggs (n = 24) for 20- day treatment eggs on wet substrate to 100% of all eggs (n = 24) for the control eggs on wet substrate. Survivorship for the control eggs on the dry substrate was 95.45% of all eggs (n = 24).

30 Change in egg mass during 52 days of incubation, a measure of water exchange between eggs and substrate, varied with clutch (or box) and treatment for the 12 clutches on the drier substrate (Table 1, Fig. 1). In contrast, neither clutch nor treatment had a significant influence on any variable for the eight clutches on the wetter substrate (Table 1, Fig. 2). Control eggs which remained on dry substrate throughout incubation gained significantly less mass than did eggs moved to wetter substrate at 20 or 40 days (Table 2). The results of our experiments with Trachemys scripta elegans resemble those of Gutzke and Packard (1986) with the painted turtle (Chrysemys picta) and of Packard and Packard (1988) with the snapping turtle (Chelydra serpentina). Even though we used a shorter treatment interval and wetter substrates, we found that eggs on dry substrates could add water even in this short period. Thus, compensatory water exchanges (Gutzke and Packard, 1986) can occur during short-term fluctuations in water potential. The rapidity of response for eggs that we observed may be biologically significant even though phenotypes of the hatchlings did not vary in our experiment. The ability to rapidly absorb substrate water should be advantageous for species that develop in nests with unpredictable water potentials (Packard et al., 1985; Ratterman and Ackerman, 1989; Cagle et al., 1993). Our finding that eggs and embryos can exploit short-term increases in water potential (Fig. 1) but withstand short-term decreases in water potential (Fig. 2) is important given the environmental variation experienced by turtle embryos in natural nests (Cagle et al., 1993). ACKNOWLEDGEMENTS We thank J. B. Hatcher and M. M. Tucker for assistance in the field. Neil Booth (Illinois Department of Natural Resources, Mississippi River State Fish and Wildlife Area) permitted collection of females at one of the nesting areas. This work was partially supported by the Illinois Natural History Survey and the Upper Mississippi River System Long Term Resource Monitoring Program.

31 LITERATURE CITED Cagle, K. D., G. C. Packard, K. Miller, and M. J. Packard. 1993. Effects of the microclimate in natural nests on development of embryonic painted turtles, Chrysemys picta. Funct. Ecol. 7:653-660. Ewert, M. A. 1985. Embryology of turtles. Pp. 75-267. in C. Gans, F. Billett, and P. F. A. Maderson (eds.) Biology of the Reptilia. New York: John Wiley and Sons. Ewert, M. A., and J. M. Legler. 1978. Hormonal induction of oviposition in turtles. Herpetologica 34:314-318. Gutzke, W. H. N., and G. C. Packard. 1986. Sensitive periods for the influence of the hydric environment on eggs and hatchlings of painted turtles (Chrysemys picta). Physiol. Zool. 59:337-343. Gutzke, W. H. N., G. L. Paukstis, and G. C. Packard. 1984. Pipping versus hatching as indices of time of incubation in reptiles. J. Herpetol. 18(4):494-496. Janzen, F. J. 1993. The influence of incubation temperature and family on eggs, embryos, and hatchlings of the smooth softshell turtle (Apalone mutica). Physiol. Zool. 66:349-373. Packard, G. C., and M. J. Packard. 1988. Water relations of embryonic snapping turtles (Chelydra serpentina) exposed to wet or dry environments at different times in incubation. Physiol. Zool. 61:95-106. Packard, G. C., and M. J. Packard. 1993. Sources of variation in laboratory measurements of water relations of reptilian eggs and embryos. Physiol. Zool. 66:115-127. Packard, G. C., K. Miller, and M. J. Packard. 1993. Environmentally induced variation in body size of turtles hatching in natural nests. Oecologia (Berl.) 93:445-448. Packard, G. C., G. L. Paukstis, T. J. Boardman, and W. H. N. Gutzke. 1985. Daily and seasonal variation in hydric conditions and temperature inside nests of common snapping turtles (Chelydra serpentina). Can. J. Zool. 63:2422-2429. Packard, G. C., K. Miller, M. J. Packard, and G. F. Birchard. 1999. Environmentally induced variation in body size and condition in hatchling snapping turtles (Chelydra serpentina). Can. J. Zool. 77:278-289. Ratterman, R. J., and R. A. Ackerman. 1989. The water exchange and hydric microclimate of painted turtle (Chrysemys picta) eggs incubating in field nests. Physiol. Zool. 62:1059-1079. SAS Institute, Inc. 1996. SAS/STAT user s guide. Statistical Analysis Systems Institute, Inc., Cary, North Carolina. Snedecor, G. W., and W. G. Cochran. 1986. Statistical methods. 7th ed. Iowa State University Press, Ames. Tucker, J. K. 1997. Natural history notes on nesting, nests, and hatchling emergence in the redeared slider turtle, Trachemys scripta elegans in west-central Illinois. Illinois Nat. Hist. Surv. Biol. Notes 140:1-13. Tucker, J. K., N. I. Filoramo, G. L. Paukstis, and F. J. Janzen. 1998. Response of red-eared slider, Trachemys scripta elegans, eggs to slightly differing water potentials. J. Herpetol. 32:124-128.

32 Table 1.Variance components for random effects (Clutch and Treatment*Clutch) and Type III F-value for fixed effect (Treatment) for incubation period, net change in egg mass, hatchling mass, carcass mass, and yolk mass for 20 clutches of redeared slider (Trachemys scripta elegans) eggs. Significance levels (in parentheses) were determined using test option in the General Linear Model Procedure of SAS 6.12. Measures of mass are given in g, whereas incubation period is in days. Δ egg Incubation Wet Carcass Yolk Source DF mass Period Mass Mass Mass Dry substrate Treatment 2 18.0 0.72 1.82 1.24 1.40 (0.0001) (0.4900) (0.1733) (0.2979) (0.2568) Treatment*Clutch 22 0.001 0.006 0.023 0.046 0.006 (0.7803) (0.3369) (0.1076) (0.0742) (0.1729) Clutch 11 0.032 0.818 0.032 0.000 0.013 (0.0001) (0.0001) (0.1007) (0.4714) (0.0383) Wet substrate Treatment 3 0.56 1.23 1.09 0.38 0.13 (0.5750) (0.3003) (0.3450) (0.6887) (0.8800) Treatment*Clutch 21 0.000 0.015 0.000 0.000 0.000 (0.3829) (0.1411) (0.1193) (0.3585) (0.4500) Clutch 7 0.000 0.970 0.139 0.078 0.015 (0.8505) (0.0001) (0.0001) (0.0001) (0.0090)

33 Table 2. Least squares means for treatments (control, 20-day, 40-day) conducted on wet and dry substrates for 20 clutches of red-eared slider (Trachemys scripta elegans) eggs. Standard error is in parentheses. Measures of mass are given in g, whereas incubation period is in days. Δ egg Incubation Wet Carcass Yolk Source mass Period Mass Mass Mass Dry (to Wet) Control 0.46(0.07)* 58.4(0.17) 7.50(0.08) 6.57(0.11) 0.93(0.04) 20-day 0.72(0.06) 58.5(0.17) 7.70(0.07) 6.75(0.10) 0.95(0.04) 40-day 0.89(0.06) 58.7(0.17) 7.57(0.07) 6.54(0.10) 1.03(0.04) Wet (to Dry) Control 1.36(0.10) 58.8(0.15) 8.11(0.06) 7.12(0.08) 0.99(0.04) 20-day 1.42(0.10) 58.9(0.16) 8.20(0.07) 7.20(0.09) 1.01(0.04) 40-day 1.50(0.10) 58.5(0.16) 8.23(0.06) 7.22(0.08) 1.01(0.04) * Control < 20-day and 40-day, P < 0.006; no other pairwise comparisons different.

34 Figure 1. Egg mass through incubation for eggs of the red-eared slider (Trachemys scripta elegans) incubated on dry substrate and either moved to a wetter one at 20 and 40 days incubation or kept on dry substrate throughout incubation (control). Least significance difference (LSD) is shown as a vertical line.

Figure 2. Egg mass through incubation for eggs of the red-eared slider (Trachemys scripta elegans) incubated on wet substrate and either moved to a drier one at 20 and 40 days incubation or kept on wet substrate throughout incubation (control). Least significance difference (LSD) is shown as a vertical line. 35

36