Research Article A Comparative Morphometrical Study of the Pecten Oculi in Different Avian Species

Similar documents
,,, THE MORPHOLOGY AND MORPHOMETRY OF THE PECTEN OCULI IN DIURNAL AND NOCTURNAL BIRDS: A

Title. CitationJapanese Journal of Veterinary Research, 24(1-2): 37. Issue Date DOI. Doc URL. Type. File Information

Morphological Studies on the Adrenal Gland of Kuttanad Ducks (Anas platyrhynchos domesticus) During Post Hatch Period

A comparison of placental tissue in the skinks Eulamprus tympanum and E. quoyii. Yates, Lauren A.

Formoguanamine-induced blindness and photoperiodic responses in the Japanese quail, Coturnix coturnix japonica

Eyhab RM Al-Shamary, Ahmed Sami Jarad, Ihab Abbas Taher, FJ Al- Saffar and Wafa Abdulmutalib Naji

Development of the Intestinal Villi Associated

The Brain and Senses. Birds perceive the world differently than humans. Avian intelligence. Novel feeding behaviors

HISTOPATHOLOGY. Introduction:

MORPHOLOGICAL DESCRIPTION OF THE DEVELOPING OSTRICH EMBRYO: A TOOL FOR EMBRYONIC AGE ESTIMATION

CURRICULUM VITAE. MARITAL STATUS. Married with four children. CONTACT ADDRESS. Department of Veterinary Anatomy, University of Nairobi. P.

ECTS II. semester Anatomy with Organogenesis of Domestic Animals II.

BEAK AND FEATHER DYSTROPHY IN WILD SULPHUR-CRESTED COCKATOOS (CACATUA GALERITA)

A Scanning Electron Microscopic Study of Eggshell Surface Topography of Leidynema portentosae and L. appendiculatum (Nematoda: Oxyuroidea)

Archana Pathak *, S.K. Gupta, Abhinov Verma, M.M. Farooqui, Ajay Prakash and Prabhakar Kumar

OBSERVATIONS ON THE QUALITATIVE AND QUANTITATIVE STRUCTURAL CHARACTERISTICS OF THE REPTILIAN KIDNEYS.

DLS Sample Preparation Guide

Supplementary Figure 1 Cartilaginous stages in non-avian amniotes. (a) Drawing of early ankle development of Alligator mississippiensis, as reported

Field necropsy techniques in mammal and poultry

206 Adopted: 4 April 1984

Anat. Labor. of Prof. H. SETO, Tohoku University, On the Sensory Terminations Formed along the Ductus

HISTOPHYSIOLOGICAL STUDIES ON THE HYPOPHYSIO- MAMMARY AXIS IN SHEEP (Ovis aries) - MAMMOTROPHS

Growth and Development. Embryonic development 2/22/2018. Timing of hatching. Hatching. Young birds and their parents

International Journal of Recent Scientific Research

Alternatives in Veterinary Anatomy Training

ELECTROPHORETIC ANALYSIS OF SERUM PROTEINS OF BIRDS AND MAMMALS

A Lymphosarcoma in an Atlantic Salmon (Salmo salar)

CHAPTER 6 CRANIAL KINESIS IN PALAEOGNATHOUS BIRDS. 6. Cranial Kinesis in Palaeognathous Birds

DEVELOPMENT OF THE HEAD AND NECK PLACODES

Gross and histological studies of digestive tract of broilers during postnatal growth and development

Microscopy: advances in scientific research and education (A. Méndez-Vilas, Ed.)

DIVISION 056 IMPORTATION, POSSESSION, CONFINEMENT, TRANSPORTATION AND SALE OF NONNATIVE WILDLIFE

Evaluation of the hair growth and retention activity of two solutions on human hair explants

PLASMODIUM MODULE 39.1 INTRODUCTION OBJECTIVES 39.2 MALARIAL PARASITE. Notes

Histomorphometric evaluation of small intestinal mucosa of red jungle fowl and commercial broiler from one day to four months of age

SCANNING electron - microscopy has

THE MICROSCOPE PATHOGEN IDENTIFICATION

Proceeding of the SEVC Southern European Veterinary Conference

COMPARATIVE STUDY OF GLUCOSE TRANSPORTERS GLUT-2 AND GLUT-5 IN OSTRICHES GASTROINTESTINAL TRACT. Faculty of Medicine, University of Tartu, Estonia 2

CURRICULUM OF VETERINARY STUDY for 2017/2018. SUBJECT ECTS lectures practical labs

The effects of shank length on incubation results of Japanese quails (Coturnix coturnix japonica) eggs and hatched chick shank length

CAA UK BIRDSTRIKE STATISTICS TOP SPECIES - JANUARY 2009

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

HISTOLOGY OF MAMMARY GLAND DURING LACTATING AND NON-LACTATING PHASES OF MADRAS RED SHEEP WITH SPECIAL REFERENCE TO INVOLUTION

Course Offerings: Associate of Applied Science Veterinary Technology. Course Number Name Credits

SUPPLEMENTARY INFORMATION

International Journal of Science, Environment and Technology, Vol. 5, No 5, 2016,

Liver and Gallbladder Morphology of the juvenile Nile crocodile, Crocodylus niloticus (Laurenti, 1768)

How the eye sees. Properties of light. The light-gathering parts of the eye. 1. Properties of light. 2. The anatomy of the eye. 3.

CAA UK BIRDSTRIKE STATISTICS

Effects of breeder age on mineral contents and weight of yolk sac, embryo development, and hatchability in Pekin ducks

Chapter 1 COPYRIGHTED MATERIAL. Introduction to Veterinary Pathology. What is pathology? Who does pathology?

Course Curriculum for Master Degree in Poultry Diseases/Veterinary Medicine

COUNTRY REPORTS ON AVIAN INFLUENZA FOR 2004 BASED ON RESPONSES TO THE QUESTIONNAIRE

Sarcocystis heydorni, n. sp. (Apicomplexa: Protozoa) with cattle (Bos taurus) and human

A STUDY ON EGG QUALITY TRAITS IN JAPANESE QUAILS * (Coturnix coturnix japonica)

THE STRUCTURE OF ECHINOCOCCAL CYSTS AND HISTOPATHOLOGICAL CHANGES IN LIVER

Gross and Microscopic Features of the Interdigital Sinus in the Barbados Black Belly Sheep in Trinidad

Back to basics - Accommodating birds in the laboratory setting

Phylum:Apicomplexa Class:Sporozoa

4-H Poultry Proficiency Program A Member s Guide OVERVIEW

Technique for microdissection and measurement in biopsies of human small intestine

Faculty of Veterinary Medicine (VEF),

Hokkaido University. Syllabus Advanced Seminar in Veterinary Clinics [Small Animals I] Advanced Seminar in Veterinary Clinics [Small Animals II]

Morphologic study of dog flea species by scanning electron microscopy

Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present

Statistics of Scientific Procedures on Living Animals Northern Ireland 2012

Beautiful Birds Premium Worksheets For Toddlers For 2-3 year olds

Veterinary Pathology in Animal Biomedical Research

Doctor of Veterinary Medicine Curriculum Academic Year Revised June 15, 2017

Seasonal Variations of yeso sika Deer Skin and its Vegetable Tanned Leather

Class Reptilia. Lecture 19: Animal Classification. Adaptations for life on land

HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT. Zoology Quarter 3. Animal Behavior (Duration 2 Weeks)

FACULTY OF VETERINARY MEDICINE

Course Curriculum for Master Degree Theriogenology & Artificial Insemination/Faculty of Veterinary Medicine

> BACK TO CONTENTS PAGE

MORPHOLOGICAL STRUCTURE OF THE SYRINX IN THE BURSA ROLLER PIGEON (COLUMBA LIVIA)

Accepted Manuscript. News & Views. Primary feather vane asymmetry should not be used to predict the flight capabilities of feathered fossils

POULTRY. 4 Member Team and 2 Alternates IMPORTANT NOTE

Reproductive physiology and eggs

Veterinary Ophthalmology

Course Curriculum for Master Degree in Internal Medicine/ Faculty of Veterinary Medicine

A Study of Coccidiosis in Livestock in the Island of Dominica. Joshua Santelises. Study Abroad Texas A&M University. Dr.

BS ANIMAL SCIENCE. Program Learning Objectives. Degree Requirements and Curriculum. BS Animal Science 1. Biochemistry/Chemistry

Slide 1. Birds & Mammals. Chapter 15

FORENSIC ORNITHOLOGY

Course # Course Name Credits

National Academic Reference Standards (NARS) Veterinary Medicine. February st Edition

VETERINARY SCIENCE CURRICULUM. Unit 1: Safety and Sanitation

4.3 Programme details and individual achievements, grades/marks/(ects) credits obtained.

ABSTRACT. aspect is very sparse and in view of its importance. MATERIALS AND METHODS

Australian and New Zealand College of Veterinary Scientists. Fellowship Examination. Small Animal Surgery Paper 1

UNDERGRADUATE ACADEMIC STUDIES (Veterinary medicine 2013) UNIVERSITY OF NOVI SAD

Seasonal Changes Effecting thegrowth Performance of Emu Birds Reared under Intensive Farming System

Weekly Schedule of Neuroscience (2017/2018) Week 1

Gross anatomy of the oropharyngeal cavity in the ostrich (Struthio camelus)

Reductions in Taurine Secondary to Photoreceptor Loss in Irish Setters with Rod-Cone Dysplasia

Weekly Schedule of Neuroscience (2018/2019) Week 1

Active sensing. Ehud Ahissar

Population/ sex ratio

Transcription:

The Scientific World Journal Volume 2013, Article ID 968652, 5 pages http://dx.doi.org/10.1155/2013/968652 Research Article A omparative Morphometrical Study of the Pecten Oculi in Different Avian Species Mustafa Orhun Dayan 1 and Tugba OzaydJn 2 1 Department of Anatomy, Faculty of Veterinary Medicine, University of Selcuk, 42075 Konya, Turkey 2 Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, 42075 Konya, Turkey orrespondence should be addressed to Mustafa Orhun Dayan; modayan@selcuk.edu.tr Received 5 April 2013; Accepted 5 May 2013 Academic Editors: D. Endoh and B. I. Yoon opyright 2013 M. O. Dayan and T. Ozaydın. This is an open access article distributed under the reative ommons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this study was investigated the structure of pecten oculi in the ostrich, duck, pigeon, turkey, and starling. The pecten oculi of the ostrich was vaned type and made up primary, secondary, and few tertiary lamellae. However, duck, pigeon, turkey and starling had a pleated-type pecten oculi which displayed folded structure. The numbers of pleats of the pectens were 12, 13-14, 21-22, and 17 in duck, pigeon, turkey, and starling, respectively. Light microscopic investigation demonstrated that pecten oculi is basically composed of numerous capillaries, large blood vessels, and pigment cells in all investigating avian species. apillaries were 20.23, 14.34, 11.78, 12.58, and 12.78 μm in diameter in ostrich, duck, pigeon, turkey, and starling, respectively. The capillaries are surrounded by thick basal membrane, and pigmented cells were observed around the capillaries. 1. Introduction The pecten oculi is a highly vascular and pigmented structure peculiar to the avian eye [1 3]. It is situated over the optic nerveheadandprojectsfromtheretinaintothevitreousbody [4, 5]. Three morphological types of pecten oculi are recognized as conical, vaned, and pleated types. The conical type is only reported in the brown kiwi (Apteryx mantelli); the vaned type is present in ostriches (Struthio camelus) and rheas(rhea americana) [6]; and pleated form is widely reported in most birds(neognathae)suchasquail[5], black kite [1], galah [7], common buzzard [3], mallard [8], pigeon [4], and jungle crow [9]. The size of the pecten depends on the visual requirements of the bird, so that daily active bird species have a relatively large and highly complex pecten oculi with many folds while nightactivebirdspecieswillhavearelativelysmallandsimple pecten oculi [6]. Histologic studies have shown that the pecten oculi consists of blood vessels, extravascular pigmented cells, and superficial covering membrane [1]. Birds have thicker retinas compared to mammals but have not retinal blood vessels [10]. Therefore it has been suggested that the main function of pecten oculi is to supply nutrition to the avascular avian retina [1]. One of functions of pecten is the formation of a blood-retina barrier [11]. The endothelia of the pectinal capillaries are continuous, possessing elaborate tight junctions. Also two barrier-specific proteins, that is, the HT7-antigen and the glucose transporter isoform GluT-1, are expressed by the endothelial cells [12]. Significant variations in the pecten oculi such as type and number of pleats exist within the avian species due to the behavior of birds in relation to their general activity and visual pattern. In the present study we studied the anatomical and histological details of the pecten oculi in the ostrich (Struthioniformes), duck (Anseriformes), pigeon (olumbiformes), turkey (Galliformes), and starling (Passeriformes) which belong to different orders of the avian species. 2. Materials and Methods The eyeballs were obtained from adult ostrich, duck, pigeon, turkey, and starling. Six animals from each species were used in this study. The animals were anaesthetized and

2 The Scientific World Journal decapitated and the eye rapidly enucleated. The eyeballs were cutattheequator,andtheposteriorhalfwhichcontained the pecten oculi was photographed using digital camera attached stereomicroscope (Nikon SMZ- 2T, Nikon orp., Tokyo, Japan). The number of pleats of duck, pigeon, turkey, and starling pecten oculi was counted in stereomicroscope images. The pecten oculi and its underlying retinal tissue were painstakingly dissected out, then they were fixed in 10% buffered formalin for histologic examination. After the fixation, the samples dehydrated in increasing concentrations of ethanol, cleared with xylene, and embedded in paraffin. The serial sections from the apex to the base of pecten were cut in 6 μm thick, and the sections were stained using rossman s triple technique [13] and periodic-acid Schiff (PAS) reaction for basement membrane composed of glycoconjugates [14]. All specimens were examined under light microscope (Leica DM-2500 model with DF-320 camera attachment giving digital images). The diameter of the capillaries and thickness of capillary basement membrane of pecten oculi were measured with IM-50 image analysis program. The parameters were analyzed with one-way ANOVA (SPPSS 9.0; SPSS Inc. orp., USA). Results were considered significant at P < 0.05. Figure 1: The appearance of pecten oculi of the ostrich. Figure 2: The appearance of pecten oculi of the duck. 3. Results The pecten oculi was located over the optic disc and was projected out into the vitreous body. Due to the pigmentation pectenoculiwasobservedindarkbrowntoblack(figures1 and 2). The pecten oculi of the ostrich was vanned type (Figure 3(a)) and made up primary, secondary, and few tertiary lamellae (Figure 3(b)). entrally located primary lamellae were the thicker lamellae, and the thinner secondary lamellae were originated from the primary lamellae. The tertiary lamellae arose from the distal part of the secondary lamellae were rarely. In primary lamellae, there were the large blood vessels having thick basement membrane. The blood capillaries were especially located in the distal part of the secondary lamellae (Figure 3(c)). The wall of these capillaries is composed of a single layer of high endothelial cells surrounded by a thick basement membrane (Figure 3(d)). High degree of pigmentation distributed between the capillaries was the most salient feature of the distal part of the secondary lamellae (Figure 3(c)). In duck, pigeon, turkey, and starling the pecten oculi consists of the several thin folds which confluence each other at the apex were very delicate (Figures 4(a), 4(b), 4(c), and4(d)). In serial transverse sections it was revealed that each fold has a large blood vessel surrounded by many capillaries having high endothelium and thick basement membrane (Figure 5). The distribution of the pigmentation was similar to ostrich pecten oculi between the capillaries. The number of pleats and the other morphometric parameters of pecten oculi were illustrated in Table 1. 4. Discussion The location of the pecten oculi in all avian species used in this study conformed to that reported in other bird species. We observed that duck, pigeon, turkey, and starling had a pleated-type pecten oculi which displayed folded structure. Howeverthepectenoculioftheostrichwasvanedtypeand made up primary, secondary, and few tertiary lamellae as cited by Kiama et al. [2]. Pleated-type pecten oculi has similar structures in various avian species as in this study. However some considerable variations between the species can be observed in number of the pleats, size, shape and thickness of the capillary basal lamina of the pecten oculi. These variations depend on the diurnal activity and visual requirements of the species. Generally, daily active birds (diurnal) have bigger and more plated pectens compared to night active birds (nocturnal) [7, 15]. In this the study number of pleats of the pectens was 12,13-14,21-22,and17induck,pigeon,turkey,andstarling, respectively. Previous studies have demonstrated that other diurnal species such as domestic fowl has 16 18 [15], black kite has 12-13 [1, 15], quail has 19 [5], common buzzard has 17-18 [3], jungle crow has 24-25 [9], mallard has 12 14 [8] folds in pectin. However nocturnal birds have small pectens such as barred owl that has 8 10 [16]andspottedeagleowlthathas 5-6 [15]foldsinpecten. Although functional morphology of the pecten oculi correlates with the life-style of the bird [15], histologic findingsobtainedfromthisstudyandpreviousstudy[2, 5, 8] in various bird species demonstrated that pecten oculi is basically composed of numerous capillaries, large blood vessels, and pigment cells. High vascular structure and specialized

The Scientific World Journal 3 PrL 500 μm (a) (b) SL (c) (d) Figure 3: The appearance of pecten oculi of the ostrich (a). Paraffin sections from the ostrich pecten oculi (b, c, and d). PrL: Primary lamellae, large arrows: secondary lamellae, small arrows: tertiary lamellae, rossmon s trichrome stain (b). SL: secondary lamellae, : blood capillaries, arrows: pigmentation, rossmon s trichrome stain (c). Arrows: thick basement membrane, PAS (d). 100 μm 100 μm (a) (b) 100 μm (c) (d) Figure 4: A section from the duck pecten oculi (a); a section from the pigeon pecten oculi (b); a section from the turkey pecten oculi (c); a section from the starling pecten oculi (d); arrows: blood vessels, arrow heads: blood capillaries. rossmon s trichrome stain.

4 The Scientific World Journal onflict of Interests The authors have no conflict of interests. References Figure 5: A section from the duck pecten oculi. Arrows: Large blood vessel and many capillaries having thick basement membrane. PAS, bar 30 μm. Table 1: The morphometric parameters of pecten oculi in different avian species. Animals The numbers of pleats Diameter of capillaries (μm) (X±Sd) Thickness of capillary basement membrane (μm) (X±Sd) Ostrich 20.23 ± 2.98 a 2.67 ± 0.32 Duck 12 14.34 ± 2.56 b 2.11 ± 0.55 Pigeon 13-14 11.78 ± 2.71 b 2.24 ± 0.37 Turkey 21 22 12.58 ± 2.67 b 2.08 ± 0.56 Starling 17 12.78 ± 1.50 b 2.00 ± 0.32 a-b Values within a column with no common superscripts are significantly different (P < 0.05). capillary morphology is important characteristic for nutritive function of this organ. The capillaries are surrounded by thick basal membrane in pecten oculi of all investigated species in this study as described in pervious study [4, 7, 8, 17]. It is suggested that thickened basal laminae may support the fragile endothelial cells which have very thin cell bodies and numerous microfolds [7, 17]. The pigmented cells are the second prominent cell type of the pecten oculi [18]. Pigmented cells were observed around the capillaries in this study. The close association between the pigmented cells and the capillaries has been also reported in the black kite [1], quail [5], ostrich [2], and jungle crow [9]. It has suggested that pigmented cells provide the structural reinforcement to pecten oculi for keeping it firmly erectile within the gel-like vitreous and also protect the blood vessels against damage from ultraviolet light [1, 7, 17]. In addition the absorption of light by the pigmented cells probably raises the temperature within the pecten and hence the rate of metabolism within it [19]. This research provides data concerning the anatomical and histological characteristics of pecten oculi of different avian species. These findings reveal that pecten oculi in the ostrich was vaned type, and duck, pigeon, turkey, and starling had pleated-type pecten oculi. Histologic structures were quite similar in pecten oculi of all investigated species. [1] S. G. Kiama, J. Bhattacharjee, J. N. Maina, and K. D. Weyrauch, A scanning electron microscope study of the pecten oculi of the black kite (Milvus migrans): possible involvement of melanosomes in protecting the pecten against damage by ultraviolet light, Anatomy, vol.185,no.3,pp.637 642, 1994. [2] S.G.Kiama,J.N.Maina,J.Bhattacharjee,D.K.Mwangi,R.G. Macharia, and K. D. Weyrauch, The morphology of the pecten oculi of the ostrich, Struthio camelus, Annals of Anatomy,vol. 188, no. 6, pp. 519 528, 2006. [3] M.E.Gultiken,D.Yildiz,B.Onuk,andM.O.Karayigit, The morphology of the pecten oculi in the common buzzard (Buteo buteo), Veterinary Ophtalmology,vol.2,pp.72 76,2012. [4]. R. Braekevelt, Fine structure of the pecten of the pigeon (olumba livia), Ophthalmologica, vol.196,no.3,pp.151 159, 1988. [5] I.O.Orhan,O.Ekim,andA.G.Bayraktaroǧlu, Morphological investigation of the pecten oculi in quail (oturnix coturnix japonica), Ankara Universitesi Veteriner Fakultesi Dergisi, vol. 58, no. 1, pp. 5 10, 2011. [6] D.B.Meyer, Theavianeye, inhandbook of Sensory Physiology, F. rescentelli, Ed., vol. 7 of The Visual System of Vertebrates, pp. 549 612, Springer, Berlin, Germany, 1977. [7].R.BraekeveltandK..Richardson, Finestructureofthe pecten oculi in the Australian galah (Eolophus roseicapillus) (Aves), Histology and Histopathology, vol. 11, no. 3, pp. 565 571, 1996. [8]. R. Braekevelt, Fine structure of the pecten oculi of the mallard (Anas platyrhynchos), anadian Zoology, vol. 68, pp. 427 432, 1990. [9] M. L. Rahman, E. Lee, M. Aoyama, and S. Sugita, Light and electron microscopy study of the pecten oculi of the jungle crow (orvus macrorhynchos), Okajimas Folia Anatomica Japonica, vol. 87, no. 3, pp. 75 83, 2010. [10] J. D. Pettigrew, J. Wallman, and. F. Wilksoet, Saccadic oscillations facilitate ocular perfusion from the avian pectin, Nature,vol.343,pp.362 363,1990. [11] H. Wolburg, S. Liebner, A. Reichenbach, and H. Gerhardt, The pecten oculi of the chicken: A model system for vascular differentiation and barrier maturation, International Review of ytology,vol.187,pp.111 159,1999. [12] H. Gerhardt, S. Liebner, and H. Wolburg, The pecten oculi of the chicken as a new in vivo model of the blood-brain barrier, ell and Tissue Research,vol.285,no.1,pp.91 100,1996. [13].F.A.ulling,R.T.Allison,andW.T.Barr,ellular Pathology Technique, Butterworths, London, UK, 1985. [14] H.. ook, arbonhydrates, in The Theory and Practice of Histological Techniques, J. D. Bancroft and A. Stewens, Eds., pp. 143 153, The Bath Press, Stratford-upon-Avon, UK, 3rd edition, 1990. [15] S.G.Kiama,J.N.Maina,J.Bhattacharjee,andK.D.Weyrauch, Functional morphology of the pecten oculi in the nocturnal spottedeagleowl(bubo bubo africanus), and the diurnal black kite (Milvus migrans) and domestic fowl (Gallus gallus var. domesticus): a comparative study, Zoology, vol.254, no. 4, pp. 521 528, 2001.

The Scientific World Journal 5 [16] B. J. Smith, S. A. Smith, and. R. Braekevelt, Fine structure of the pecten oculi of the barred owl (Strix varia), Histology and Histopathology, vol. 11, no. 1, pp. 89 96, 1996. [17]. R. Braekevelt, Fine structure of the pecten oculi of the emu (Dromaius novaehollandiae), Tissue and ell,vol.30,no.2,pp. 157 165, 1998. [18] S. Liebner, H. Gerhardt, and H. Wolburg, Maturation of the blood-retina barrier in the developing pecten oculi of the chicken, Developmental Brain Research,vol.100,no.2,pp.205 219, 1997. [19] S. R. Bawa and R.. YashRoy, Effect of dark and light adaptation on the retina and pecten of chicken, Experimental Eye Research,vol.13,no.1,pp.92 97,1972.

Ecology Agronomy Veterinary Medicine International Scientifica The Scientific World Journal Viruses Microbiology Submit your manuscripts at Biotechnology Research International Psyche Insects Veterinary Medicine Zoology ase Reports in Veterinary Medicine ell Biology Parasitology Research Genomics Evolutionary Biology Applied & Environmental Soil Science Animals