Cross%lineage,hybridization,in,the,genus,Arctostaphylos,(Ericaceae),,

Similar documents
Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification

Cladistics (reading and making of cladograms)

Warm-Up: Fill in the Blank

Lecture 11 Wednesday, September 19, 2012

Title: Phylogenetic Methods and Vertebrate Phylogeny

INQUIRY & INVESTIGATION

1 EEB 2245/2245W Spring 2014: exercises working with phylogenetic trees and characters

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper.

What are taxonomy, classification, and systematics?

Contents. Introduction...3. Concept Webs: Topic/Main Idea and Details. Charts: Classifying. Sequence Webs: Sequence

Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1

Classification Key for animals with backbones (vertebrates)

Systematics, Taxonomy and Conservation. Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem

Scrubland and Chaparral

UNIT III A. Descent with Modification(Ch19) B. Phylogeny (Ch20) C. Evolution of Populations (Ch21) D. Origin of Species or Speciation (Ch22)

History of Lineages. Chapter 11. Jamie Oaks 1. April 11, Kincaid Hall 524. c 2007 Boris Kulikov boris-kulikov.blogspot.

A Mitochondrial DNA Phylogeny of Extant Species of the Genus Trachemys with Resulting Taxonomic Implications

No limbs Eastern glass lizard. Monitor lizard. Iguanas. ANCESTRAL LIZARD (with limbs) Snakes. No limbs. Geckos Pearson Education, Inc.

17.2 Classification Based on Evolutionary Relationships Organization of all that speciation!

NQF Level: 4 US No:

Assistance Dogs: Impact and Ethical Considerations Jennifer Arnold

Ecology of RMSF on Arizona Tribal Lands

Juniperus communis in Morocco: analyses of nrdna and cpdna regions

WETLANDS INTERNATIONAL / IUCN SSC SWAN SPECIALIST GROUP CIRCUMPOLAR CODE AND COLOUR PROTOCOL FOR NECK COLLARS FOR

Systematics and taxonomy of the genus Culicoides what is coming next?

The impact of the recognizing evolution on systematics

Fig Phylogeny & Systematics

Revell et al., Supplementary Appendices 1. These are electronic supplementary appendices to: Revell, L. J., M. A. Johnson, J. A.

PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata

HAWAIIAN BIOGEOGRAPHY EVOLUTION ON A HOT SPOT ARCHIPELAGO EDITED BY WARREN L. WAGNER AND V. A. FUNK SMITHSONIAN INSTITUTION PRESS

Bio 1B Lecture Outline (please print and bring along) Fall, 2006

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms

Coyote (Canis latrans)

VARIABILITY OF AMPHIBIANS AND REPTILES OF RUSSIAN PLAIN: EVOLUTIONARY, ECOLOGICAL AND PRESERVATION ASPECTS

Animal Diversity III: Mollusca and Deuterostomes

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes)

Comparative phylogeography of woodland reptiles in. California: repeated patterns of cladogenesis and population expansion

Appendix 7 Introducing Cats and Dogs

LABORATORY EXERCISE 6: CLADISTICS I

Using the Appendices Convention on International Trade in Endangered Species of Wild Fauna and Flora

Phylogeny of genus Vipio latrielle (Hymenoptera: Braconidae) and the placement of Moneilemae group of Vipio species based on character weighting

Read the article The Pony Express before answering Numbers 1 through 5. The Pony Express

FACT FUN! *Loggerheads are the most common species of sea turtle in the ocean off of South Carolina.

1 EEB 2245/2245W Spring 2017: exercises working with phylogenetic trees and characters

3) DEFINITIONS: multiple alleles: polygenic traits: codominance: incomplete dominance: gene: allele: homozygous: heterozygous: autosomal: sex-linked:

Traveling Treasures 2016 The Power of Poison

Testing Phylogenetic Hypotheses with Molecular Data 1

Interpreting Evolutionary Trees Honors Integrated Science 4 Name Per.

Sanya s Science Report

Genetics and Probability

Learning Goals: 1. I can list the traditional classification hierarchy in order.

DATA SET INCONGRUENCE AND THE PHYLOGENY OF CROCODILIANS

Cover Page. The handle holds various files of this Leiden University dissertation.

Kansas City, Missouri Parks and Recreation 4600 East 63rd Street Kansas City, Missouri

9-2 Probability and Punnett. Squares Probability and Punnett Squares. Slide 1 of 21. Copyright Pearson Prentice Hall

APPLICATION & CONTRACT TO ADOPT

HERPETOLOGY. Name: School:

TEXT STRUCTURE TEXT STRUCTURE

PHYLOGENETIC TAXONOMY*

Quiz Flip side of tree creation: EXTINCTION. Knock-on effects (Crooks & Soule, '99)

Hetta Huskies- A Veterinary Experience? (Written by pre- vet volunteer, Emmanuelle Furst).

LABORATORY EXERCISE 7: CLADISTICS I

The melanocortin 1 receptor (mc1r) is a gene that has been implicated in the wide

BioSci 110, Fall 08 Exam 2

Evolution of Biodiversity

Ch. 17: Classification

Genetics Assignment. Name:

Orange County Animal Services 501 W. Franklin St, Suite 106, Chapel Hill, NC (919)

Indochinese Rat Snake Non Venomous Not Dangerous

LLELA continues to receive an abundance of TLC from the dedicated people who put in hour after hour of hard work

Of Wolves Wolf Hybrids And Children

Taxonomic Congruence versus Total Evidence, and Amniote Phylogeny Inferred from Fossils, Molecules, Morphology

Annual Report & Financial Statement

Pikas. Pikas, who live in rocky mountaintops, are not known to move across non-rocky areas or to

Phylogenetics. Phylogenetic Trees. 1. Represent presumed patterns. 2. Analogous to family trees.

Rally signs for novice

Criteria for Selecting Species of Greatest Conservation Need

Introduction to the Cheetah

Unit Calendar: Subject to Change

Ch 1.2 Determining How Species Are Related.notebook February 06, 2018

Anurans of Idaho. Recent Taxonomic Changes. Frog and Toad Characteristics

Breeding White Storks( Ciconia ciconia at Chessington World of Adventures Paul Wexler

Crocodilians and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) update February 2014

11/4/13. Frogs and Toads. External Anatomy WFS 340. The following anatomy slides should help you w/ ID.

Feral Poultry: How to Construct a User-Friendly Trap

Original language: English PC22 Doc. 10 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA

Postilla PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY NEW HAVEN, CONNECTICUT, U.S.A.

READING TEST PRACTICE LEVEL 2 Section 1 READING COMPREHENSION

Genome 371; A 03 Berg/Brewer Practice Exam I; Wednesday, Oct 15, PRACTICE EXAM GENOME 371 Autumn 2003

Big Cat Rescue Presents. Tigrina or Oncilla

Mendel s Laws: Their Application to Solving Genetics Problem

Molecular Phylogeny of the Chipmunk Genus Tamias Based on the Mitochondrial Cytochrome Oxidase Subunit II Gene

Thursday, April 16, 2015 HEREDITY

Genetics. What s Genetics? An organism s heredity is the set of characteristics it receives from its parents.

Susitna-Watana Hydroelectric Project (FERC No ) Dall s Sheep Distribution and Abundance Study Plan Section Initial Study Report

Co-transfer of bla NDM-5 and mcr-1 by an IncX3 X4 hybrid plasmid in Escherichia coli 4

A.13 BLAINVILLE S HORNED LIZARD (PHRYNOSOMA BLAINVILLII)

News, Views, & Comments. Editor : Robert.J. Rodgers, Nova Scotia, Canada. Co-Editor : Jith Peter Palakkad, India.

Plestiodon (=Eumeces) fasciatus Family Scincidae

Transcription:

Crosslineage,hybridization,in,the,genus,Arctostaphylos,(Ericaceae),, EricVanDyke,ReedCollegeBio332(May2017) Abstract, TheevolutionaryhistoryofthegenusArctostaphylosissplitbetweentwodeeplineages.Many Arctostaphylosspeciesarehypothesizedtoresultfromhybridization,butcrossJlineagehybridsare uncommon.iidentifiedsixspecieswithnuclearribosomaldnasequencesthatcontainnucleotide combinationsfrombothlineages.inthesecrossjlineagehybrids,polymorphicnucleotidesarecommon atthesevenbasepositionsthatseparatethetwolineages.incrossjlineagehybridspecieswhere individualsfrommultiplepopulationsareavailable,nucleotidevariationbetweenpopulationsispresent atthesesevenpositions.atleastfourofthesecrossjlineagehybridsarepolyploids,suggestingthat wholegenomeduplicationenableshybridizationbetweenlineages.sequencevariationbetween populationssuggeststhattheymayresultfrommultipleindependentpolyploidy.isearchedfor potentialparentalspeciesforthesecrossjlineagehybridsbycomparingtheirsequenceswiththoseofall otherextanttaxaandevaluatingnucleotideadditivity.theresultsofferinsightsintoarctostaphylos biogeographyandpaleoendemismaswellashybridizationandpolyploidy. Introduction, ThegenusArctostaphyloscomprises67species(Kauffmannetal.2015,FNA2009).Onespecies,A.-uva0 ursi,isgloballydistributed.theremainderarenativetothewesternunitedstates,northernmexico, andsouthernbritishcolumbia.nearlythreequartersofarctostaphylosarelocalendemics;manyof t"em are confined to i/land/ of unu/ual and generall4 poor /oil. Fort4 are of con/ervation concern. ElevenArctostaphylosspeciesarepolyploids. ManzanitaParkinnorthMontereyCounty,California,containsmorethan150haofcoastalchaparralon sandysoil.thisshrublandhabitatisdominatedbythreemanzanitaspecies:twonarrowendemics,- Arctostaphylos-pajaroensisandA.-hookeri,andaregionalendemic,-A.-crustacea.Thethreetaxaare easilydistinguishable.a.-pajaroensisisatall,uprightshrubwithtriangularleavesandgrayshreddy bark,a.-hookeriisalow,matjformingshrubwithshinygreenleavesandsmoothredbark,anda.- crustaceaisintermediateinstatureandhasaprominentbasalburl.duringmorethanadecadeof frequenthikesatthepark,ichallengedmyselftofindindividualswiththesecharactersinunusual combinations.theseapparenthybridsdooccur,andtheyinvariablycombinethetriangularleavesofa.- pajaroensiswiththeburlofa.-crustacea.iwasmotivatedinthissearchbytheknowledgethatlocal nurseriessellanaturalhybridnameda.- Sun/et t"at combine/charactersfroma.-hookeriwith charactersfroma.-crustacea.butineverfoundoneinthewild.

ItisnotunusualtofindtwoorthreeArctostaphylosspeciesgrowingtogetheratthesamesite, occasionallymore.sometimestherearehybrids,sometimest"ere aren t. T"i/ /tud4 i/ an attempt to applymoleculardataandthetoolsofphylogeneticanalysistoanswerthequestion:why? Methods, IdownloadedallArctostaphylosnucleotidesequencesfromGenBankthatincludetheITS,5.8S,or26S regionsofnuclearribosomaldna.thesesequencesresultfromseveralstudies,particularlymarkoset al.(1998),boykinetal.(2005),andwahlertetal.(2009).ialsodownloadedarctous-rubrasequences thatincludethesameregionsasanoutgrouptopolarizemyresultingphylogeny.ichosearctous-rubra, anarctic/tundrashrub,basedonitspositionasclosesistertoarctostaphyloswithintheericaceae(kron etal.2002).iupgradedtaxonomicnomenclatureasnecessarytoagreewiththecurrenttreatment(fna 2009)andassignedabriefidentifier(sixJcharacteracronym,optionalsingleJcharactersubspecies identifier,anddifferentiatingnumber)toeachsequence.sequenceidentifiersarelistedinappendix1 alongwithcorrespondingtaxonname,genbankaccessionnumber,ploidy,studyauthor,andcollection locationandvoucheridentificationifavailable.theits+5.8sdatasetconsistsofsequencesfromallbut fourarctostaphylosspecies(a.-bolensis,a.-incognita,a.-moranii,anda.-nortensis)andincludesmultiple sequencesformanyspecies(differentsubspeciesandcollectionlocations).the26sdatasetconsistsof asmallersample(18species). IassembledandmanuallyalignedtheITS1+5.8S+ITS2and26Ssequencesinseparatenucleotide charactermatrices.whereits1andits2wereseparateaccessions,icombinedthesebeforealignment. Manualalignmentwasstraightforwardduetoarelativelysmallnumberofvariablecharactersand indels.afteralignment,itrimmedallsequencestouniformlength(584bpforits1+5.8s+its2and264 bpfor26s). Thesealignedcharactermatricesprovideddatanecessarytoinfertheevolutionaryhistoryof ArctostaphylosthoughphylogeneticinferenceusingthePAUP*software.Inaddition,theyenabled directobservationofnucleotidevariabilityandpolymorphismwithinandbetweennucleotide sequences,providingameansfortestinghypothesizeddiploidandpolyploidhybridizationbetween species. Results,, Phylogenetic,analysis, SequencesfromtheITS,5.8S,and26SregionsinArctostaphyloscontainnucleotidesubstitutionsand polymorphismsatrelativelyfewbasepositions,sodirectobservationandrecognitionofbetweenj speciespatterns(apomorphies)andspeciesjspecificpatterns(autapomorphies)wasrelatively straightforward.ifirstremovedallbasepositionswithnophylogeneticallyinformativecharacters(no statechanges,orchangesonlywithinasingletaxon);thisdramaticallyreducedthesizeofthedatasets. Ifurtherreduceddatasetsizebycombiningallidenticalsequencesfromasinglespecies,including

Figure 1. Reduced, rearranged, and colored ITS+5.8S character matrix (nucleotides) with cross-l i neage sequences r emoved. CLADE2a_3 includes four taxa with identical sequences. CLADE2b_52 includes 52 taxa with identical sequences.

Figure 2. Reduced, rearranged, and colored 26S character matrix (nucleotides) with cross-lineage sequences removed. Figure 3. Reduced, rearranged, and colored ITS+5.8S cross-lineage sequences. All but one taxon are polyploid (red identifiers). Figure 4. Reduced, rearranged, and colored 26S cross-lineage sequences. All taxa are polyploid.

Figure 5. ITS+5.8S majority-rule consensus tree with cross-lineage sequences removed. Orange bar is the genus Arctostaphylos. Red bars are the patula and columbiana clades. Brown bar is the ohloneana clade.

subspecies,underanewcommonidentifierwithanappendednumber.also,intwocases,icombined multipletaxawithidenticalsequencesunderacommonidentifier(clade2a_3andclade2b_52). MembershipofthesecombinedsequencegroupsarelistedinAppendix2.Allsequenceswithcharacter differences,includingpolymorphisms,wereretained.finally,irearrangedtheorderofthecharacters (nucleotides)andcoloredgroupsofderivedcharacters(apomorphiesandautapomorphies)toaidvisual identificationofanypatterns.portionsofthereduced,rearranged,andcoloredcharactermatricesare showninfigure1(its+5.8s)andfigure2(26s). Severalgroupsofderivedcharactersareapparentwithinthesenucleotidesequences.First,15 characterpositions(orange) sevenintheits1region,fourinits2,andfourin26s differnearly uniformlyfromtheancestralstate(theoutgroup,rubra_1).thesepositionsareobviouslyresponsible forthesynapomorphythatdefinesthegenusarctastaphylos.also,sevencharacterpositions(red) twoinits1,twoinits2,andthreein26s assumecomplementarycharacterstatesasagroup.these positionsareclearlyresponsibleforasynapomorphythatsplitsthegenusintotwodeeplineages.this twojcladephylogenywasfirstobservedbydenford(1981)usingflavonoidsasmarkers.while investigatingthemonophylyoffivearctostaphylossubspecies,markosetal.(1998)recoveredthesetwo cladesfromnuclearribosomaldnausingitsand26ssequencesandrflpmarkers.boykinetal.(2005) andwahlertetal.(2009)demonstratedthatthetwojcladestructurepersistedastheyincreasedthe numberofarctostaphylostaxasampled(appendix3).afewoneandtwojcharacterapomorphies(blue andgreen)arealsoevidentwithinthenucleotidesequences,aswellasonelongerderivedgroupthat encompassessevencharacterpositions(brown).thissevenjcharacterapomorphywillbediscussed below. OfcoursethedatasetsarenotquiteasuniformasFigures1and2imply.Withinthegroupofseven characterpositionsthatdividesarctostaphylosintotwolineages(fourinits+5.8sandthreein26s), variousassortmentsofindividualnucleotidesfrombothclades,andpolymorphismsthatcombine nucleotidesfrombothclades,appearin15sequencesfromsixspecies(figures3and4). Nevertheless,afterremovingthose15crossJcladesequencesfromtheITS+5.8Smatrix,maximum parsimonyinpaup*generatedamajorityjruleconsensustreeforthegenusarctostaphylosthat correspondscloselywiththepredictedphylogeny(comparethecoloredbarsinfigure5withlikej coloredcellsinfigure1)andaddsadditionaltaxatothephylogeniespublishedbymarkosetal.(1998), Boykinetal.(2005),andWahlertetal.(2009). Crosslineage,hybrid,parentage, CrossJlineagesequencescauseproblemsforphylogenyinference,buttheyprovidevaluableinsightsinto hybridizationbetweenspecies.hybridizationinarctostaphyloshasbeenanactivetopicofresearchand conjectureformanydecades.manyarctostaphylosspeciesarehypothesizedtohavearisenthrough diploidhybridizationorpolyploidy,butreportsofcrossjlineagehybridizationareuncommon(wahlertet al.2006,parker2007).

IidentifiedsixhybridspecieswithnuclearribosomalDNAsequencesthatcontainnucleotide combinationsfrombothlineages(figures3and4).inthesecrossjlineagehybrids,polymorphic nucleotidesarecommonatthesevenbasepositionsthatseparatethetwolineages.incrossjlineage hybridswhereindividualsfrommultiplesequencesareavailable,nucleotidevariationbetween populationsispresentatthesesevenpositions.theprevalenceoffourjcharacterjstateambiguityatthe positionsthatsplitthegenusinseveral26ssequencessuggestspolyploidyintheoriginofthesespecies (Figure4).Notsurprisingly,theliteratureconfirmsthatfourofthecrossJcladespeciesarepolyploids, andtheploidyofanotherisuncertain. ItestedwhethertheparentsofknownorhypothesizedcrossJlineagehybridscouldbeidentifiedby performingpairwisesequencecomparisonsbetweenallotherextanttaxaandevaluatingnucleotide additivityinthetargettaxon.similarattemptstoevaluatepossiblehybridizationandpolyploidywithits sequenceadditivityhavebeenreported(e.g.whittall2000,hardigetal.2002). Figure 6. A. patula and A. viscida are not additive for A. mewukka; seven nucleotides (brown) are not available from either parent (ITS+5.8S). Figure 7. A. ohloneana is additive for A. mewukka in hybrids with any of various taxa from the same lineage (ITS+5.8S). Figure 8. A. ohloneana is additive for all selections of A. manzanita in hybrids with any of various taxa from the opposite lineage (ITS+5.8S). Figure 9. A. hookeri (and several other possible parents) is additive for all A. pungens sequences in hybrids with any of various taxa from the opposite lineage (ITS+5.8S).

SearchingforpotentialhybridparentsoftaxawithITS+5.8SsequencesthatcontainthesevenJcharacter apomorphymentionedabove(browninfigures1,3,and5)producedsurprisingresults.arctostaphylosmewukka,aspecieslonghypothesizedtobeofhybridorigin,hasbeencarefullystudied(epling1947, Dobzhansky1953,Roof1967,Schmid1968).A.-mewukkawasfirstdescribedasadiploidhybrid betweenarctostaphylos-patulaanda.-viscida,twomanzanitaswithoverlappingranges(mcminn1939). Schierenbecketal.(1992)performeddetailedmorphologicalandcytologicalstudiesanddeclaredthe speciesandsubspeciestobetheresultofmultipleindependent(polyphyletic)allopolyploidywitha.- patulaanda.-viscidaasparents.yetpairwisesequencecomparisonshowsthatthecombinationofa.- patulaanda.-viscidaisnotadditivefora.-mewukka(figure6).onlyoneextantspeciessatisfiesthe additivityrequirement:a.-ohloneana(figure7).furthermore,whilea.-patulaanda.-viscidaarefrom differentlineages,a.-mewukkacanresultfromhybridizationbetweena.-ohloneanaandvarioustaxain thesamelineage.a.-mewukkai/ fairl4 wide/pread at middle elevation/ in California / Sierra Nevada. A.- ohloneanaisarare,recentlydescribedspeciesfromjustonecoastalsantacruzcountylocation well overonehundredmilestothewest(kauffmann2015). T"ere / more. Arctostaphylos-manzanitaanditssubspeciesareagroupofmorphologicallyand geographicallydiversepolyploidtaxa.thisvariabilityisalsoevidentinthevarietyofnucleotide combinationsinitssequences.threea.-manzanitasequencescontainsome(butnotall)ofthesame sevenjcharacterapomorphy,eitherasvariablecharactersorpolymorphisms(figure8).thisvariability suggestsa.-manzanita / numeroussubspeciesandvarietiesmayhaveoriginatedthroughmultiple independentpolyploidy.onceagain,pairwisecomparisonfounda.-ohloneanaastheonlypossibilityfor oneofa.-manzanita / hybridparents(figure8).accordingtovaseyandparker(2008),a.-ohloneana superficiallyresemblesa.manzanita.a.-manzanitaisfoundinavarietyoflocationsandhabitats, includingasmallsiteabout30mileseastofa.-ohloeana / coa/tal location(kauffmann2015). LikeArctostaphylos-manzanita,Arctostaphylos-pungens-hasavarietyofnucleotidecombinationsand polymorphismsinitssequences.asina.-manzanita,thisvariabilitysuggestsmultipleindependent polyploidy.againisearchedforpotentialhybridparentsfora.-pungensbycomparingsequencesand evaluatingnucleotideadditivity.inthiscase,morethanonespeciessatisfiestheadditivityrequirement; A.-Hookeri,forexample(Figure9).Arctostaphylos-pungensisgenerallyconsidereddiploid,butRoof (1976) write/g Hit" a /ingle known exceptionk in /out"ern MexicoK t"e A.-pungensofMexicoand /out"ern California "a/ been determined to be a tetraploidk wit" a gamete number of 26.IfRoofis correct,a.-pungensisanothercrossjlineagepolyploid.thishelpsexplainwhykeeley(1976)observed unexpectedmorphologicalcharactersemergefromhybridizationbetween(tetraploid?)a.-pungens.and diploida.-glauca.believinga.-pungenstoalsobediploid,keeleydeclaredthepopulationahybrid swarmwithbackcrossestobothparentsratherthanvariableoffspringfromapolyploidparent. Discussion,, Two,lineages,(patula,and,columbiana,clades), SeveralauthorshaveproposedbiogeographicalexplanationsfortherapidpostJglacialradiationof Arctostaphylos.RavenandAxelrod(1978)describetheXerothermicPeriod,atimeofwarmingand

dryingclimate,whenboundariesbetweennorthernforestjdominatedvegetation(thearctojtertiary Geoflora)andsouthernscrubJdominatedvegetation(MadroJTertiaryGeoflora)werechangingrapidly. TheyattributemuchoftheexplosivespeciationinspecieslikeArctostaphylostothesechanges.Thetwo deeplineageswithinthearctostaphylosphylogenylikelyoriginatedwiththesetwovegetationtypes. BecauseArctostaphylosdiversityandtaxonomyareheavilyinfluencedbythesplitbetweentwo lineages,theselineagesdeservemoreimaginativenamesthan Group One/GroupTwo (Marko/etal. 1998)or Clade 1/Clade2 (Boykinetal.2005,Wahlertetal.2009).Irecommendthatthemost representativeorwidespreaddiploidspeciesineachlineageshouldlenditsname,andprovisionally suggest patulaclade for t"o/e /pecie/ wit" Great Ba/inRRock4 Mountain (MadroJTertiary)affinities, and columbianaclade for t"o/e /pecie/ wit" northern(arctojtertiary)affinities., The1ohloneana1clade1 ThesmallcladethatsharesadistinctivesevenJnucleotideapomorphyisalsodeservingofaname.Its rare,recentlyjdescribeddiploidmember,arctostaphylos-ohloneana,maybethepaleoendemicremnant fromaformerlywidejrangingspecies(vaseyandparker2008)thatparticipatedinmultipleindependent polyploidytoproduceanassortmentofa.-manzanitaanda.-mewukkasubspecies.isuggest ohloneana clade for t"i/ group thatisprovidingvaluableinsightsintodiversificationandbiogeographyin Arctostaphylos. Too,many,manzanitas?, Twoverydifferentpatternsofdiversificationareevidentin-Arctostaphylos.SameJlineagespecies conformrigidlytoanucleotide /ignature K thehandfulofapomorphies,eachinvolvingjustafewbase positions,thatcollectivelydefinesitsplaceinthephylogeny(coloredcellsinfigures1and2andcolored barsinfigure5).ninetypercentofarctostaphylostaxaexhibitthisconsistency.onesignatureis commonto34species,halfthegenus.incontrast,eachcrossjlineagepopulationacquiresitsown uniquearrangementofnucleotidesandpolymorphisms,especiallyatthesevenbasepositionsthat separatethelineages,ratherthanrigidlyconformingtoacommon,speciesjwidesignature(figures3and 4).Theirphylogenyisareticulatednetworkratherthanasimpletree.Ineverycasebutone,these hybridspeciesarepolyploids,suggestingthatwholegenomeduplicationenableshybridizationbetween lineages(schierenbecketal.1992). Arctostaphylostaxonomists"ave been ent"u/ia/tic /plitter/ atleastfromtheperspectiveofnuclear ribosomaldna.raven(1969)characterizedthesituation: A variety of workers have continued to present new combinations and new taxa without ever approaching the overall view of the group necessary to achieve taxonomic synthesis. A useful taxonomic system for a complex group such as Arctostaphylos will never be built up on such blocks, and indeed, the overall pattern of variation tends to become more and more obscure as the new taxa are proliferated. Roof(1976)K following Raven / leadk took a freshapproach tothegenusandattemptedacomplete revisionbasedonjustsixbasicspecies.alltherestheconsideredhybridstobereclassifiedas subspeciesandvarieties(inconsistentlyappliedtermsforregionalorlocal coherentevolutionary

subsets,hamiltonandreichard1992).forsamejlineagespecies,onenucleotidesignatureistypically sharedbyavarietyofpopulations,whetherspecies,subspecies,orsamejlineagehybridsthathave undergoneconcertedevolution.forthesetaxa,roof / radical lumping approachseemsappropriate, notwithstandingconservationconcerns(willendangeredpopulationscontinuetoreceiveprotectionif t"e4 re no longercalledspecies?).butnotsoforcrossjlineagepolyploidsandhybrids.thebest documentedexampleofcrossjlineagediversificationinthisstudyisarctostaphylos-manzanita,with individual/ from nine population/. Roof de/cribe/ combination/ too numerou/ and deviou/ to recite ina.-manzanitaand worrie/ t"at t"ere i/ danger of attac"ing to it more /ub/pecie/ t"an it can po//ibl4 bear. Suc"taxademandarethinkingofthespeciesconcept.Whatisaspeciesifeverypopulationhas itsownuniquearrangementofnucleotides?shouldeverypopulationconstituteaseparatespecies?if so,doeseveryspeciesdeserveendangeredspeciesprotection? Figure 10. The three Arctostaphylos at Manzanita Park (ITS+5.8S). A diploid in the patula clade, a diploid in the columbiana clade, and a polyploid. What would a polyploid A. Sunset l ook l i ke? Arctostaphylos, Sunset, HybridizationhasbeenreportedtoberelativelyfrequentbetweensomepairsofArctostaphylosspecies. Forotherpairs,hybridsappearinfrequently,ifever.Reproductivebarriersarepresumedtobestronger betweenthetwolineagesthanwithin(parker2007).instudieswherehybridizationwasfrequent,the parentsweretypicallymembersofthesamelineage;wherehybridizationwasuncommon,theywere fromoppositelineages(vaseyandparker2014).asimilarsituationexistsinthegenusceanothus:two deeplineagesareseparatedbystrongreproductivebarriers,whicharebelievedtobegeographicaland edaphicratherthanintrinsic(hardigetal.2002). Manzanitasfromthetwolineagesarefrequentlyfoundgrowingtogetherinthewild.Oftentheyare accompaniedbyapolyploid.thisisthesituationatmanzanitapark.arctostaphylos-hookeriisadiploid inthepatulaclade,a.pajaroensis-isadiploidinthecolumbianaclade,anda.-crustaceaispolyploid. Arctostaphylos Sun/et i/ acrossjlineagehybrid.iswouldbeinterestingtolearnifitispolyploid. Needs, TheexistenceoftwodeeplineagesintheinferredArctostaphylosphylogeny,thepatulaandcolumbiana clades,isonlymoderatelysupportedbybootstrapresampling(markosetal.1998,boykinetal.2005, Wahlertetal.2009).Withtheexceptionoftheohloneanaclade,cladesdeeperinthephylogenyreceive evenlowersupport.themostobviouspathtoincreasingstatisticalsupport,andfordetermining

whethertheconclusionsreportedinthisstudyarerobust,istoacquiresequencedatabeyondthe nuclearribosomalrepeats includinglowjcopycodingregionsandplastidgenomes. Theassumptionhasbeenthat,becauseofconcertedevolution,onlyasingleindividualfromasingle populationisnecessarytoobtainrepresentativesequencedataforarctostaphylos(boykinetal.2005). ForsameJlineagespecies,thisislikelythecase.ButforcrossJlineagehybrids,thefewavailable sequencesfromdifferentpopulationsinasinglespecies(arctostaphylos-manzanita,a.-pungens,anda.- uva0ursi)clearlycontradicttheassumption.thereforeagreaterbreadthofsamplingamongthesix crossjlineagespeciesisalsoneeded.thesesequencesshouldcapturethegeographicrangeofeach species,withemphasisonunusualedaphics(e.g.serpentine)andregionsthatoverlapwithother Arctostaphylostaxa. Finally,moredefinitivechromosomecountsareneededforafewcrossJlineagespecies.Istherearange ofploidyinarctostaphylosmewukkaanda.pungens?chromosomalvariationslikelyinfluencethe trajectoryofspeciesevolutionandhybridization. References, Boykin,L.M.etal.2005.TwolineagesofArctostaphylos(Ericaceae)identifiedusingtheinternal transcribedspacer(its)regionofthenucleargenome.madroño52(3). Dobzhansky,T.1953.NaturalhybridsoftwospeciesofArctostaphylosintheYosemiteregionof California.Heredity7. Epling,C.1947.Actualandpotentialgeneflowinnaturalpopulations.TheAmericanNaturalist81(797). FNAEditorialCommittee,eds.2009.FloraofNorthAmerica,vol.8.TheFloraofNorthAmerica Association,NewYorkandOxford. Hamilton,C.W.andReichard,S.H.1992.CurrentPracticeintheuseofsubspecies,variety,andformain theclassificationofwildplants.taxon41(3). Hardig,T.M.etal.2002.Morphologicalandmolecularanalysisofputativehybridspeciationin Ceanothus(Rhamnaceae).SystematicBotany27(4). Kauffmann,M.E.etal.2015.FieldGuidetoManzanitas:California,NorthAmerica,andMexico. BackcountryPress,Kneeland,CA. Keeley,J.E.1976.MorphologicalevidenceofhybridizationbetweenArctostaphylos-glaucaand-A.- pungens(ericaceae).madroño23(8).

Kron,K.A.etal.2002.PhylogeneticClassificationofEricaceae:MolecularandMorphologicalEvidence. TheBotanicalReview68(3). Markos,S.E.etal.1998.PhylogenyoftheArctostaphylos-hookericomplex(Ericaceae)basedonnrDNA sequencedatafromtheitsregion.madroño45(3). McMinn,H.E.1939.AnIllustratedManualofCaliforniaShrubs.UniversityofCaliforniaPress,Berkeley, CA. Parker,V.T.2007.DiversityandevolutionofArctostaphylosandCeanothus.Fremontia35(4). Raven,P.H.1969.Review:SupplementtoACaliforniaFlorabyPhilipA.Munz.Madroño20(4). Raven,P.H.andAxelrod,D.I.1978.OriginandRelationshipsoftheCaliforniaFlora.Universityof CaliforniaPress,BerkeleyCA. Roof,J.1967.Arctostaphylos-mewukka:ahybrid.TheFourSeasons2(2). Roof,J.1976.AfreshapproachtothegenusArctostaphylosinCalifornia.TheFourSeasons5(2). Schierenbeck,K.A.etal.1992.Morphologicalandcytologicalevidenceforpolyphyleticallopolyploidyin Arctostaphylos-mewukka(Ericacacese).PlantSystematicsandEvolution179. Schmid,R.etal.1968.BiosystematicevidenceforhybridizationbetweenArctostaphylos-nissenanaand A.-viscida.Brittonia20. Vasey,M.C.andParker,V.T.2008.AnewlydescribedspeciesofArctostaphylos(Ericaceae)fromthe centralcaliforniacoast.madroño55(3). Vasey,M.C.andParker,V.T.2014.Driversofdiversityinwoodyplantlineagesexperiencingcanopyfire regimesinmediterraneantypeclimates.in:rajakaruna,n.etal.,eds.plantecologyandevolutionin harshenvironments.novapublishers,newyork. Wahlert,G.A.etal.2006.TheArctostaphylos-bakerispeciescomplexfromSonomaCounty,California. TheFourSeasons12(4). Wahlert,G.A.etal.2009.AphylogenyofArctostaphylos(Ericaceae)inferredfromnuclearribosomalITS sequences.journalofthebotanicalresearchinstituteoftexas3(2). Whittall,J.etal.2000.DetectingnucleotideadditivityfromdirectsequencesisaSNAP:Anexample fromsidalcea(malvaceae).plantbiology2.

Appendices, Appendix 1: ITS+5.8S sequence identifiers, taxon names, GenBank accession numbers, ploidy, study authors, collection locations, and voucher identification.

Appendix 1 (cont.): ITS+5.8S

Appendix 1 (cont.): ITS+5.8S

Appendix 1: 26S sequence identifiers, taxon names, GenBank accession numbers, ploidy, study authors, collection locations, and voucher identification. CLADE2a_3: NEVADA1,CRUSTA1,CRUSTAs1,GLANDU2 CLADE2b_52: MANZAN1,MANZAN3,MANZAN4,MANZANe1,MANZANg1,TOMENTd1,CRUSTAi1,CRUSTAr1, ANDERS1,AURICU1,BAKERI1,BAKERIs1,CANESC0,CANESC1,CANESCs1,CATALI0,CATALI1,COLUMB1, CONFER1,CRUZEN0,CRUZEN1,FRANCI1,GABILA1,GLANDU0,GLANDUc1,GLANDUm1,GLAUCA1, GLUTIN1,HOOVER1,IMBRIC1,INSULA1,LUCIAN1,MONTAN1,MONTAR1,MONTER1,MORROE1, OBISPO1,OSOENS1,PAJARO0,PAJARO1,PALLID1,PILOSU0,PILOSU1,PILOSU2,PURISS1,REFUGI0, REGISM1,SILVIC1,VIRGAT1,XMANST1,XMEDIA1,XREPEN1 Appendix 2: Identical sequences combined under a common identifier (CLADE2a_3 and CLADE2b_52).

Appendix 3: Assignment of taxa to patula and columbiana clades by Denford (1981, flavonoids), Markos (1998; RFLP, ITS, and 26S), Boykin (2005, ITS), Wahlert (2009, ITS), and this study (ITS). Note the confusion when attempting to classify crosslineage taxa.

Appendix 3 (cont.): Assignment of taxa to patula and columbiana clades.