Risk factors for extended-spectrum b-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections

Similar documents
1. The preferred treatment option for an initial UTI episode in a 22-year-old female patient

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

2015 Antimicrobial Susceptibility Report

THE SENSITIVITY OF PATHOGENS OF COMMUNITY-ACQUIRED URINARY TRACT INFECTIONS IN KARAGANDA Ye. A. Zakharova 1, Chesca Antonella 2, I. S.

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

Intrinsic, implied and default resistance

Antibiotic Updates: Part II

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

Presence of extended spectrum β-lactamase producing Escherichia coli in

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

European Committee on Antimicrobial Susceptibility Testing

Isolation of Urinary Tract Pathogens and Study of their Drug Susceptibility Patterns

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

Antimicrobial Stewardship Strategy: Antibiograms

Research & Reviews: Journal of Veterinary Sciences

Regional community-acquired urinary tract infections in Israel: diagnosis, pathogens, and antibiotic guidelines adherence: A prospective study

EUCAST recommended strains for internal quality control

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

Understanding the Hospital Antibiogram


GENERAL NOTES: 2016 site of infection type of organism location of the patient

Vaccine Evaluation Center, BC Children s Hospital Research Institute, 950 West 28 th Ave,

Prevalence of Extended-spectrum β-lactamase Producing Enterobacteriaceae Strains in Latvia

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

ABSTRACT ORIGINAL RESEARCH. Gunnar Kahlmeter. Jenny Åhman. Erika Matuschek

Antimicrobial Susceptibility Testing: Advanced Course

ESBL Positive E. coli and K. pneumoneae are Emerging as Major Pathogens for Urinary Tract Infection

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Antimicrobial Susceptibility Profile of E. coli Isolates Causing Urosepsis: Single Centre Experience

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Original Article INTRODUCTION

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Guidelines for Treatment of Urinary Tract Infections

ALARMING RATES OF PREVALENCE OF ESBL PRODUCING E. COLI IN URINARY TRACT INFECTION CASES IN A TERTIARY CARE NEUROSPECIALITY HOSPITAL

P Bunjoungmanee 1, A Tangsathapornpong 1 and P Kulalert 2

Antimicrobial Susceptibility Patterns

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Interactive session: adapting to antibiogram. Thong Phe Heng Vengchhun Felix Leclerc Erika Vlieghe

Appropriate antimicrobial therapy in HAP: What does this mean?

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Fighting MDR Pathogens in the ICU

Original Articles. K A M S W Gunarathne 1, M Akbar 2, K Karunarathne 3, JRS de Silva 4. Sri Lanka Journal of Child Health, 2011; 40(4):

21 st Expert Committee on Selection and Use of Essential Medicines Peer Review Report Antibiotics Review

European Committee on Antimicrobial Susceptibility Testing

Antibiotic. Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting

INCIDENCE OF BACTERIAL COLONISATION IN HOSPITALISED PATIENTS WITH DRUG-RESISTANT TUBERCULOSIS

Cipro for klebsiella uti

JMSCR Vol 05 Issue 07 Page July 2017

Susceptibility Patterns of Escherichia coli: Prevalence of Multidrug-resistant Isolates and Extended Spectrum Beta- Lactamase Phenotype

Protocol for Surveillance of Antimicrobial Resistance in Urinary Isolates in Scotland

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

2016 Antibiotic Susceptibility Report

Antibiotic Susceptibility Patterns of Community-Acquired Urinary Tract Infection Isolates from Female Patients on the US (Texas)- Mexico Border

International Journal of Pharma and Bio Sciences ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ESBL PRODUCING GRAM NEGATIVE BACILLI ABSTRACT

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

Received: February 29, 2008 Revised: July 22, 2008 Accepted: August 4, 2008

Workplan on Antibiotic Usage Management

PrevalenceofAntimicrobialResistanceamongGramNegativeIsolatesinanAdultIntensiveCareUnitataTertiaryCareCenterinSaudiArabia

Antimicrobial Cycling. Donald E Low University of Toronto

Risk factors of ciprofloxacin resistance in urinary Escherichia coli isolates

Key words: Urinary tract infection, Antibiotic resistance, E.coli.

Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

EFFECTIVENESS OF ANTIBIOTICS IN INCREASING THE FUNCTIONAL CAPACITY AND REDUCING THE ECONOMIC BURDEN IN FEMALE URINARY TRACT INFECTION PATIENTS

January 2014 Vol. 34 No. 1

Cork and Kerry SARI Newsletter; Vol. 2 (2), December 2006

Concise Antibiogram Toolkit Background

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

UTI Dr S Mathijs Department of Pharmacology

Available online at ISSN No:

ANTIBIOTIC RESISTANCE OF FLUOROQUINOLONES AMONG THE GRAM NEGATIVE BACTERIAL UROPATHOGENS AT A TERITIARY CARE CENTRE. R.Sujatha 1, Nidhi Pal 2

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

April 25, 2018 Edited by: Gregory K. Perry, PharmD, BCPS-AQID

ETX0282, a Novel Oral Agent Against Multidrug-Resistant Enterobacteriaceae

A Study on Urinary Tract Infection Pathogen Profile and Their In Vitro Susceptibility to Antimicrobial Agents

2015 Antibiotic Susceptibility Report

levofloxacin (LVFX) LVFX LVFX LVFX Key words: Levofloxacin Escherichia coli LVFX levofloxacin (LVFX) Vol. 18 No

EARS Net Report, Quarter

Initial Management of Infections in the Era of Enhanced Antimicrobial Resistance

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

CONTAGIOUS COMMENTS Department of Epidemiology

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); August 2017

Int.J.Curr.Microbiol.App.Sci (2017) 6(11):

Approach to pediatric Antibiotics

What does multiresistance actually mean? Yohei Doi, MD, PhD University of Pittsburgh

Taiwan Surveillance of Antimicrobial Resistance (TSAR)

PHARMA SCIENCE MONITOR

03/09/2014. Infection Prevention and Control A Foundation Course. Talk outline

National Clinical Guideline Centre Pneumonia Diagnosis and management of community- and hospital-acquired pneumonia in adults

Nosocomial Infections: What Are the Unmet Needs

Fluoroquinolone Resistance Among Gram-Negative Urinary Tract Pathogens: Global Smart Program Results,

Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland

Transcription:

ORIGINAL ARTICLE 10.1111/j.1469-0691.2009.02941.x Risk factors for extended-spectrum b-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections Ö. K. Azap 1, H. Arslan 1,K.Şerefhanoğlu 1,Ş.Çolakoğlu 2, H. Erdoğan 1, F. Timurkaynak 1 and S. S. Senger 1 1) Department of Infectious Diseases and Clinical Microbiology and 2) Department of Microbiology and Clinical Microbiology, Baskent University Faculty of Medicine, Bahcelievler, Ankara, Turkey Abstract The aim of this prospective cohort study was to determine the risk factors for community-acquired urinary tract infections (UTIs) caused by extended-spectrum b-lactamase (ESBL)-positive Escherichia coli and the distribution of the ESBL enzyme types. Structured forms were filled in for patients diagnosed with community-acquired UTI in four different geographical locations in Turkey. The forms and the isolates were sent to the central laboratory at Baskent University Hospital, Ankara. Antimicrobial susceptibility was determined according to the CLSI criteria. PCR and DNA sequencing were used to characterize the bla TEM, bla CTX-M and bla SHV genes. Multivariate analysis was performed using logistic regression. A total of 510 patients with UTI caused by Gram-negative bacteria were included in this study. ESBLs were detected in 17 of 269 (6.3%) uropathogenic E. coli isolates from uncomplicated UTIs and 34 of 195 (17.4%) E. coli isolates from complicated UTIs (p <0.001). According to multivariate analysis, more than three urinary tract infection episodes in the preceding year (OR 3.8, 95% CI 1.8 8.1, p <0.001), use of a b-lactam antibiotic in the preceding 3 months (OR 4.6, 95% CI 2.0 0.7, p <0.001) and prostatic disease (OR 9.6, 95% CI 2.1 44.8, p 0.004) were found to be associated with ESBL positivity. The percentages of isolates with simultaneous resistance to trimethoprim sulphamethoxazole, ciprofloxacin and gentamicin were found to be 4.6% in the ESBL-negative group and 39.2% in the ESBL-positive group (p <0.001). Forty-six of 51 ESBL-positive isolates (90.2%) were found to harbour CTX-M-15. Therapeutic alternatives for UTI, particularly in outpatients, are limited. Further clinical studies are needed to guide the clinicians in the management of community-acquired UTIs. Keywords: Community-acquired urinary tract infection, E. coli, ESBL enzyme types, ESBL positivity, risk factors Original Submission: 5 March 2009; Revised Submission: 14 May 2009; Accepted: 15 May 2009 Editor: M. Paul Article published online: 18 August 2009 Clin Microbiol Infect 2010; 16: 147 151 Corresponding author and reprint requests: Ö. K. Azap, Baskent University Faculty of Medicine, Department of Clinical Microbiology and Infectious Disease, Fevzi Çakmak Caddesi 10. sokak No: 45, 06490 Bahcelievler, Ankara, Turkey E-mail: okurtazap@baskent-ank.edu.tr Introduction The incidence of community-acquired urinary tract infections (UTIs) due to extended-spectrum b-lactamase (ESBL)- producing Escherichia coli has increased worldwide [1,2]. Recently, the emergence of an intercontinental clone of an E. coli strain producing CTX-M-15 has gained much interest, and Turkey was reported to be concerned by this emergence of a community-acquired urinary isolate [3 5]. Besides their capacity for rapid and widespread dissemination, ESBLproducing strains are increasingly associated with resistance to non-b-lactam antimicrobials, and cause therapeutic difficulties for outpatients [6]. The aim of this prospective cohort study was to determine the risk factors for ESBL positivity in communityacquired uropathogenic E. coli strains and the distribution of the enzyme types. Materials and Methods Design of the study The present study is a prospective cohort study, and was carried out between 1 January 2007 and 31 December 2007. Patients with the diagnosis of UTI were included consecutively. UTI was defined as a growth of 10 5 CFU/mL in urine culture, pyuria, and at least one of the following symptoms: Journal Compilation ª2009 European Society of Clinical Microbiology and Infectious Diseases

148 Clinical Microbiology and Infection, Volume 16 Number 2, February 2010 CMI dysuria, frequency or urgency. Each patient was included once in the study, and only one isolate was obtained from each patient. The four centres participating in the study were located in large cities from three geographically distinct regions of Turkey. All four centres were tertiary-care hospitals of Başkent University. In Turkey, patients may be admitted to any hospital (primary-care or tertiary-care hospital) with any complaint (including dysuria), because there is not yet an admission chain scheduled in the healthcare system. In this way, consecutive outpatients admitted to the participating centres were included in this study. Data collection A structured form was used to collect data about demographic characteristics, urinalysis, signs of complication, antibiotic usage, and underlying diseases. Informed consent from participants was obtained on a written form. All forms and the identified Gram-negative uropathogens were sent to the central laboratory (Baskent University Ankara Hospital Microbiology Laboratory). This project was approved by the Başkent University Research Committee and was funded by Başkent University Research Foundation. Patients Patients between 18 and 65 years of age with the diagnosis of community-acquired uncomplicated or complicated UTI were included in the study. Uncomplicated UTI is defined as an infection in a structurally and neurologically normal urinary tract [7]. Complicated UTI is defined as an infection in a urinary tract with functional or structural abnormalities, and UTI in men and pregnant women [7]. Male patients with urolithiasis, patients who had more than three episodes of UTI in the preceding year, pregnant patients, patients with a urinary catheter and patients who had undergone an operation because of urolithiasis or bladder malignancy in the preceding year were considered to have complicated UTI. Hospital stay within the preceding month was a criterion of exclusion. Laboratory methods Standard biochemical reactions were performed as the first step for the identification of bacteria, and BBL Crystal Enteric/NF 4.0 identification kits (Becton Dickinson) were used when needed. All isolates were stored at )20 C. Antibiotics were grouped into two sets according to the requirements of clinical practice; one was tested against isolates from uncomplicated UTIs, and the other against isolates from complicated UTIs. The antibiotics tested against both types of isolate were ampicillin, amoxycillin clavulanate, cefazolin, cefuroxime, ceftriaxone, cefixime, gentamicin, ciprofloxacin, trimethoprim sulphamethoxazole, imipenem, meropenem, and ertapenem. The antibiotics tested only against isolates from uncomplicated UTIs were nitrofurantoin and fosfomycin. The antibiotics tested only against isolates from complicated UTIs were piperacillin tazobactam, cefepime, cefoperazone, ceftazidime, and amikacin. Antibacterial susceptibility testing was performed according to the CLSI criteria [8]. Quality control was ensured by testing E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and ESBL-producing Klebsiella pneumoniae ATCC 700603 in every batch. All zone sizes for these strains were within the ranges given by the CLSI for the antibiotics tested in this study. ESBL determination was performed phenotypically with ceftazidime/ceftazidime clavulanate and cefotaxime/cefotaxime clavulanate disks, as recommended by the CLSI [8]. Characterization of enzyme types PCR and DNA sequencing were used to characterize the bla TEM, bla CTX-M and bla SHV genes. DNA sequencing was performed with the DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences Corp., NJ, USA) and an ABI PRISM 310 Genetic Analyzer at Iontek Ltd, Turkey. The primers used have been described previously [9]. Statistical methods Data were analysed using the SPSS (version 11.0) software package. Categorical variables were compared using chisquare tests, although Fisher s exact test was used when data were sparse. Significance was set at p <0.05, using two-sided comparisons. A multivariate model was used. Multivariate analysis included age, gender, and all significant factors found in univariate analysis. Significance was set at p <0.05 for inclusion in the multivariate analysis. A backward stepwise method was used for the elimination of the risk factors. ESBL positivity was the dependent variable in logistic regression. Results A total of 16 130 urine samples were submitted to the microbiology laboratories of four centres during the 1-year study period. A total of 510 patients were included in this study. E. coli was isolated from 464 (90%) patients, and Klebsiella spp. were isolated from 27 (5%) patients. The mean age was 43 years, with a range of 18 65 years. E. coli was the causative agent in 269 of 289 (93%) uncomplicated UTIs and in 195 of 221 (88%) complicated UTIs (p 0.05). ESBL positivity was detected in 17 of 269 (6.3%) uropathogenic E. coli strains isolated from uncomplicated UTIs and in

CMI Azap et al. ESBL positivity in uropathogenic E. coli 149 34 of 195 (17.4%) E. coli strains isolated from complicated UTIs (p <0.001). The rates of resistance in E. coli strains against the tested antibiotics are shown in Table 1. The results of the univariate analysis are shown in Table 2. Multivariate analysis included all significant factors found in univariate analysis (more than three UTI episodes in the preceding year, prostatic disease, UTI in the preceding year, use of a b-lactam antibiotic in the preceding 3 months), and revealed that more than three UTI episodes in the preceding year (OR 3.8, 95% CI 1.8 8.1, p <0.001), use of b-lactam antibiotics in the preceding 3 months (OR 4.6, 95% CI 2.0 10.7, p <0.001) and prostatic disease (OR 9.6, 95% CI 2.1 44.8, p 0.004) were associated with ESBL positivity. The Hosmer and Lemeshow test (p 0.807) was used as a goodness-of-fit measure. The rates of ciprofloxacin resistance among ESBL-positive and ESBL-negative strains were 84% and 23%, respectively (p <0.001); the corresponding values for trimethoprim sulphamethoxazole resistance were 69% and 39% (p <0.001), for gentamicin resistance they were 57% and 9% (p <0.001), and for amoxycillin clavulanate resistance they were 76% and 13% (p <0.001). Multidrug resistance, defined as resistance to at least two of trimethoprim sulphamethoxazole, ciprofloxacin or gentamicin, was seen in 21.1% of E. coli isolates in the ESBL-negative group and in 70.6% in the ESBL-positive group (p <0.001). Isolates resistant to all three antibiotics were found at a rate of 4.6% in the ESBL-negative group and 39.2% in the ESBL-positive group (p <0.001). Forty-six of 51 ESBL-positive isolates (90.2%) were found to harbour CTX-M-15, four isolates harboured CTX-M-3, TABLE 1. Rates of resistance to antimicrobial agents in uropathogenic Escherichia coli isolates Uncomplicated UTI, n = 269 (%) Complicated UTI, n = 195 (%) Ampicillin 143 (53) 129 (66) 0.005 Amoxycillin clavulanic acid 39 (14) 52 (27) 0.001 Cefazolin 39 (14) 49 (25) 0.004 Cefuroxime 38 (14) 48 (25) 0.004 Ceftriaxone 25 (9) 36 (18) 0.004 Cefixime 25 (9) 36 (18) 0.004 Gentamicin 28 (10) 38 (19) 0.006 Ciprofloxacin 59 (22) 80 (41) <0.001 Trimethoprim sulphamethoxazole 93 (35) 98 (50) 0.001 Nitrofurantoin a 3 (1) Fosfomycin a 1 (<1) Cefoperazone b 34 (17) Ceftazidime b 18 (9) Amikacin b 11 (6) Piperacillin tazobactam b 9 (5) Cefepime b 27 (14) UTI, urinary tract infection. a Tested only for isolates from uncomplicated UTIs. b Tested only for isolates from complicated UTIs. p TABLE 2. Univariate analysis of extended-spectrum b-lactamase (ESBL) positivity among uropathogenic Escherichia coli and the remaining isolate harboured SHV-12. Six of 46 CTX- M-15-positive isolates also harboured TEM-116. Discussion Total, n = 464 (%) ESBL positivity, n = 51 (%) Age over 50 years 161 (35) 18 (11) 0.925 Complicated UTI 195 (42) 34 (17) <0.001 Male gender 59 (13) 9 (15) 0.262 Urolithiasis 45 (10) 9 (20) 0.073 Pregnancy 20 (4) 1 (5) 0.712 Urological operation 28 (6) 6 (21) 0.108 Prostatic disease 7 (2) 3 (42) 0.032 More than three UTI 47 (10) 14 (30) <0.001 episodes in the preceding year Urinary catheter 16 (3) 2 (13) 0.692 UTI in the preceding year 125 (27) 22 (18) 0.006 Use of antibiotic in the preceding 91 (20) 19 (21) 0.001 3 months Use of b-lactam antibiotic 31 (7) 11 (35) <0.001 in the preceding 3 months Use of quinolones in the preceding 3 months 29 (6) 3 (10) 1.000 UTI, urinary tract infection. ESBL-producing E. coli has become the most worrisome causative agent of community-acquired UTIs. The present study is a prospective cohort study evaluating the prevalence of and risk factors for both uncomplicated and complicated UTIs. ESBL positivity was detected in 6.3% of E. coli isolates from uncomplicated UTIs and in 17.4% of E. coli isolates from complicated UTIs. More than three UTIs in the preceding year, use of a b-lactam antibiotic in the preceding 3 months and prostatic disease were found to be associated with ESBL positivity. One of the most striking findings of this study is the high rate of resistance to other drug classes; that is, 39.2% of ESBL-producing isolates were found to be resistant to trimethoprim sulphamethoxazole, ciprofloxacin and gentamicin. CTX-M-15 was the most common (90.2%) ESBL type harboured by uropathogenic E. coli strains. In our previous study carried out in 2004, ESBL positivity was found to be 5% in isolates from uncomplicated UTIs and 12% in isolates from complicated UTIs [10]. The same increasing trend was observed in Spain [11]. Recurrent UTI, a major risk factor determined in our study, was also found to be an independent risk factor for ESBL positivity in two other studies from Spain [1,7]. Previous use of aminopenicillins [1], cephalosporins [1], cefuroxime [11], second-generation and third-generation cephalosporins [12], penicillins [12] or cephalosporins [13] was associated with ESBL positivity in other p

150 Clinical Microbiology and Infection, Volume 16 Number 2, February 2010 CMI studies. Quinolone use was found to be an independent risk factor in many studies, including one from Turkey [1,7,12,13], but was not found to be associated with ESBL positivity in a recent study, just as in the present study [11]. This is somewhat surprising, because misuse of quinolones along with other antibiotics was documented in a study from Turkey [14]. Long-term-care facilities were found to be risk factors in other studies but, as nursing home care is not common in Turkey, no long-term-care facility was included in this study. One of the most worrisome aspects of ESBL-positive bacteria concerns the high rates of resistance to non-b-lactam antibiotics, particularly quinolones, trimethoprim sulphamethoxazole, and aminoglycosides. Ciprofloxacin resistance, in a study from Spain in 2006, was reported to be 31.5% in ESBLpositive and 9.1% in ESBL-negative E. coli isolates [11]. Ciprofloxacin resistance rates, published in 2004 from Israel, were reported to be even higher: 39% in ESBL-positive and 16% in ESBL-negative E. coli isolates [12]. The results of the present study show an unfortunately high rate, 84%, of ciprofloxacin resistance among ESBL-positive E. coli isolates. Multidrugresistant isolates, which cause difficult-to-treat infections, are also increasing in parallel. In a study from Spain, the percentage of multidrug-resistant isolates was reported to be higher than 70%, similar to the rate of 70.6% found in our study [11]. The most important consequence of such high resistance rates is the ensuing difficulty in the management of UTI patients. The number of drugs available for use in the outpatient setting is limited. Nitrofurantoin and fosfomycin seem to be the only choices in appropriate cases. Fortunately, in the present study, only three of all 464 uropathogenic E. coli isolates were resistant to nitrofurantoin, and only one isolate was resistant to fosfomycin, which is similar to what has been observed in many other studies [1,10,15,16]. Amoxycillin clavulanate was used with success for patients with cystitis due to ESBL-producing E. coli in a recent study [1] where the resistance rate was 29%, and for lower urinary tract infection according to one case report [17], but as 76% of our ESBL-positive isolates were found to be resistant, this does not seem to be a good choice in our region. The first CTX-M-15-producing E. coli isolate from Turkey was reported in 2005 and was isolated from the urine of a hospitalized patient [18]. In a recent study from Turkey, CTX-M-15 was found in 53% of uropathogenic E. coli isolates from community-acquired UTIs [6]. This increase in the frequency of CTX-M-15 in such a short period should be taken note of by clinicians. The ESBL positivity and ciprofloxacin resistance rates are higher than those reported in other studies. One of the reasons for these high rates is that data were obtained from tertiary-care facilities. Another reason is probably related to the definition of community-acquired infections, because, as stated by Friedman et al. [19], there seems to be a need to change the term community-acquired to healthcareassociated, particularly in some instances. Therefore, our estimates regarding the resistance rates might be exaggerated, because we considered both tertiary-care admissions and healthcare-associated infections. In conclusion, the widespread and rapid dissemination of ESBL-producing uropathogenic E. coli seems to be an emerging issue worldwide. Further clinical studies are needed to guide clinicians in the management of community-acquired UTI cases. Transparency Declaration This project was funded by Başkent University Research Foundation. The authors declare that they have no conflicts of interest. References 1. Rodriguez-Bano J, Alcala JC, Cisneros JM et al. Community infections caused by extended spectrum beta lactamase producing Escherichia coli. Arch Intern Med 2008; 168: 1897 1902. 2. Apisarnthanarak A, Kiratisin P, Mundy LM. Predictors of mortality from community-onset bloodstream infections due to extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2008; 29: 671 674. 3. Coque TM, Novais A, Carattoli A et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis 2008; 14: 195 200. 4. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61: 273 281. 5. Yumuk Z, Afacan G, Nicolas-Chanoine MH et al. Turkey: a further country concerned by community-acquired Escherichia coli clone O25-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 62: 284 288. 6. Rodriguez-Bano J, Navarro MD, Romero L et al. Epidemiology and clinical features of infections caused by extended-spectrum beta lactamase producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 2004; 42: 1089 1094. 7. Sobel JD, Kaye D. Urinary tract infections. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of infectious diseases. Philadelphia, PA: Churchill Livingstone, 2005; 875 905. 8. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Eeighteenth informational supplement. CLSI Document M100-S18. Wayne, PA: CLSI, 2008. 9. Saladin M, Cao V, Lambert T et al. Diversity of CTX-M betalactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 2002; 209: 161 168. 10. Arslan H, Azap ÖK, Ergönül Ö, Timurkaynak F. Risk factors for ciprofloxacin resistance among E. coli strains isolated from community acquired urinary tract infections in Turkey. J Antimicrob Chemother 2005; 56: 914 918.

CMI Azap et al. ESBL positivity in uropathogenic E. coli 151 11. Calbo E, Romani V, Xercavins M et al. Risk factors for community onset urinary tract infections due to Escherichia coli harbouring extended spectrum beta lactamases. J Antimicrob Chemother 2006; 57: 780 783. 12. Colodner R, Rock W, Chazan B et al. Risk factors for the development of extended-spectrum beta-lactamase producing bacteria in nonhospitalized patients. Eur J Clin Microbiol Infect Dis 2004; 23: 163 167. 13. Yılmaz E, Akalın H, Özbey S et al. Risk factors in community acquired/onset urinary tract infections due to extended-spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae. J Chemother 2008; 20: 581 585. 14. Canbaz S, Peksen Y, Sunter AT et al. Antibiotic prescribing and urinary tract infection. Int J Antimicrob Agents 2002; 20: 407 411. 15. Knottnerus BJ, Nys S, ter Riet G et al. Fosfomycin tromethamine as second agent for the treatment of acute, uncomplicated urinary tract infections in adult female patients in the Netherlands? J Antimicrob Chemother 2008; 62: 356 359. 16. Ena J, Francisco A, Martinez-Peinado C et al. Epidemiology of urinary tract infections caused by extended spectrum beta lactamase producing Escherichia coli. Urology 2006; 68: 1169 1174. 17. Lagace-Wiens PRS, Nichol KA, Nicolle LE et al. Treatment of lower urinary tract infection caused by multi-drug resistant extended-spectrum beta lactamase producing E. coli with amoxicillin/clavulonate: case report and characterization of the isolate. J Antimicrob Chemother 2006; 57: 1262 1263. 18. Aktaş Z, Gönüllü N, Schneider I et al. Detection of CTX-M-15 type extended spectrum beta-lactamase in an Escherichia coli strain isolated from the urine sample of a hospitalized patient. Mikrobiyol Bul 2005; 39: 421 429. 19. Friedman ND, Kaye KS, Stout JE et al. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community acquired infections. Ann Intern Med 2002; 137: 791 797.