Focus on Ophthalmology Inside the Eye of the Horse

Similar documents
International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

Nursing the canine bilateral cataract patient: a case study

F1 IN THE NAME OF GOD

4/29/12. Dr. Taravella does not have any financial interest in the material, methods or techniques presented.

REVIEW OF OPHTHALMOLOGY SECTION OF WHO MODEL LIST OF ESSENTIAL MEDICINES. Sight Savers International and The Vision 2020 Technology Group

LOWER EYELID RECONSTRUCTIVE SURGERY AFTER SEBACEOUS GLAND ADENOMA RESECTION IN A GERMAN SHEPHERD DOG: A CASE REPORT

Lens luxation when the lens gets wobbly

Index. Note: Page numbers of article titles are in boldface type.

Animal Studies Committee Policy Rodent Survival Surgery

Proceedings of the American Association of Equine Practitioners - Focus Meeting. Focus on Colic. Indianapolis, IN, USA 2011

UNIVERSITY OF PITTSBURGH Institutional Animal Care and Use Committee

Roundtable Notes from 2013 IEOC/Acrivet Symposium

Gastric Dilatation-Volvulus

STANDARD OPERATING PROCEDURE RODENT SURVIVAL SURGERY

DREXEL UNIVERSITY COLLEGE OF MEDICINE ANIMAL CARE AND USE COMMITTEE POLICY FOR PREOPERATIVE AND POSTOPERATIVE CARE FOR NON-RODENT MAMMALS

IACUC POLICY Rodent Survival Surgery

Ocular Field Surgery in Ruminants

Perioperative Care of Swine

International Journal of Veterinary Medicine: Research & Reports

3/28/16. You can always take the eye out later!

SURGICAL (SURVIVAL) OOCYTE COLLECTION FROM XENOUS LAEVIS

Veterinary Ophthalmology

RESEARCH AND TEACHING SURGERY GUIDELINES FOR MSU-OWNED ANIMALS

How to Use Delayed Closure for Limb Wound Management

Common Clinical Findings. Age When Recognized Varies. Autosomal Recessive Trait. Common Ancestors or Selective Breeding

Antimicrobial Selection and Therapy for Equine Musculoskeletal Trauma

All India Ophthalmological Society members survey results: Cataract surgery antibiotic prophylaxis current practice pattern 2017

Canine Total Hip Replacement

Canine Spay and Neuter Services At Manzini Animal Hospital

STERILIZED NYLON MOSQUITO NET FOR RECONSTRUCTION OF UMBILICAL HERNIA IN BUFFALOES

Australian and New Zealand College of Veterinary Scientists. Fellowship Examination. Veterinary Ophthalmology Paper 1

Treatment of septic peritonitis

A Current Look at Navicular Syndrome. Patrick First, DVM

AN EYE FOR OPHTHALMOLOGY

Richard J. McMullen Jr.

Spotting eye problems in pets 13 October 2014, by Genevieve Rajewski

Yosemite Pet Hospital, Inc

VOTS Meeting Nov Puerto Rico. Billie Beckwith-Cohen, DVM, MBA Comparative Ocular Pathology Fellow UW-Madison School of Veterinary Medicine

Sites of IM injections : 1. Ventrogluteal site: site is in the gluteus medius muscle, which lies over the gluteus minimus. 2. Vastus lateralis site:

articles Key M70rds: cataract-implant surgery, methylcellulose, pachometry, specular microscopy, viscoelastic, viscosurgery

Patient Preparation. Surgical Team

THAL EQUINE LLC Regional Equine Hospital Horse Owner Education & Resources Santa Fe, New Mexico

Equine Emergencies. Identification and What to do Until the Vet Arrives Kathryn Krista, DVM, MS

EYE CONDITIONS IN THE DOMESTIC FERRET

POLICY ON ASEPTIC RECOVERY SURGERY ON USDA REGULATED NONRODENT SPECIES Adopted by the University Committee on Animal Resources October 15, 2014

Package leaflet: Information for the user. HYDROCORTISON CUM CHLORAMPHENICOL 5 mg/g + 2 mg/g eye ointment hydrocortisone acetate, chloramphenicol

Cataract Surgery in the Dog

JF Akinrinmade & OI Ogungbenro*

NUMBER: R&C-ARF-10.0

Animal, Plant & Soil Science

Concurrent clinical intraocular findings in horses with depigmented punctate chorioretinal foci

LATARJET Open Surgical technique

PROTOCOL FOR ANIMAL USE AND CARE

Proceeding of the SEVC Southern European Veterinary Conference

Eye disease comes under the spotlight

Clinical Study Update: Surgical Therapeutics

Pathogens and Antibiotic Sensitivities in Post- Phacoemulsification Endophthalmitis, Kaiser Permanente, California,

Anesthesia Check-off Form

JEFFERSON COLLEGE COURSE SYLLABUS VAT114 PRINCIPLES OF CLINICAL MEDICINE II. 4 Credit Hours

Backcountry First Aid Prevention, Triage and

Delayed-Onset Post-Keratoplasty Endophthalmitis Caused by Vancomycin-Resistant Enterococcus faecium

Canine Ophthalmology Diseases

CADTH. Rapid Response Report: Peer-Reviewed Summary with Critical Appraisal. Canadian Agency for Drugs and Technologies in Health

CE West June 1-3, 2018 Wine Country Inn, Palisade, CO

Modified extracapsular extraction versus endocapsular phacoemulsification: intraoperative and immediate postoperative events

NUMBER: /2005

Feline Ophthalmology!

Proceedings of the 57th Annual Convention of the American Association of Equine Practitioners - AAEP -

Proceedings of the 10th International Congress of World Equine Veterinary Association

Regional and Local Anesthesia of the Wrist and Hand Aided by a Forearm Sterile Elastic Exsanguination Tourniquet - A Review

Associated Terms: Breast Cancer, Radical Mastectomy, Mastectomy, Mammectomy, Mammary Adenocarcinoma

Ophthalmologists are beginning to turn to

Section A Definitions

Lameness Evaluation How to Spot It First Aid for Common Conditions When to Call the Vet. Ocean State Equine Associates

EMERGENCIES When to Call the Vet And What to Do Until They Arrive

Proceedings of the 55th Annual Convention of the American Association of Equine Practitioners

2/5/2016. Military Tourniquet PFN:SOMTRL0B. Terminal Learning Objective. Reason. Hours: 0.5

SOS EMERGENCY ANIMALS Please note that the following scenario(s) are generalized

VS208 Emergency Medicine and Critical Care

Surgical Cross Coder. Essential links from CPT codes to ICD-9-CM and HCPCS codes

Preventing Postoperative Infection and Inflammation

Keeping an eye on causes of glaucoma

IN THE DAILY LIFE of a veterinarian or

10/8/17. Feline Conjunctivitis. Feline Ophthalmology. Feline Herpes Virus Type-1. Feline Herpes Virus Type-1. Feline Herpes Virus Type-1 Treatment

SOP #: Page: 1 of 6 Rodent Analgesia

Cataracts are the leading cause of visual impairment and

INTRACAMERAL PROPHYLAXIS IN CATARACT SURGERY

Dog Welfare Assessment App Guidance Document

Veterinary Continuous Education in Europe International non-profit association. Competences for. VETCEE accredited equine programs.

Use And Misuse Of Antibiotics In Neurosurgery

Australian College of Veterinary Scientists. Fellowship Examination. Small Animal Surgery Paper 1

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Science & Technologies RETROSPECTIVE STUDY ON THE PREVALENCE OF UVEITIS IN DOGS

UNTHSC. Institutional Animal Care and Use Committee. Title: Analgesics and Anesthesia in Laboratory Animals at UNTHSC. Document #: 035 Version #: 02

MICROCHIP IMPLANTATION

2011 ASPCA. All Rights Reserved.

Indication for laser acupuncture, body and ear acupuncture treatment

Guidelines and Oversight of Surgical Procedures in Rodents

Ocular Tear Film Stability in Extra Ocular Diseases of Dogs

Proceeding of the SEVC Southern European Veterinary Conference

Transcription:

www.ivis.org Proceedings of the American Association of Equine Practitioners - Focus Meeting Focus on Ophthalmology Inside the Eye of the Horse Raleigh, NC, USA 2012 Next Focus Meetings: August 4-6, 2013 - Focus on Dentistry Charlotte, NC, USA September 5-7, 2013 - Focus on the Foot Fort Collins, CO, USA Reprinted in the IVIS website with the permission of the AAEP http://www.ivis.org

Equine Cataract Surgery Brian C. Gilger, DVM, MS, Diplomate ACVO Author s address: College of Veterinary Medicine, North Carolina State University, Raleigh, NC; e-mail: bgilger@unity.ncsu.edu. Take Home Message Although equine cataract surgery is not as routine as human or canine cataract surgery, recent advances in technique has made surgery a viable option for treatment of advanced cataracts in foals and adult horses. Complicating factors, such as pre-existing uveitis and postoperative infection, glaucoma, and lens capsular fibrosis remain areas of concern with the equine patient. Introduction Cataracts are a relatively common ocular disease in horses and can occur as both acquired and developmental defects. 1 Acquired cataracts occur in horses of all ages and are frequently secondary to other disease processes, such as uveitis and trauma. Cataracts are the most common congenital ocular anomaly in foals. 1-5 Cataracts that cause substantial visual deficits can be removed via phacoemulsification and aspiration. Phacoemulsification and aspiration (PA) is the technique of choice for removal of cataracts in foals and adult horses. 7-9 Use of an intraocular lens (IOL) in the horse, until recently, has been uncommon. However, newer IOL materials and improved technique has made use of IOLs standard of care for equine cataract surgery. 10-12 Surgical Assessment Similar to other animals, workup for a horse that is a candidate for cataract surgery should include a complete ocular (both eyes!) and physical examination (including a rectal exam to assess predisposition for colic), routine blood work (complete blood count [CBC]), serum chemistry profile, urinalysis), an electroretinogram, and ocular ultrasound. If the horse has historical or clinical evidence of recurrent uveitis, you should also submit serum and aqueous humor (collected at the time of surgery) leptospiral titers. Careful consideration should also be made of the horses AND owners temperament to determine if both can tolerate the long-term treatment and care that will be required after surgery. Preoperative Preparation Because of the concern for bacterial contamination and endophthalmitis after cataract surgery in horses, routine use of systemic and topical antibiotics is recommended. Also, we advise that if both eyes are candidates for cataract surgery, one should consider the pros and cons of the risk of bilateral endophthalmitis versus two anesthetics periods. We commonly recommend, therefore, that one eye be done at a time. Topical 4 th generation fluoroquinolones (Moxifloxacin, Vigamox, Alcon, Ft Worth, TX), which have been demonstrated to penetrate the intact cornea well and have a broad spectrum activity, are used for at least 24 hours prior to surgery and 3 days after surgery. A topical antibiotic is generally recommended for the length of time that the eye 103

requires topical corticosteroid treatment. Intravenous antibiotics are generally also recommended for the 24-hour peri-surgical time period followed by 10-14 days of oral antibiotics. Topical atropine is used starting 12 to 18 hours prior to surgery. Systemic NSAIDS, preferably flunixin meglumine, is given starting at least 1 hour prior to surgery and continued in a decreasing dosage for up to 3 weeks after surgery. Gastric protectants, such as ranitidine and /or omeprazole (Gastrogard, Merial) are routinely used to help prevent side effects. See Appendix A for the NCSU complete preoperative equine cataract medication protocol. Patient Positioning Correct positioning of the horse is critical for success for any type of intraocular surgery. For cataract surgery, the horse is placed in lateral recumbancy. The down eye is protected from pressure or exposure trauma, either by pillows or an inflatable ring. The horse s nose is elevated using foam pillows so that the cornea of the eye to be operated on is parallel to the floor (Fig. 1). To prevent facial nerve paralysis after surgery, one must be careful that there is no pressure on the facial nerve from the halter (remove it), pillows, or tape. An operating microscope with coaxial illumination is essential to perform cataract surgery in the horse. Adequate visualization and lighting cannot be accomplished with any other system. The microscope base is placed opposite the surgeon, with the microscope arm extending over the horse s body to position above the eye. Fig. 1. Patient positioning horizontal cornea. Surgical Preparation After the horse is in a stable plane of general anesthesia, it should either be paralyzed or have had a retrobulbar block performed to prevent ocular movement and pressure on the eyes from tension of the extraocular muscles. Like all intraocular surgery, the horse and operating table should be covered with sterile drapes after surgical preparation. Adhesive, waterproof, aperture drapes are an effective barrier to contamination around the eyes. A lateral canthotomy may be required depending on the horse. 104

Surgical Approach A 3-step, hinged corneal incision is recommended for the equine cataract surgery. A clear corneal approach is generally used for equine cataract surgery. Using a #64 microsurgical blade the right handed surgeon makes a 75-90% 5 mm long groove in the either dorsolateral (right eye) or dorsotemporal cornea (left eye), 1-2 mm from the limbus. The left-handed surgeon would use an opposite approach. The goal is to avoid the corpora nigra (Fig. 2). Fig. 2A. 3 step corneal incision. From Coombes and Gartry, Cataract Surgery, BMJ Books. Fig. 2B. Surgical approach. Following the corneal groove, a 3.2 mm triangular blade is used to enter the eye. The equine iris is rarely completely dilated and the anterior chamber is relatively shallow. Therefore, inadvertent iris trauma is common and should be avoided as much as possible. This technique also results in a 2 step corneal wound that allows more accurate and watertight closure of the cornea. Aqueous humor should be collected prior to entering the eye (usually after the groove), but before use of the triangular blade. When removing the blade, this should be done slowly to again avoid iris trauma and to allow slow leakage of aqueous humor. Rapid release of aqueous humor, and its resultant rapid pressure drop, may cause the iris or ciliary body to hemorrhage. If hemorrhage occurs, either during iris trauma or rapid pressure drop, or if the pupil becomes miotic, use of approximately 0.5 ml of 1:10:000 epinephrine (diluted in BSS) injected intracamerally generally assist in minimizing the hemorrhage. If the iris appears to be in the path of the triangular blade during ocular entry, place a small bleb of viscoelastic (VE) to deepen the anterior chamber near the incision. Use of higher concentration hylaluronic acid VE (BioVisc, AcriVet, Berlin) is particularly effective for this maneuver. Capsulorhexis In the new age of the routine use of equine IOLs, the perfect anterior capsulotomy is required. To perform a continuous tear capsulotomy (CCC), the anterior chamber is vaulted with VE and an incision is made in the peripheral lens capsule. How this incision is made is a personal preference. Some people like to make a radial incision using a 25 g needle or cystotome; others prefer to make a horizontal incision using a needle or blade (Fig. 3). The CCC can be started from this incision, or the incision can first be initiated, generally clockwise, using capsulorhexis scissors. Due to the large equine eye, shallow anterior chamber, and relatively small corneal incision, standard or elongated Utrata forceps are difficult to open and use. A much better 105

instrument to use is the AcriVet equine capsulorhexis forceps (AcriVet, Berlin). Using this instrument, the standard CCC, using controlled shearing, but not uncontrolled ripping, of the capsule can be accomplished. Additionally, because of the size of the equine eye, a central CCC is difficult to accomplish using standard techniques. An easier, and more accurate method of equine CCC is using a radiofrequency CCC unit. This instrument eliminates the need to decide what type of initial incision is made and nearly always makes a perfect, central CCC. This perfectly central CCC eases IOL placement and allows a clear central visual axis postoperatively. Some surgeons prefer to do the CCC after PA of the lens. Although this may decrease some trauma to the corneal endothelium by keeping more lens fragments within the lens capsular bag, the risk for radial tears is high. Phacoemulsification and Aspiration Fig. 3. Capsulorhexis. Although PA can be accomplished successfully with a standard human or canine cataract system, use of a dedicated equine specific PA system (e.g., ALEXOS, AcriVet, Berlin, Germany) is highly recommended. The long needle, power, and irrigation and aspiration system designed for the horse eliminates the need to make multiple ocular incisions and allows the surgeon to be able to reach across the eye. Placement of long needles on standard PA hand pieces is also not recommended because microscopic cavitation bubbles that are commonly produced will be damaging to the eye. Use of one or two-handed PA technique can be done depending on the density of the lens. If the horse is older than 8 to 10 years of age, I generally prepare to perform the PA technique twohanded. The posterior capsule in the horse is especially fragile, even in older horses; so much care is needed to prevent posterior capsular rupture. I prefer to perform all PA in the zone of safety in the anterior capsular bag. The conquer and divide PA method works well in horses and entails splitting the lens with a central groove, then splitting the halves and removing lens quadrants. Because of the large and deep equine lens, the surgeon should keep one foot on focus of the operating microscope, which generally needs frequent adjustments. IOL Placement Although the appropriate equine IOL power has yet to be determined, studies indicate that the correct IOL power will ultimately be approximately diopters. Use of the commercially available 106

18-diopter equine IOL for adult horses (AcriVet, Berlin, Germany) and a 14-diopter equine IOL for foals less than 6 month of age is recommended. Although these lenses may not have the correct power, horses that have received it have done well and have had excellent visual outcomes far superior to eyes left aphakic. To place the equine IOL, the lens capsular bag and anterior chamber are filled with viscoelastic. The cornea is opened along the original groove to a width of 5 mm using standard size right and left corneal section scissors. The IOL is folded in half with custom lens folding forceps and coated with VE. The leading haptic of the IOL is placed into the distal (dorso-lateral) lens capsular bag and the IOL forceps are removed leaving the IOL partially in the anterior chamber. The second IOL haptic is manipulated using a buttonhook lens manipulator so that the haptics are in the ventral medial capsule. Surgical Closure The cornea is closed with simple interrupted, simple continuous, or a shoelace continuous pattern of 7-0 to 8-0 absorbable suture, such as polyglatin 910 (Vicryl). The advantages of the shoelace continuous pattern include a lack of lateral wound shifting, a tight non-leaking incision, and a low incidence of dehiscence; therefore it is recommended over the other patterns. Removal of the VE by irrigation and aspiration is recommended prior to final tightening of the incision. Because of the high chance of inflammation, low incidence of postoperative pressure spikes, and lack of safety data, use of miocol or other intraocular miotic is not recommended in horses at this time. If I am concerned about the integrity of the incision, I recommend placing a fornix base microhood conjunctival graft over the incision to further safeguard the eye for any type of dehiscence. The equine cornea commonly has mild to moderate corneal edema surrounding the incision, so the conjunctival graft makes me feel more confident of the incision. An incision through the conjunctiva is made at the limbus adjacent to the corneal wound. The conjunctiva is undermined and advanced over the incision. Generally 3-4 simple interrupted sutures of 7-0 to 8-0 vicryl are used to tack the conjunctiva in place. To minimize ocular trauma on recovery, a lateral temporary tarsorrhaphy is performed. The suture is removed after the horse has recovered and is standing. Head protectants (hoods) and eyecups are not used because they may cause further trauma on recovery and should never be used after surgery in a horse not trained or used to wearing them. Frequent postoperative lubrication with a hyaluronic-based artificial tear (Blink, CibaVision) is also done to minimize drying trauma. Postoperative Considerations Complications after equine cataract surgery seem to be higher than in canine surgery, but definitive studies have not been done. Common short-term (<14 days) ocular complications include uveitis, corneal edema, hyphema, corneal dehiscence, and retinal detachment. Longterm complications (>14 days) include glaucoma, uveitis, corneal edema, capsular fibrosis, retinal detachment). Most horses need medical therapy for up to 3 months, in decreasing frequency. Some horses require a baseline level of anti-inflammatory medications to keep the eyes quiet. We place a subpalpebral catheter (MILA) to ease the administration of medications post-operatively. 107

Colic, cecal impactions, colitis, and laminitis are common and sometimes fatal complications in hospitalized horses and seem particularly common after ophthalmic general anesthesia. Owners should be advised of these risks (including other anesthetic-related risks such as orthopedic injury) prior to surgery. Additional postoperative IV fluids (for up to 12 hours after surgery) may prevent colic, and careful monitoring of stool production, gut sounds, and digital pulses may catch the diseases in the early stages. References 1. Matthews AG. Lens opacities in the horse: a clinical classification. Vet Ophthal 2000;3:65-71. 2. Beech J, Aguirre G, Gross S. Congenital nuclear cataracts in the Morgan horse. J Am Vet Med Assoc 1984;184:1363-1365. 3. Whitley RD. Diseases and surgery of the lens. In: Equine Ophthal 1 st edition (ed. Gilger BC). Elsevier Saunders: St. Louis, 2005;269-284. 4. Latimer CA, Wyman M, Hamilton J. An ophthalmic survey of the neonatal horse. Equine Vet J Supplement 1983;2:9-14. 5. Munroe GA, Barnett KC. Congenital ocular disease in the foal. Vet Clin of N Am Large Animal Pract 1984;6:519-537. 6. Roberts SM. Congenital ocular anomalies. Vet Clin of N Ama Equine Pract 1992;8:459-478. 7. Fife TM, Gemensky-Metzler AJ, Wilkie DA, et al. Clinical features and outcomes of phacoemulsification in 39 horses: a retrospective study (1993-2003). Vet Ophthal 2006;9:361-368. 8. Brooks, DE. Phacoemulsification cataract surgery in the horse. Clin Tech in Equine Pract 2005;4:11-20. 9. Dziezyc J, Millichamp NJ, Keller CB. Use of phacofragmentation for cataract removal in horses: 12 cases (1985-1989). J Am Vet Med Assoc 1991;198:1774-1778. 10. McMullen RJ JR, Davidson MG, Campbell NB, et al. In vitro and in vivo evaluation of a 30 D and 25 D equine intraocular lens implants. Am J Vet Res 2010; 71: 809-816. 11. Townsend WM, Jacobi S, Bartoe JT. Phacoemulsification and implantation of foldable +14 diopter intraocular lenses in five mature horses. Equine Vet J 2012; 44: 238-243. 12. Harrington JT, McMullen RJ, Clode AB, et al. Phacoemulsification and +14 diopter intraocular lens placement in a Saddlebred foal. Vet Ophthal 2012 (In press). 108