Research Article Detection of Amitraz Resistance in Rhipicephalus (Boophilus) microplus from SBS Nagar, Punjab, India

Similar documents
BY USING DIFFERENT IN VITRO TESTS*

Acaricidal resistance in Rhipicephalus (Boophilus) Microplus ticks infesting cattle of Andhra Pradesh

Veterinary Parasitology

Resistance to ectoparasiticides as a result of malpractices by farmers. Dr Tom Strydom Malelane Research Unit

Available online at Veterinary Parasitology 152 (2008) Short communication

Article Artikel. Z Ntondini a, E M S P van Dalen b* and I G Horak c. came onto the market. These included. of organophosphates and pyrethroids,

International Journal of Science, Environment and Technology, Vol. 5, No 5, 2016,

TICK RESISTANCE TO ACARICIDES. Dr. Obadiah N. Njagi, PhD DEPUTY DIRECTOR Date:14/11/2013 1

M.G. Fletcher and R.C. Axtell. Department of Entomology, Box 7613, North Carolina State University, Raleigh, NC , USA

THF EGG. OUTLINE LIFE-HISTORY OF THE CHRY$OMELID GAS TROIDEA CYANEA MELSHEIMER.

VI Seminario Internacional de Parasitología Animal 2008 Boca del Río Veracruz, del 3 al 5 de Septiembre

RESISTANCE OF RHIPICEPHALUS MICROPLUS TO AMITRAZ AND CYPERMETHRIN IN TROPICAL CATTLE FARMS IN VERACRUZ, MEXICO

Invivo and Invitro Acaricide Efficacy Evaluation on Cattle Ticks in Selected Areas of Wolaita and Dawuro Zones, Ethiopia

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

1. Babesia bigemina. 2. Anaplasma marginale. 3. Theileria orientalis. 4. Trypanosoma evansi. Vector: Rhipicephalus (Boophilus) microplus.

Innovation in Action. Passion to innovate. Global Conference on Sustainable Beef. Power to change. Science for a better life ///////////

ABSTRACT. 1. Introduction. 2. Materials and Methods

Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance

SHEEP LICE - CONTROL AND INSECTICIDE RESISTANCE

Deptt of Pharma Science SGRR ITS Patel Nagar, Dehradun (UK)

It s Back! T echnical Manual. Fast, effective lice control for sheep

Tick bite prevention and control

The effects of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae)

Slide 1. Slide 2. Slide 3

PREVALENCE AND SEASONAL VARIATION IN IXODID TICKS ON BUFFALOES OF MATHURA DISTRICT, UTTAR PRADESH, INDIA

Research Article Distribution of Dengue Vectors during Pre- and Post-Monsoon Seasons in Higher Attitudes of Nilgiri Hills of Western Ghats, India

COMMITTEE FOR MEDICINAL PRODUCTS FOR VETERINARY USE (CVMP)

TEAT DIP- POST DIP- PRE DIP- STRIPING

VETERINARY MEDICINAL PRODUCTS CONTROLLING VARROA JACOBSONI AND ACARAPIS WOODI PARASITOSIS IN BEES

International Journal of Advances in Pharmacy and Biotechnology Vol.3, Issue-2, 2017, 1-7 Research Article Open Access.

FIELD EVALUATION OF THE BIOEFFICACY OF CARBATIX 85 S WP AGAINST CATTLE TICKS UNDER NATURAL INFESTATIONS IN THE TRANSMARA WEST SUB-COUNTY OF KENYA

Integration of Embryonic Zebrafish and Passive Sampling Device Extracts to Explore Mixture Toxicity

REPORT TITLE Efficacy of A-SNE Nature-Cide Insecticidal Dust. STUDY Product Development 15

Laboratory 7 The Effect of Juvenile Hormone on Metamorphosis of the Fruit Fly (Drosophila melanogaster)

CHEMICAL CONTROL OF BLOWFLY STRIKE INTRODUCTION S.G. GHERARDI*

Anti-tick vaccines: A potential tool for control of the blacklegged ticks and other ticks feeding on whitetailed deer

InvivoandInvitroAcaricideEfficacyEvaluationonCattleTicksinSelectedAreasofWolaitaandDawuroZonesEthiopia

Antibiotic Resistance in Bacteria

BIO-EFFICACY OF FIPRONIL 200 SC FOR THE CONTROL OF LEAF FOLDER AND YELLOW STEM BORER IN RICE

INCIDE 25 FLY KILLER SURFACE AND TOPICAL SPRAY AGRICULTURAL. Main Panel English: InCide 25 Fly Killer ml 3 INSECTICIDE

COMPARATIVE EVALUATION OF DIFFERENT CLASSES OF INSECTICIDES IN THERAPEUTIC MANAGEMENT OF CAPRINE PEDICULOSIS

Efficacy of Acaricides and Lethal Concentration (LC 50 ) in Spider Mites (Tetranychus urticae) from Three Red Raspberry Fields in Western Washington

EFFECT OF SOME INSECTICIDES ON PARASITOID, APHELINUS MALI HALD (HYMENOPTERA: APHELINIDAE) OF THE WOOLLY APPLE APHID ERIOSOMA LANIGERUM HAUSMANN

PSYCHE. THE NATURAL HISTORY OF ANOSIA PLEXIPPUS IN NEW ENGLAND.

Incidence of Haemoprotozoan diseases in Cattle in Southern Rajasthan, India

Integrated Resistance Management in the control of disease transmitting mosquitoes

Ecology of RMSF on Arizona Tribal Lands

Rapid LC-MS/MS Method for the Analysis of Fipronil and Amitraz Insecticides and Associated Metabolites in Egg and Other Poultry Products

TRENDS IN VETERINARY PARASITOLOGY

A SURVEY OF SMALL STOCK TICK CONTROL PRACTICES IN THE EASTERN CAPE PROVINCE OF SOUTH AFRICA

AWARENESS OF FARMERS REGARDING HYGIENIC HANDLING OF THEIR CATTLE TO PREVENT ZOONOTIC DISEASES

Biology of Citrus Trunk Borer (Anoplophora versteegi Rits.) (Coleoptera : Cerambycidae) under Laboratory Conditions

Survey of pesticides used in the control of ectoparasites on farm animals in Kaduna State, Northern Nigeria

THE LARVA OF ROTHIUM SONORENSIS MOORE & LEGNER. BY IAN MOORE Department of Entomology, University of California, Riverside, California 92521

Mastitis in ewes: towards development of a prevention and treatment plan

XLVII, 1873, p. 97) has written: "Abaris picipes et striolatus

SPECTROPHOTOMETRIC ESTIMATION OF MELOXICAM IN BULK AND ITS PHARMACEUTICAL FORMULATIONS

Adult and larval insecticide susceptibility status of Culex quinquefasciatus (Say) mosquitoes in Kuala Lumpur Malaysia

SIMPLE U.V. SPECTROPHOTOMETRIC METHODS FOR THE ESTIMATION OF OFLOXACIN IN PHARMACEUTICAL FORMULATIONS

A SURVEY OF CATTLE TICK CONTROL PRACTICES IN THE EASTERN CAPE PROVINCE OF SOUTH AFRICA

Mortality and Foraging Rates of Argentine Ant (Hymenoptera: Formicidae) Colonies Exposed to Potted Plants Treated with Fipronil 1

African Anthophora 23

PSYCHE A NEW GENUS AND SPECIES OF SALDIDAE FROM SOUTH AMERICA (HEMIPTERA) BY CARL J. DRAKE AND LUDVIK HOBERLANDT. Iowa State College, Ames

1. INTRODUCTION. Ticks are obligate haematophagous ectoparasites with. worldwide distribution and they have a significant impact on human

Ectoparasite Prevalence in Small Ruminant Livestock of Ginir District in Bale Zone, Oromia Regional State, Ethiopia Tesfaye Belachew 1 *

The new power in parasite protection

Doug Carithers 1 William Russell Everett 2 Sheila Gross 3 Jordan Crawford 1

Rice Research: Open Access

DEWORMING PROCESS KRISHIMATE AGRO AND DAIRY PVT LTD NO.1176, 1ST CROSS, 12TH B MAIN, H A L 2ND STAGE, INDIRANAGAR BANGALORE , INDIA

Evaluation of Novel Groups of Insecticides against Leaf Folder, Cnaphalcrocis medinalis (Guenee) in Rice Crop

Warm Up What recommendations do you have for him? Choose a partner and list some suggestions in your lab notebook.

Improved Susceptibility Disk Assay Method Employing an

Product Performance Test Guidelines OPPTS Treatments to Control Pests of Humans and Pets

Sheep Scab. Fig. 1: Sheep scab can be introduced from stray sheep - this perimeter fence is not secure.

ANIMAL PEST CONTROL Study Questions to help you prepare for the TDA Commercial/Non-Commercial Exam

Pollutants of Emerging Concern in Orange County Stormwater. Synthetic Pyrethroid Pesticides Fipronil Pesticide

Economic Significance of Fasciola Hepatica Infestation of Beef Cattle a Definition Study based on Field Trial and Grazier Questionnaire

Evaluation of Systemic Chemicals for Avocado Thrips and Avocado Lace Bug Management

A Field Study on Efficacy of Albendazole (Albezol ) Against Gastro-intestinal Nematodes in Ruminants

Conveyor Belt Treatment of Wood - Summary Report

INSECT CONTROL ON SWINE 2019 Lee Townsend and Ric Bessin, Extension Entomologists

Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West-Africa

TRYPANOSOMIASIS IN TANZANIA

Quantification of Albendazole in Dewormer Formulations in the Kenyan market

Approved by the Food Safety Commission on September 30, 2004

Pharm 262: Antibiotics. 1 Pharmaceutical Microbiology II DR. C. AGYARE

NORFA: The Norwegian-Egyptian project for improving local breeds of laying hens in Egypt

EXCEDE Sterile Suspension

Research Article Canine Babesiosis in Northwestern India: Molecular Detection and Assessment of Risk Factors

Estimation of Milk Losses due to Fasciolosis in Uttarakhand

Estimation of Economic Losses due to Haemorrhagic Septicaemia in Cattle and Buffaloes in India

Report by the Director-General

Benefit Cost Analysis of AWI s Wild Dog Investment

J. Bio. & Env. Sci. 2015

Evaluation of infestation level of cattle by the tick Rhipicephalus microplus in New-Caledonia : Test of a new assessment grid

SOLUTIONS TO ANIMAL PEST CONTROL STUDY QUESTIONS For the TDA Commercial/Non-Commercial Exam

RESPONSIBLE ANTIMICROBIAL USE

Evaluation of Horn Flies and Internal Parasites with Growing Beef Cattle Grazing Bermudagrass Pastures Findings Materials and Methods Introduction

Biossay of acaricide resistance on three common cattle tick species at Holotta, Central Ethiopia

Research Article Occurrence of Ticks in Cattle in the New Pastoral Farming Areas in Rufiji District, Tanzania

Transcription:

e Scientific World Journal, Article ID 594398, 4 pages http://dx.doi.org/10.1155/2014/594398 Research Article Detection of Amitraz Resistance in Rhipicephalus (Boophilus) microplus from SBS Nagar, Punjab, India N. K. Singh, Abhijit Nandi, Jyoti, and S. S. Rath Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India Correspondence should be addressed to N. K. Singh; nirbhayksingh@yahoo.co.in Received 29 August 2013; Accepted 9 October 2013; Published 11 February 2014 Academic Editors: M. J. Perteguer and K. Tyler Copyright 2014 N. K. Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The resistance status of Rhipicephalus (Boophilus) microplus collected from SBS Nagar, Punjab, was evaluated against amitraz by Adult Immersion Test (AIT). The regression graph of probit mortality of ticks plotted against log values of progressively increasing concentrations of amitraz revealed the slope of mortality (95% CI) as 2.36 ± 0.61 (0.38 to 4.33). The LC 50 (95% CI) and LC 95 (95% CI) values were recorded as 332.52 ppm (305.06 362.44) and 1646.93 ppm (1383.97 1959.84), respectively, and the resistance factor (RF) was 13.17 which indicated level II resistance status. The dose response curves for egg mass weight, reproductive index, and percentage inhibition of oviposition were also validated by AIT and the slopes (95% CI) were 7.17 ± 2.41 ( 14.85 to 0.50), 0.009±0.02 ( 0.16 to 0.031),and 19.99±4.77 (4.81 to 35.17), respectively. The current study reports the development of resistance in R. (B.) microplus to amitraz from Punjab state and the data generated would be useful in formulation of effective control strategies against ticks of this region. 1. Introduction Rhipicephalus (Boophilus) microplus is a widely prevalent tick infesting dairy animals in tropical and subtropical regions of the world, causing major economic losses to cattle producers directly through feeding on parasitized cattle and indirectly by transmitting several disease-causing pathogens to the host (Babesia bovis, Babesia bigemina and Anaplasma marginale) [1]. One of the most employed strategies used to control infestationof R. (B.) microplus is the application of acaricides on the body of the host. However, the indiscriminate and incessant use with improper concentrations has probably contributed to the development of resistance to most of the acaricides in several countries [2]. The formamidine (amitraz) was initially introduced to control organophosphate (OP) resistant ticks at the same time when the synthetic pyrethroids (SP) were introduced, but its use was initially limited due to higher cost. However, the development of SP resistance in ticks has led to an increased dependency of farmers on amitraz and hence its usage has increased many folds in recent past. In India, the first case of amitraz resistance was detected in R. (B.) microplus ticks from Banaskantha district, Gujarat [3]. Further, the development of tick resistance against the OP compounds [4] and SPs [5] inpunjabstatehadcausedthefarmerstoshifttowards indiscriminate use of amitraz for tick control, thus leading to emergence of resistance against it. However, as reports of development of amitraz resistance in R. (B.) microplus are unavailable from this part of the country, the current study was undertaken to detect amitraz resistance in R. (B.) microplus. 2. Materials and Methods 2.1. Sample Collection. Live engorged adult female R. (B.) microplus ticks were collected from sheds of dairy animals comprising cross bred cattle as well as buffaloes from district SBSNagar,Punjab.Alsodatarelatedtofrequency,typeand mode of acaricide treatment adopted by the owners and their experiences about the commonly used acaricides efficacy were recorded. The ticks were collected in vials, closed with muslin cloth to allow air and moisture exchange, brought to the Entomology Laboratory, Department of Veterinary

2 The Scientific World Journal Parasitology, GADVASU, Ludhiana, cleaned, labelled and kept at 28 ± 1 Cand85 ± 5%relativehumidity. 2.2. Acaricide. Technical grade amitraz 100% pure (AccuStandard Inc. U.S.A) was used to prepare the stock solution in methanol. For the experimental bioassay, various concentrations of amitraz were prepared in distilled water from the stock solution and tested against the field isolate. 2.3. Adult Immersion Test (AIT). Adult immersion test was conducted according to the method of Sharma et al. [6] with minor modifications. Briefly, the preweighed engorged females of R. (B.) microplus were immersed in various concentrations of amitraz (62.5, 125, 250, 500 and 1000 ppm) for 2 min and then dried on filter paper before transferring into the Petri dishes. After 24 h, ticks were transferred to the glass tubes covered with muslin cloth and were kept in desiccators kept in BOD incubator maintained at 28 ± 1 C and 85 ± 5% RH. The ticks which did not oviposit even after 14 days after treatment were considered as dead. The control group was treated in similar manner in distilled water. Each concentration was replicated twice and ten adults were used per replication and the following parameters were compared: (a) mortality: recorded up to 14 days after treatment (dpt), (b) the egg masses laid by the live ticks, (c) reproductive Index (RI) = egg mass weight (EW)/ engorged female weight (EFW), (d) percentage inhibition of oviposition (IO%) = ((RI control RI treated)/ri control 100). Dose response data were analyzed by probit method [7] using Graph Pad Prism 4 software. The lethal concentration for 50% (LC 50 )andlc 95 values of amitraz was determined by applying regression equation analysis to the probit transformed data of mortality. 2.4. Resistance Diagnosis. Resistance factor (RF) was worked out as per the method of Singh et al. [3]. On the basis of RF, the resistance status was determined as susceptible (RF < 1.4), level I resistant (RF = 1.5 5.0), level II resistant (RF = 5.1 25.0), level III resistant (RF = 25.1 40), and level IV resistance (RF > 40.1) as per Sharma et al. [6]. 3. Results and Discussion The response of R. (B.) microplus collected from SBS Nagar, Punjab, with various concentration of amitraz in terms of mortality, egg mass weight, reproductive index (RI) and percentage inhibition of oviposition (IO%) is presented in Table 1. The mortality of ticks showed an increasing trend along with the increasing concentrations of amitraz and maximum mortality of 80.0% was recorded at the highest concentration of 1000 ppm. It was further observed that the concentration at which amitraz is being widely used (250 ppm) in field conditions could only achieve 40.0% mortality and even much higher concentration of 1000 ppm failed to produce 100% mortality, thus indicating development of resistance against amitraz in these ticks. The regression graph of probit mortality of ticks plotted against log values of progressively increasing concentrations of amitraz is shown in Figure 1. The dotted lines in the regression curve represented the 95% confidence limits. The slope of mortality (95% confidence intervals) was 2.36 ± 0.61 (0.38 to 4.33), whereas the value of goodness of fit (R 2 )was 0.8288. From the regression equation the values of LC 50 (95% CI) and LC 95 (95% CI) were recorded as 332.52 ppm (305.06 362.44) and 1646.93 ppm (1383.97 1959.84), respectively, and therfwas13.17whichindicatedleveliiresistancestatus. The dose response curves of R. (B.) microplus against log values of progressively increasing concentrations of amitraz were plotted for egg mass weight, reproductive index and IO%bythedatageneratedbyAIT.Theaverageeggmass weight of ticks treated with different concentrations of amitraz decreased with increasing concentrations of drug but the variation was statistically non-significant (P = 0.0589). The slope (95% CI) of egg mass weight was 7.17 ± 2.41 ( 14.85 to 0.50) and was negative because, with the increasing concentrations of acaricide, ticks died. The RI of ticks treated with different concentrations of amitraz decreased with increasing concentrations of drug and the slope (95% CI) was 0.099 ± 0.02 ( 0.16 to 0.031) indicating that, although the increase in concentration of the acaricide may have not caused 100% mortality, the survived ticks showed decrease in their efficiency to convert the live weight into egg mass. Further, there was an increase in the IO% in ticks with increase in drug concentration and thus a positive slope (95% CI) of 19.99 ± 4.77 (4.81 to 35.17) was recorded. Among the various acaricides used in India for the control of ticks in livestock, resistance has been reported against most of the acaricides in R. (B.) microplus [4 6, 8 10]. Reports of resistance against amitraz are available against R. (B.) microplus ticks from various parts of world [11, 12] but only single report of amitraz resistance in R. (B.) microplus is currently available from Gujarat, India [3]. Further, resistance against amitraz has not been reported from Punjab state, probably because the use of amitraz for tick control started recently to control OP and SP resistant ticks (as stated by farmers). But, upon the indiscriminate and incessant use for past few years, the problem of resistance against amitraz is emerging and would soon be widespread as the development of resistance is dependent on the frequency of resistant individuals in the population and the intensity of chemical selection pressure [13]. The current study reports only the detection of resistance status of R. (B.) microplus against amitraz and the mechanism involved needs to be established. The mode of action of amitraz is believed to be interference with nervous system function of the targeted pest species by binding to the octopamine receptors [14]. Further, technical grade amitraz was selected over commercial formulation for the bioassay as commercial products are prepared with many proprietary ingredients and it is difficult to assess the responses due to active ingredients [15]. The stock solutions were prepared by dissolving in 100% methanol as use of organic solvents

The Scientific World Journal 3 Table 1: Dose-dependent response of amitraz against R. (B.) microplus collected from SBS Nagar, Punjab. Concentration (ppm) Number of ticks Average weight ± SE (mg) Number of dead ticks (mortality%) Average egg mass ± SE (mg) RI (average egg mass/average weight) 62.5 20 82.1 ± 3.48 0(0) 32.3 ± 3.08 0.393 31.75 125 20 81.9 ± 3.68 8(40) 27.6 ± 2.60 0.336 27.92 250 20 79.5 ± 3.77 8(40) 25.1 ± 1.71 0.315 35.94 500 20 86.3 ± 3.62 14 (70) 27.6 ± 0.91 0.319 46.16 1000 20 85.5 ± 4.73 16 (80) 21.5 ± 0.67 0.251 52.73 Control 20 97.3 ± 6.22 0 42.0 ± 4.42 0.431 0.0 IO% Probit mortality 9 8 7 6 5 4 3 2 1 0 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 log concentration Figure 1: Dose mortality curve of R. (B.) microplus against amitraz. facilitates the adsorption and penetration of active ingredients of the acaricide across the exoskeleton [6]. The results revealed development of resistance in R. (B.) microplus to amitraz from Punjab state. The data generated wouldbeusefulindevelopmentofeffectivecontrolstrategies against ticks. This will further prevent the development of resistance and at the same time will decrease environmental pollution, thus also causing reduction in the residual effect of acaricides in the animal products like milk and meat. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgment The authors are thankful to the Director of Research, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, for providing facilities to carry out the research work. References [1] R. I. Rodríguez-Vivas, Y. Mata-Mendez, E. Pérez-Gutierrez, and G. Wagner, The effect of management factors on the seroprevalence of Anaplasma marginale in Bos indicus cattle in the Mexican tropics, Tropical Animal Health and Production, vol.36,no.2,pp.135 143,2004. [2] FAO, Resistance Management and Integrated Parasite Control in Ruminants. Guidelines, pp. 25 77, Animal Production and Health Division, FAO, 2004. [3] N.K.Singh,I.S.Gelot,Jyoti,V.Singh,andS.S.Rath, Detection of amitraz resistance in Rhipicephalus (Boophilus) microplus from North Gujarat, India, Parasitic Diseases,2013. [4] Jyoti,N.K.Singh,H.Singh,andS.S.Rath, Malathionresistance in Rhipicephalus (Boophilus) microplus from Ludhiana district, Punjab, Parasitic Diseases,2013. [5] N. K. Singh, Jyoti, M. Haque, and S. S. Rath, Studies on acaricideresistance in Rhipicephalus (Boophilus) microplus against syntheticprethroids by adult immersion test with a discriminatingdose, Veterinary Parasitology, vol. 24, no. 2, pp. 207 208, 2010. [6] A. K. Sharma, R. Kumar, S. Kumar et al., Deltamethrin and cypermethrin resistance status of Rhipicephalus (Boophilus) microplus collected from six agro-climatic regions of India, Veterinary Parasitology,vol.188,pp.337 345,2012. [7] D. J. Finney, Probit Analysis A Statistical Treatment of the Response Curve, Cambridge University Press, Cambridge, UK, 1962. [8] R. P. Chaudhary and R. C. Naithani, Resistance to BHC in the cattle tick Boophilus microplus in India, Bulletin of Entomological Research,vol.55,pp.405 410,1964. [9] A.BasuandD.P.Haldar, Anoteontheeffectofcontinuous use of Sevin 50 WP on some cattle ticks, Veterinary Parasitology,vol.11,pp.183 184,1997. [10] S. Kumar, S. Paul, A. K. Sharma et al., Diazinon resistant status in Rhipicephalus (Boophilus) microplus collected from different agro-climatic regions of India, Veterinary Parasitology,vol.181, pp.274 281,2011. [11] N. N. Jonsson, D. G. Mayer, and P. E. Green, Possible risk factors on Queensland dairy farms for acaricide resistance in cattle tick (Boophilus microplus), Veterinary Parasitology, vol. 88, no. 1-2, pp. 79 92, 2000. [12] L. P. H. N. Veiga, A. P. de Souza, V. Bellato, A. A. Sartor, A. P. Nunes, and H. M. Cardoso, Resistance to cypermethrin and amitraz in Rhipicephalus (Boophilus) microplus on the Santa Catarina Plateau, Brazil, Revista Brasileira de Parasitologia Veterinária,vol.21,pp.133 136,2012. [13] S. E. Kunz and D. H. Kemp, Insecticides and acaricides: resistance and environmental impact, Revue Scientifique et Techniquedel OfficeInternationaldesEpizooties,vol.13,no.4, pp.1249 1286,1994.

4 The Scientific World Journal [14] P. D. Evans and J. D. Gee, Action of formamidine pesticides on octopamine receptors, Nature, vol. 287, no.5777, pp. 60 62, 1980. [15] R. D. Shaw, Culture of an organophosphorus-resistant strain of Boophilus microplus (Canestrini) and an assessment of its resistance spectrum, Bulletin of Entomological Research, vol. 56, no. 3, pp. 389 405, 1966.

Peptides BioMed Advances in Stem Cells International Virolog y Genomics Nucleic Acids Zoology Submit your manuscripts at The Scientific World Journal Signal Transduction Genetics Anatomy Enzyme Research Archaea Biochemistry Microbiology Evolutionary Biology Molecular Biology International Advances in Bioinformatics Marine Biology