Dexmedetomidine intravenous sedation using a patient-controlled sedation infusion pump: a case report

Similar documents
DOI /yydb medetomidine a review of clinical applications J. Curr Opin Anaesthesiol

A Clinical Study of Dexmedetomidine under Combined Spinal Epidural Anaesthesia at a Tertiary Care Hospital

A comparison of dexmedetomidine and midazolam for sedation in third molar surgery*

A SYSTEMATIC REVIEW ON THE USE OF DEXMEDETOMIDINE AS A SOLE AGENT FOR INTRAVENOUS MODERATE SEDATION

Hemodynamic effects of dexmedetomidine-- fentanyl vs. nalbuphine--propofol in plastic surgery

Dexmedetomidine. Dr.G.K.Kumar,M.D.,D.A., Assistant Professor, Madras medical college,chennai. History

SCIENTIFIC COOPERATIONS MEDICAL WORKSHOPS July, 2015, Istanbul - TURKEY

Cheung, CW; Ying, CLA; Chiu, WK; Wong, GTC; Ng, KFJ; Irwin, MG

Corresponding author: V. Dua, Department of Anaesthesia, BJ Wadia Hospital for Children, Parel, Mumbai, India.

Ashraf Darwish, Rehab Sami, Mona Raafat, Rashad Aref and Mohamed Hisham

Comparison of two doses of intranasal dexmedetomidine as premedication in children

Propofol vs Dexmedetomidine

Quality of MRI pediatric sedation: Comparison between intramuscular and intravenous dexmedetomidine

Chronic subdural hematoma (CSDH) is one of the most

Effective dose of dexmedetomidine to induce adequate sedation in elderly patients under spinal anesthesia

Original Article INTRODUCTION. Abstract

Associate Professor, Department of Anaesthesiology, Government Thoothukudi Medical College, Thoothukudi, Tamil Nadu, India, 2

Haemodynamic and anaesthetic advantages of dexmedetomidine

Comparison of dexmedetomidine and propofol for conscious sedation in inguinal hernia repair: A prospective, randomized, controlled trial

Comparison of several dosing schedules of intravenous dexmedetomidine in elderly patients under spinal anesthesia

What dose of methadone should I use?

Intraoperative Sedation During Epidural Anesthesia: Dexmedetomidine Vs Midazolam

Parthasarathy et al. Sri Lankan Journal of Anaesthesiology: 25(2):76-81(2017)

Susan Becker DNP, RN, CNS, CCRN, CCNS Marymount University, Arlington, VA

Eun Hee Chun 1, Myeong Jae Han 2, Hee Jung Baik 1*, Hahck Soo Park 1, Rack Kyung Chung 1, Jong In Han 1, Hun Jung Lee 1 and Jong Hak Kim 1

Original Article Effects of low dose midazolam on bradycardia and sedation during dexmedetomidine infusion

SUMMARY OF PRODUCT CHARACTERISTICS

Combined use of dexmedetomidine and propofol in monitored anesthesia care: a randomized controlled study

PDF of Trial CTRI Website URL -

Invasive and noninvasive procedures

POST-OPERATIVE ANALGESIA AND FORMULARIES

Dexmedetomidine vs. Propofol for Short-Term Sedation of Postoperative Mechanically Ventilated Patients

T u l a n e U n i v e r s i t y I A C U C Guidelines for Rodent & Rabbit Anesthesia, Analgesia and Tranquilization & Euthanasia Methods

The comparison of the effects of intravenous ketamine or dexmedetomidine infusion on spinal block with bupivacaine

A New Advancement in Anesthesia. Your clear choice for induction.

Use of Dexmedetomidine for Sedation of Children Hospitalized in the Intensive Care Unit

Comparison of Intensive Care Unit Sedation Using Dexmedetomidine, Propofol, and Midazolam

Comparison of dexmedetomidine and propofol in mechanically ventilated patients with sepsis: A pilot study

Pain Management in Racing Greyhounds

Appendix: Outcomes when Using Adjunct Dexmedetomidine with Propofol Sedation in

A COMPARATIVE STUDY OF MIDAZOLAM, PROPOFOL AND DEXMEDETOMIDINE INFUSIONS FOR SEDATION IN ME- CHANICALLY VENTILATED PATIENTS IN ICU

Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit

Premedication with alpha-2 agonists procedures for monitoring anaesthetic

Effects of Dexmedetomidine on Serum Interleukin-6, Hemodynamic Stability, and Postoperative Pain Relief in Elderly Patients under Spinal Anesthesia

SUMMARY OF PRODUCT CHARACTERISTICS

SUMMARY OF PRODUCT CHARACTERISTICS

Comparison of dexmedetomidine v/s propofol used as adjuvant with combined spinal epidural anaesthesia for joint replacement surgeries

Rajaclimax Kirubahar, Bose Sundari, Vijay Kanna*, Kanakasabai Murugadoss

Int. J. Pharm. Sci. Rev. Res., 36(1), January February 2016; Article No. 38, Pages: *Corresponding author s

A Comparative Evaluation of Intranasal Dexmedetomidine and Intranasal Midazolam for Premedication in Pediatric Surgery

Study of Dexmedetomidine as intramuscular premedication in outpatient cataract surgery: A placebo controlled study

SUMMARY OF PRODUCT CHARACTERISTICS

The timing of administration of intravenous dexmedetomidine during lower limb surgery: a randomized controlled trial

Neonates and infants undergoing radiological imaging

Efficacy of forearm tourniquet for local intravenous regional anesthesia in bilateral hand surgery

Clinical applicability of dexmedetomidine for sedation, premedication and analgesia in cats 1 / 2007

Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care ²

Alfaxan. (alfaxalone 10 mg/ml) Intravenous injectable anesthetic for use in cats and dogs. TECHNICAL NOTES DESCRIPTION INDICATIONS

SUMMARY OF PRODUCT CHARACTERISTICS. Narcostart 1 mg/ml solution for injection for cats and dogs (NL, AT, BE, CZ, EL, HU, IS, LU, PL, SK)

Dıfferent Doses Of Dexmedetomidine On Controllıng Haemodynamıc Responses To Tracheal Intubatıon

GUIDELINES FOR ANESTHESIA AND FORMULARIES

Evaluation of efficacy of sedative and analgesic effects of single IV dose of dexmedetomidine in post-operative patients

An Evidence Based Approach to Antibiotic Prophylaxis in Oral Surgery

Dexmedetomidine for Emergence Agitation after Sevoflurane Anesthesia in Preschool Children Undergoing Day Case Surgery: Comparative Dose-Ranging Study

A Comparison of Dexmedetomidine and Midazolam for Sedation in Gynecologic Surgery Under Epidural Anesthesia

Total Intravenous Anaesthesia (TIVA) in Veterinary Practice

Australian and New Zealand College of Veterinary Scientists. Fellowship Examination. Veterinary Anaesthesia and Critical Care Paper 1

Module C Veterinary Anaesthesia Small Animal Anaesthesia and Analgesia (C-VA.1)

The effects of intravenous dexmedetomidine on spinal anesthesia: comparision of different dose of dexmedetomidine

Mouse Formulary. The maximum recommended volume of a drug given depends on the route of administration (Formulary for Laboratory Animals, 3 rd ed.

ASMIC 2016 DEXMEDETOMIDINE IN THE INTENSIVE CARE UNIT DR KHOO TIEN MENG

THE EFFECTS OF MIDAZOLAM AND DEXMEDETOMIDINE INFUSION ON Peri-OPERATIVE ANXIETY IN REGIONAL ANESTHESIA

Disclosures. Dexmedetomidine: The Good, The Bad and The Delirious. The Delirious. Objectives. Characteristics of Delirium. Definition of Delirium

The Effects of 2-Adrenergic Receptor Agonist Dexmedetomidine on Hemodynamic Response in Direct Laryngoscopy

Proper assessment of the sedation status is important

1. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER AND OF THE MANUFACTURING AUTHORISATION HOLDER RESPONSIBLE FOR BATCH RELEASE, IF DIFFERENT

A comparison of the effectiveness of dexmedetomidine versus propofol target-controlled infusion for sedation during fibreoptic nasotracheal intubation

Original Article Different doses of dexmedetomidine in children with non-tracheal intubation intravenous general anesthesia

Perioperative Pain Management in Veterinary Patients

Associate Professor, Department of Anaesthesiology, Rangaraya Medical College, Kakinada, East Godavari, Andhra Pradesh, India, 2

Egyptian Society of Anesthesiologists. Egyptian Journal of Anaesthesia.

Original Article Dose-dependent effects of dexmedetomidine during one-lung ventilation in patients undergoing lobectomy

Role of Dexmedetomidine as an Anesthetic Adjuvant in Laparoscopic Surgery

Case Report Dexmedetomidine as a Procedural Sedative for Percutaneous Tracheotomy: Case Report and Systematic Literature Review

CERTIFICATE IN VETERINARY ANAESTHESIA

Therapeutics and clinical risk management (2011) Vol.7:291~299. Dexmedetomidine hydrochloride as a long-term sedative.

Dexmedetomidine and its Injectable Anesthetic-Pain Management Combinations

Over the past 10 years, there has been an increase in

Study between clonidine and dexmedetomidine in attenuation of pressor response during endotracheal intubation

RETRACTED. Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery

Dexmedetomidine and stress response Madhusudan et al

Case Report Extended Infusion of Dexmedetomidine to an Infant at Sixty Times the Intended Rate

Summary of Product Characteristics

Diskography is a diagnostic modality used to

ISMP Canada HYDROmorphone Knowledge Assessment Survey

S Kumar, B B Kushwaha, R Prakash, S Jafa, A Malik, R Wahal, J Aggarwal, R Kapoor

Original Contributions

Standing sedation with medetomidine and butorphanol in captive African elephants (Loxodonta africana)

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

DISSOCIATIVE ANESTHESIA

Transcription:

Case Report pissn 2383-9309 eissn 2383-9317 J Dent Anesth Pain Med 2016;16(1):55-59 http://dx.doi.org/10.17245/jdapm.2016.16.1.55 Dexmedetomidine intravenous sedation using a patient-controlled sedation infusion pump: a case report Seong In Chi, Hyun Jeong Kim, Kwang-Suk Seo Department of Dental Anesthesiology, School of Dentistry, Seoul National University, Seoul, Korea Dental treatment under sedation requires various sedation depths depending on the invasiveness of the procedure and patient drug sensitivity. Inappropriate sedation depth may cause patient discomfort or endangerment. For these reasons, patient-controlled sedation (PCS) pumps are commonly used. Patients are able to control the sedation depths themselves by pushing the demand button after the practitioner sets up the bolus dose and lock-out time. Dexmedetomidine is an α-2 adrenoreceptor agonist with sedative, analgesic, and anxiolytic properties. It has been widely used for sedation for its minimal respiratory depression; however, there are few studies on PCS using dexmedetomidine. This study assessed the applicability of dexmedetomidine to PCS. Key Words: Conscious sedation; Dexmedetomidine; Patient-controlled sedation. Dental treatments under sedation require different sedation depths according to the invasiveness of the procedure and because patient drug sensitivity varies. Thus, appropriate sedation may be difficult by typical drug administration [1]. For these reasons, patientcontrolled sedation (PCS), based on the principles of postoperative patient-controlled analgesia, has been in clinical use for about 20 years. In PCS, medication is administered when the patient pushes the demand button after the bolus dose and lock-out time have been set. Propofol or midazolam is often used in PCS [2], but various fields have reported on sedation using dexmedetomidine. Because dexmedetomidine presents a lower risk of delirium or hypoventilation, it may be more a better choice than conventional sedatives [3]. In this context, we report a case of our own experience by using PCS with dexmedetomidine to perform oral surgery on a patient with dental phobia. CASE REPORT The patient was a 50-year-old man (height 159 cm, weight 69 kg) scheduled for extraction of impacted wisdom teeth (#18, 28, 38, and 48) and saucerization owing to chronic osteomyelitis in the right mandibular molar area. The patient had a history of heavy snoring, but was otherwise in good health. However, he had an extreme phobia of tooth extraction. The oral surgeon also determined that the procedure would be highly invasive; as a result, intravenous sedation was requested from the department of dental anesthesiology. We planned conscious sedation using dexmedetomidine to help secure the patient s airway during the extraction procedure. The authors also planned PCS for adequate titration of sedation levels. The patient received an explanation about the dental procedure under sedation, after which he provided written consents for the procedure and the case Copyrightc 2016 Journal of Dental Anesthesia and Pain Medicine Received: 2016. March. 5. Revised: 2016. March. 30. Accepted: 2016. March. 31. Corresponding Author: Kwang-Suk Seo, Department of Dental Anesthesiology, Seoul National University Dental Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-768, Korea Tel: +82-2-2072-0622 Fax: +82-2-766-9427 E-mail: stone90@snu.ac.kr http://www.jdapm.org 55

Seong In Chi, et al report. The results of the pre-anesthesia examination performed the day before the surgery after the patient was admitted showed no specific findings, except eosinophil levels elevated to 13% in the blood test. He was given instruction for NPO for eight hours before the procedure and was sent to the operating room after securing an 18-gauge intravenous line in his left arm. The PCS pump used was a Perfusor Space PCA Infusion Pump System (B. Braun Medical Inc., Germany). Dexmedetomidine (Precedex 200 μg/2 ml) was diluted in normal saline to prepare a 50 ml solution at 4 μg/ml. Without setting a basal infusion dose in the PCS pump, the bolus dose, lock-out time, and injection speed were set to 0.1 μg/kg, 1 min, and 1,500 ml/h, respectively. Electrocardiogram, noninvasive blood pressure, oxygen saturation, and bispectral index (BIS) monitors were attached to the patient. The patient held the PCS demand button in one hand and the patient was instructed to push the button if he felt any anxiety or pain. Oxygen was supplied through a nasal canula, while capnography measurements were obtained simultaneously (Fig. 1). The sedation procedure took a total of 100 min, and the procedure included saucerization of the region around #37 and extraction of impacted wisdom teeth (#18, 28, 38, and 48). The single dose administered when the patient pushed the button was 1.73 ml, equivalent to 6.93 μg. The patient pushed the button a total of 13 times, but was pushed four times within the lock-out time; therefore, the drug was actually administered nine times, totaling 15.6 ml (62.4 μg). The patient maintained his state of consciousness and was able to respond to commands. His respiratory rate and vital signs also remained within a normal range (Fig. 2). During the operation, the button was pushed several times during painful procedures. Afterwards, the BIS value dropped to around 60 once, but was maintained around 90 throughout. The serum dexmedetomidine concentrations calculated from the patient and the number of times the button was pushed are shown in Fig. 3. The patient was discharged the next day without any complications. Fig. 2. Patient vital signs and demand button presses. Fig. 1. Upper Left: Patient with nasal cannula and Bispectral index sensor, with 3 L/min O 2 supplied through the nasal cannula. Upper right: Demand button on patient s hand, with a Velcro belt that prevents the patient from missing the button; Lower left: Upon pressing the button, the patient is administered dexmedetomidine; Lower right: If the patient presses the button more than once within 1 min, the lock-out time is activated. Fig. 3. Bispectral index and calculated plasma concentrations of dexmedetomidine [20]. BIS: Bispectral index, Cp: plasma concentration of dexmedetomidine 56 J Dent Anesth Pain Med 2016 March; 16(1): 55-59

Patient-controlled sedation: dexmedetomidine DISCUSSION During dental procedures, pain is controlled with appropriate local anesthesia, but pain may still occur depending on the type of procedure and individual situations. Many patients have fear and anxiety about pain related to dental procedures, which presents difficulties in providing the proper treatment [4]. Therefore, the use of sedation techniques is increasing in an effort to reduce the level of anxiety and stress experienced by patients, in addition to controlling pain [5]. Generally, sedation controls the patient s state of consciousness, but depending the sedation depth is associated with risk of hypoventilation and airway obstruction [2]. Moreover, interpatient differences in sedation depth may occur based on the invasiveness of the procedure, and situations may arise in which the patient is unable to cooperate adequately. In addition, patients may be dissatisfied with the person performing the sedation procedure [6]. In particular, because individual patients can show varying stress reactions, drug sensitivities, and degrees of anxiety and pain, it is often impossible to administer a uniform drug dose, which also makes appropriate, controlled administration of such drugs all the more necessary. For these reasons, PCS, which involves the injection of sedatives when the patient pushes a demand button as needed after the bolus dose and lock-out time have been set, was first implemented for clinical use about 20 years ago and has been in use since [7]. Review of existing data on clinical experience with PCS indicates that giving patients the authority to control their levels of anxiety or pain results in increased satisfaction with the procedure [8-10]. The drugs used in PCS must allow a state of sedation to be reached quickly; in addition, the depth and active duration of sedation must be easily controllable, and must not show adverse effects such as cardiovascular inhibition or respiratory depression. However, it is difficult to find drugs that meet these criteria. In actuality, sedatives such as propofol and midazolam are commonly used, either alone or in combination [2]. For procedures that require pain control, sedatives are often combined with fastacting analgesics such as alfentanil, remifentanil, and ketamine. Because it is believed that fast-acting drugs offer better efficacy during PCS; administration of propofol is preferred over that of midazolam because it more quickly reaches its maximum effect after injection [11]. However, when a dentist administers PCS, midazolam is preferred since it has excellent anti-anxiety and memory loss effects, as well as relatively fewer adverse effects, such as respiratory depression. Garip et al. administered 2 ml midazolam at 0.5 mg/ml and a lock-out time of 5 min for extraction of the 3rd molars. When compared to combined administration with 12.5 μg/ml of remifentanil, a higher level of satisfaction was found [12]. Recent cases using dexmedetomidine have also been reported [13]. Dexmedetomidine is a powerful selective α2-adrenoceptor agonist, which is more receptor-sensitive than clonidine, with 10-fold greater sedation and pain control effects [14, 15]. Dexmedetomidine-treated individuals were easily roused and cooperative despite having achieved clinically effective sedation, which is unique compared with currently available sedatives [16]. Dexmedetomidine (2.0 μg/kg), administered as a 2-min infusion to 37 healthy males, produced a slight increase in carbon dioxide partial pressure (pco 2 ) and a decrease in minute ventilation with minimal change in ventilator frequency [17]. Intravenous dexmedetomidine did not cause respiratory depression in volunteers who received a 24-hour maintenance infusion (target plasma concentrations ranging from 0.3 to 1.25 μg/l). SpO 2 remained 90% in all individuals [17]. Intravenous administration of dexmedetomidine for 2 min at 0.25-2 μg/kg reportedly results in a dose-dependent sedation with a maximum effect after 10 min [18]. In our case, the bolus dose was set to 0.1 μg/kg and lock-out time to 1 min. In addition, the dose was set to deliver up to 0.3 μg/kg within 2 min and up to 1.0 μg/kg over 10 min. This dose represents the typical loading dose used in sedation for dental treatments [19]. The lock-out time was set to the relatively short time of 1 min because http://www.jdapm.org 57

Seong In Chi, et al dexmedetomidine has a relatively small effect on respiration and hemodynamics. However, this time setting can be considered short with respect to the pharmacodynamic aspect of maximum effect of 10 min reported in Koreans [20]. As a result, the observed decrease in BIS relative to serum concentrations calculated from pharmacodynamic index occurred after 10 min (Fig. 3). In our case, sedation was successfully performed using PCS with dexmedetomidine on a patient with dental phobia. This method may be a useful sedation technique that may help increase patient satisfaction and reduce respiratory depression during dental treatments. REFERENCES 1. Senel AC, Altintas NY, Senel FC, Pampu A, Tosun E, Ungor C, et al. Evaluation of sedation in oral and maxillofacial surgery in ambulatory patients: Failure and complications. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114: 592-6. 2. Rodrigo C. Patient-controlled sedation. Anesth Prog 1998; 45: 117-26. 3. Ustun Y, Gunduz M, Erdogan O, Benlidayi ME. Dexmedetomidine versus midazolam in outpatient third molar surgery. J Oral Maxillofac Surg 2006; 64: 1353-8. 4. Davies JG, Wilson KI, Clements AL. A joint approach to treating dental phobia: A re-evaluation of a collaboration between community dental services and specialist psychotherapy services ten years on. Br Dent J 2011; 211: 159-62. 5. Sbaraglia P. Sedation or general anaesthesia requirements. A literature review of dental phobia. Ont Dent 1997; 74: 19-22. 6. Korean Society for Intravenous Anesthesia. Sedation. Edited by. Seoul Eui-hak Publishing & Printing Co. 2004. 7. Rudkin GE, Osborne GA, Curtis NJ. Intra-operative patient-controlled sedation. Anaesthesia 1991; 46: 90-2. 8. Osborne GA, Rudkin GE, Curtis NJ, Vickers D, Craker AJ. Intra-operative patient-controlled sedation. Comparison of patient-controlled propofol with anaesthetist- administered midazolam and fentanyl. Anaesthesia 1991; 46: 553-6. 9. Oei-Lim VL, Kalkman CJ, Makkes PC, Ooms WG. Patientcontrolled versus anesthesiologist-controlled conscious sedation with propofol for dental treatment in anxious patients. Anesth Analg 1998; 86: 967-72. 10. Lok IH, Chan MT, Chan DL, Cheung LP, Haines CJ, Yuen PM. A prospective randomized trial comparing patient-controlled sedation using propofol and alfentanil and physician-administered sedation using diazepam and pethidine during transvaginal ultrasound-guided oocyte retrieval. Hum Reprod 2002; 17: 2101-6. 11. Rudkin GE, Osborne GA, Finn BP, Jarvis DA, Vickers D. Intra-operative patient-controlled sedation. Comparison of patient-controlled propofol with patient-controlled midazolam. Anaesthesia 1992; 47: 376-81. 12. Garip H, Gurkan Y, Toker K, Goker K. A comparison of midazolam and midazolam with remifentanil for patient-controlled sedation during operations on third molars. Br J Oral Maxillofac Surg 2007; 45: 212-6. 13. Chlan LL, Weinert CR, Skaar DJ, Tracy MF. Patientcontrolled sedation: A novel approach to sedation management for mechanically ventilated patients. Chest 2010; 138: 1045-53. 14. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs 2000; 59: 263-8. 15. Lawrence CJ, Prinzen FW, delange S. The effect of dexmedetomidine on the balance of myocardial energy requirement and oxygen supply and demand. Anesthesia and Analgesia 1996; 82: 544-50. 16. Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol. 2008; 4:619-27. 17. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans 1. Sedation, ventilation, and metabolic-rate. Anesthesiology 1992; 77: 1125-33. 18. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs. 2000; 59: 263-8. 19. Fan TW, Ti LK, Islam I. Comparison of dexmedetomidine and midazolam for conscious sedation in dental surgery 58 J Dent Anesth Pain Med 2016 March; 16(1): 55-59

Patient-controlled sedation: dexmedetomidine monitored by bispectral index. Br J Oral Maxillofac Surg 2013; 51: 428-33. 20. Lee S, Kim BH, Lim K, Stalker D, Wisemandle W, Shin SG, et al. Pharmacokinetics and pharmacodynamics of intravenous dexmedetomidine in healthy korean subjects. J Clin Pharm Ther 2012; 37: 698-703. http://www.jdapm.org 59