(Lagomorpha, Mammalia) ABSTRACT. those of the lagomorph Mimolagus rodens. These postcranial remains were actually found

Similar documents
New Carnivorous Dinosaurs from the Upper Cretaceous of Mongolia

Lower Cretaceous Kwanmon Group, Northern Kyushu

complex in cusp pattern. (3) The bones of the coyote skull are thinner, crests sharper and the

PEABODY MUSEUM OF NATURAL HISTORY, YALE UNIVERSITY NEW HAVEN, CONNECTICUT, U.S.A. A NEW OREODONT FROM THE CABBAGE PATCH LOCAL FAUNA, WESTERN MONTANA

290 SHUFELDT, Remains of Hesperornis.

PARTIAL SKULL OF THE PLESIADAPIFORM PRIMATE IGNACIUS FROM THE EARLY EOCENE OF WYOMING

Mammalogy Lab 1: Skull, Teeth, and Terms

Skulls & Evolution. 14,000 ya cro-magnon. 300,000 ya Homo sapiens. 2 Ma Homo habilis A. boisei A. robustus A. africanus

Overall structure is similar to humans, but again there are differences. Some features that are unique to mammals: Found in eutherian mammals.

The family Gnaphosidae is a large family

ZOOLOGISCHE MEDEDELINGEN

VERTEBRATA PALASIATICA

AMERICAN MUSEUM NOVITATES Published by

THE GORGONOPSIAN GENUS, HIPPOSAURUS, AND THE FAMILY ICTIDORHINIDAE * Dr. L.D. Boonstra. Paleontologist, South African Museum, Cape Town

Sample Questions: EXAMINATION I Form A Mammalogy -EEOB 625. Name Composite of previous Examinations

VERTEBRATA PALASIATICA

WHAT, IF ANYTHING, IS A RABBIT?

v:ii-ixi, 'i':;iisimvi'\>!i-:: "^ A%'''''-'^-''S.''v.--..V^'E^'-'-^"-t''gi L I E) R.ARY OF THE VERSITY U N I or ILLINOIS REMO

Williston, and as there are many fairly good specimens in the American

AMERICAN MUSEUM NOVITATES

Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes

First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia

FIELDIANA GEOLOGY NEW SALAMANDERS OF THE FAMILY SIRENIDAE FROM THE CRETACEOUS OF NORTH AMERICA

Supplementary Figure 1 Cartilaginous stages in non-avian amniotes. (a) Drawing of early ankle development of Alligator mississippiensis, as reported

Postilla PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY NEW HAVEN, CONNECTICUT, U.S.A.

LEIDY, SHOWING THE BONES OF THE FEET 'AND LIMBS

The Lower Jaws of Baenid Turtles

Title: Phylogenetic Methods and Vertebrate Phylogeny

TRACHEMYS SCULPTA. A nearly complete articulated carapace and plastron of an Emjdd A NEAKLY COMPLETE SHELL OF THE EXTINCT TURTLE,

Anatomy. Name Section. The Vertebrate Skeleton

Human Evolution. Lab Exercise 17. Introduction. Contents. Objectives

HONR219D Due 3/29/16 Homework VI

Phylogenetics. Phylogenetic Trees. 1. Represent presumed patterns. 2. Analogous to family trees.

SOME NEW AMERICAN PYCNODONT FISHES.

A new basal sauropodiform dinosaur from the Lower Jurassic of Yunnan Province, China

( M amenchisaurus youngi Pi, Ouyang et Ye, 1996)

A Fossil Snake (Elaphe vulpina) From A Pliocene Ash Bed In Nebraska

Mammalogy Lecture 3 - Early Mammals/Monotremes

Erycine Boids from the Early Oligocene of the South Dakota Badlands

The Discovery of a Tritylodont from the Xinjiang Autonomous Region

P. huntii and Nanodelphys minutus, suggest that P. huntii belongs in the genus Nanodelphys.

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Fig. 5. (A) Scaling of brain vault size (width measured at the level of anterior squamosal/parietal suture) relative to skull size (measured at the

SOME LITTLE-KNOWN FOSSIL LIZARDS FROM THE

A new species of Confuciusornis from Lower Cretaceous of Jianchang Liaoning China

Chapter 2 Mammalian Origins. Fig. 2-2 Temporal Openings in the Amniotes

A new species of sauropod, Mamenchisaurus anyuensis sp. nov.


d a Name Vertebrate Evolution - Exam 2 1. (12) Fill in the blanks

On the Discovery of the earliest fossil bird in China (Sinosauropteryx gen. nov.) and the origin of birds

A new carnosaur from Yongchuan County, Sichuan Province

A New Pterosaur from the Middle Jurassic of Dashanpu, Zigong, Sichuan

New Morphological Evidence for the Phylogeny of Artiodactyla, Cetacea, and Mesonychidae

Lab 5: Rodentia and Lagomorpha

SKELETONS: Museum of Osteology Tooth and Eye Dentification Teacher Resource

SUPPLEMENTARY ONLINE MATERIAL FOR. Nirina O. Ratsimbaholison, Ryan N. Felice, and Patrick M. O connor

Eutherian Tarsals from the Late Paleocene of Brazil RICHARD L. CIFELLI' ABSTRACT

THE SKULLS OF ARAEOSCELIS AND CASEA, PERMIAN REPTILES

Reprinted from: CRUSTACEANA, Vol. 32, Part 2, 1977 LEIDEN E. J. BRILL

New York State Mammals. Order Lagomorpha Order Rodentia

Introduction to Biological Anthropology: Notes 23 A world full of Plio-pleistocene hominins Copyright Bruce Owen 2011 Let s look at the next chunk of

SCIUROPTERUS MINDANENSIS SP. NOV., A NEW SPECIES OF FLYING SQUIRREL FROM MINDANAO

Paleocene mammalian fauna from the Nanxiong Basin, Guangdong Province

Main Points. 2) The Great American Interchange -- dispersal versus vicariance -- example: recent range expansion of nine-banded armadillos

Differences between Reptiles and Mammals. Reptiles. Mammals. No milk. Milk. Small brain case Jaw contains more than one bone Simple teeth

A Partial Skeleton of Pseudaelurus (Carnivora: Felidae) from the Nambé Member of the Tesuque Formation, Española Basin, New Mexico

NOTE XXXVIII. Three new species of the genus Helota DESCRIBED BY. C. Ritsema+Cz. is very. friend René Oberthür who received. Biet.

1 Describe the anatomy and function of the turtle shell. 2 Describe respiration in turtles. How does the shell affect respiration?

ADDITIONAL STUDIES OF ANOMALIES OF THE SKULL IN DESERT BIGHORN SHEEP

A skull without mandihle, from the Hunterian Collection (no.

CENE RUMINANTS OF THE GENERA OVIBOS AND

A new species of Hsisosuchus (Mesoeucrocodylia) from Dashanpu, Zigong Municipality, Sichuan Province

A. Body Temperature Control Form and Function in Mammals

DESCRIPTIONS OF THREE NEW SPECIES OF PETALOCEPHALA STÅL, 1853 FROM CHINA (HEMIPTERA: CICADELLIDAE: LEDRINAE) Yu-Jian Li* and Zi-Zhong Li**

Biology 340 Comparative Embryology Lecture 12 Dr. Stuart Sumida. Evo-Devo Revisited. Development of the Tetrapod Limb

A R T I C L E S STRATIGRAPHIC DISTRIBUTION OF VERTEBRATE FOSSIL FOOTPRINTS COMPARED WITH BODY FOSSILS

Juehuaornis gen. nov.

(Proc. Acad. Nat. Sci. Phila., p. I62) for the reception of his earlier. Chisternon. Article JX.-ON TWO INTERESTING GENERA OF EOCENE

Vol. XIV, No. 1, March, The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S.

O'Regan HJ Defining cheetahs, a multivariante analysis of skull shape in big cats. Mammal Review 32(1):58-62.

.56 m. (22 in.). COMPSOGNATHOID DINOSAUR FROM THE. Medicine Bow, Wyoming, by the American Museum Expedition

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

A REDESCRIPTION OF THE HOLOTYPE OF CALLIANASSA MUCRONATA STRAHL, 1861 (DECAPODA, THALASSINIDEA)

ONLINE APPENDIX 1. Morphological phylogenetic characters scored in this paper. See Poe (2004) for

YALE PEABODY MUSEUM JOSEPH T. GREGORY AND THEODORE DOWNS INTRODUCTION

PRELIMINARY REPORT ON A CLUTCH OF SIX DINOSAURIAN EGGS FROM THE UPPER TRIASSIC ELLIO T FORMATION, NORTHERN ORANGE FREE STATE. J. W.

A NEW SALTICID SPIDER FROM VICTORIA By R. A. Dunn

On the morphoplogy and taxonomic status of Xinpusaurus kohi JIANG et al., 2004 (Diapsida: Thalattosauria) from the Upper Triassic of China

A NEW SPECIES OF EXTINCT TURTLE FROM THE UPPER PLIOCENE OF IDAHO

oxfitates }Ji2zercanAuseum The Triassic Dinosaur Genera Podokesaurus and Coelophysis BY EDWIN H. COLBERT'

SOAR Research Proposal Summer How do sand boas capture prey they can t see?

Section 9.4. Animal bones from excavations at George St., Haymarket, Sydney

The Fossil Record of Vertebrate Transitions

A NEW GENUS AND SPECIES OF AMERICAN THEROMORPHA

Main Points. 2) The Great American Interchange -- dispersal versus vicariance -- example: recent range expansion of nine-banded armadillos

A Short Report on the Occurrence of Dilophosaurus from Jinning County, Yunnan Province

The Animal Bones from. Under Whitle, Sheen, Staffordshire

CHAPTER 9 JACOVEC CAVERN CARNIVORES AND OTHER FAUNA. The Order Carnivora is represented by five families- Viverridae, Herpestidae,

Morphologic study of dog flea species by scanning electron microscopy

A New Species of the Genus Asemonea (Araneae: Salticidae) from Japan

Transcription:

AMERICAN MUSEUM ~NT iit woo L- L V 4o ) OFFICE OF THE DIRECTOR RECEIVE1D FEB Z z1985 PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2806, pp. 1-5, figs. 1-3 January 31, 1985 Skeletal Integrity of Mimolagus rodens (Lagomorpha, Mammalia) ANN R. BLEEFELD1 AND MALCOLM C. MCKENNA2 ABSTRACT The postcranial skeleton ofthe Asian Paleogene of Mimolagus, a lagomorph. However, the foot species Mimolagus rodens was mistakenly described as that of a rodent and therefore not that and skeleton are of a single structure confirms lagomorph affinity. The skull individual. INTRODUCTION Bohlin (1951) published descriptions oftwo previously unknown fossil mammals from central Asia, Mimolagus rodens and Anagalopsis kansuensis. These were found in a Tertiary deposit in Kansu (Gansu), People's Republic of China, near Hui-hui-p'u on the river Po-yang-ho at approximately lat. 40 N, long. 98 E. Mimolagus, based on fragments of the skull, was believed by Bohlin to be a lagomorph. Anagalopsis kansuensis was based on a skull and lower jaw, a scapula, and several pedal elements. Although obviously related to the early Oligocene Asian genus Anagale, Anagalopsis could only be placed by Bohlin (1951) in the Mammalia, incertae sedis. In the present paper we supplement Bohlin's descriptions and, consequently, reidentify certain "rodent" postcranial elements as those of the lagomorph Mimolagus rodens. These postcranial remains were actually found associated with the skull of Mimolagus rodens and were given the same field number (147), but nevertheless were considered by Bohlin to belong to some sort ofrodent rather than to a lagomorph. He therefore discussed them in a separate section of his paper, although he obviously had lingering doubts because of the apparent association ofthe postcranial elements with the skull fragments upon which Mimolagus rodens was based (Bohlin, 1951, pp. 16, 27). The skeletal remains include various ankle and pedal elements, notably a complete astragalus. Bohlin (195 1) was unable to specify the age of the brick-red sandstone that produced the I Graduate student, Laboratories of Anatomy, School of Veterinary Medicine, University of Pennsylvania. 2Frick Curator, Department of Vertebrate Paleontology, American Museum of Natural History. Copyright American Museum of Natural History 1985 ISSN 0003-0082 / Price 90 cents

2 AMERICAN MUSEUM NOVITATES NO. 2806 FIG. 1. Astragali of A, Protungulatum cf. P. donnae (MCZ Lot No. 18408, cast, reversed from left to right); B, Mimolagus rodens (IVPP No. RV5 1002.5, cast); and C, Palaeolagus haydeni (AMNH 6275, in part, cast). Dorsal (top row), anterior (middle row) and ventral (bottom row) views. Not to scale (see fig. 3). See text for description and explanation. fossils he described. However, in an earlier paper (1940) he had noted that the unit lies above late Mesozoic sediments. Moreover, the unit "is unconformably overlaid by a heavy light brown series in which, however, only some fresh water gastropods have been found." Bohlin (1940, pp. 46, 47) believed that these deposits were disturbed by Pliocene folding. Clearly, the deposit containing Mimolagus rodens and Anagalopsis kansuensis is a Tertiary one, probably Paleogene in age because similar redbeds in the area are known to be ofthat age and because primitive ungulate postcranial remains were discovered at the same deposit (Bohlin, 195 1, p. 46 and pl. 7, figs. 5, 6 where they are identified as questionably those of an artiodactyl). Fossil turtles were collected at the site as well (Bohlin, 1951, Introduction; 1953, p. 100), but as of 1953 these had not yet been studied. However, Yeh (1963) did briefly describe the reptilian material, referring it to a new genus

1985 BLEEFELD AND MCKENNA: MIMOLAGUS RODENS 3 troch gr troch A C ast necknav fac ast head 11 III I I III II I til cms 1 2 FIG. 3. Astragali of (left to right) Protungulatum cf. P. donnae, Mimolagus rodens (cast) and Palaeolagus haydeni, showing natural proportions. ect fac int art sulc dig fl gr 4sus fac FIG. 2. Left astragalus of Palaeolagus haydeni (AMNH 6275, in part). Dorsal (top), anterior (middle) and ventral (bottom) views. Abbreviations: ect fac, ectal facet; sus fac, sustentacular facet; int art sulc, interarticular sulcus; ast head, astragalar head; ast neck, astragalar neck; nav fac, navicular facet; dig fl gr, digital flexor groove; troch gr, trochlear groove. From Bleefeld (Ms). Terminology adapted from Cifelli (1983). Natural proportions shown in figure 3. and species, Kansuchelys chiayukanensis, and assigning an Oligocene or late Eocene age to the deposit that produced it, Mimolagus, and Anagalopsis. Li (1977, pp. 110, 117) tentatively erected a "Family Mimotonidae" for Mimolagus Bohlin, 1951, and Mimotona Li, 1977. He placed this "Family" in a new superfamily Eurymyloidea ofthe order Anagalida, but his "Family Mimotonidae" is not available according to Article 15 ofthe International Code of Zoological Nomenclature. Abbreviations for institutions referred to in the text are as follows: AMNH, American Museum ofnatural History, New York, New York; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, Beijing, People's Republic of China; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts. ACKNOWLEDGMENTS We thank Dr. Larry J. Flynn for helpful comments on the text, and an anonymous reviewer, Department of Mammalogy, AMNH. We also thank Li Chuan-kuei for information about the present location of specimens and for information about the associated reptilian material. Mr. Otto Simonis skillfully prepared casts of the specimens for illustration. Mr. Chester Tarka prepared the excellent photographs in figures 1 and 3, and Ms. Lorraine Meeker assisted with the layout. We thank Ms. Anita J. Cleary for drawing figure 2.

4 AMERICAN MUSEUM NOVITATES NO. 2806 SYSTEMATICS CLASS MAMMALIA ORDER LAGOMORPHA MIMOLAGUS BOHLIN, 1951 MIMOLAGUS RODENS BOHLIN, 1951 TYPE: Not formally designated, but obviously the unnumbered skull whose fragments were discussed by Bohlin (1951). The specimen is now in the IVPP collections and bears the numbers RV5 1001.1 and RV51001.2. We formally designate it as the type specimen of the above species. The two skull fragments, which Bohlin was unable to fit together, comprise the snout and a right maxilla. DESCRIPTION The snout has long, tightly curved, gliriform incisors that Bohlin estimated to have extended backward to the level of the anteromost premolar of the continuous cheek tooth series, in the anterior part of the maxilla, following the now empty anteromost premolar alveolus, four well-worn cheek teeth are preserved; the last is broken away posteriorly. Bohlin believed that a fifth cheek tooth would have been present in life at the posterior end of the cheek tooth series. The maxilla also has two small openings behind those for the enlarged gliriform incisors; Bohlin interpreted these to have housed a second pair of incisors, a characteristic feature of all known lagomorphs. The cheek teeth of the earliest lagomorphs are characteristically unilaterally hypsodont and transversely elongate. Bilateral hypsodonty was achieved in later members such as the North American Oligocene leporid, Palaeolagus haydeni, and all extant lagomorphs. Where unilateral hypsodonty occurs, however, the enamel base of the tooth is strongly oblique with respect to the occlusal surface of unworn teeth. This is a consequence of greater lingual lengthening (hypsodonty) of the tooth (Tobien, 1978). In Mimolagus rodens, the upper cheek teeth are transversely elongate. While it can be seen that upper molars of Mimolagus are very worn, the enamel base lies nearly parallel to the crown surface. Possibly unworn teeth of Mimolagus would display at least moderate obliquity of the enamel base. In unworn teeth of early lagomorphs, the occlusal topography is complicated by an internal invasion of enamel which creates a series of valleys and ridges. In Hsuiannania, one of the earliest recognized lagomorphs (McKenna, 1982), the occlusal surface of the upper molars has two distinct buccal cusps (paracone and metacone), with a deep basin of enamel between them. Later lagomorphs possess a lingual invasion of enamel called a hypostria, which spans the tooth from the lingual to the buccal edge in advanced forms. The upper molars of the type specimen of Mimolagus rodens are too worn to reveal anteroposterior lobes, but the first two maxillary teeth (the last premolar and MI) preserve remnants of the buccal cusps seen in Hsuiannania and mid-tertiary lagomorphs. Bohlin's detailed analysis of the microstructure ofthe incisor enamel of Mimolagus does not falsify relationship to lagomorphs. There are multiprismatic, inclined lamellae as in lagomorphs (probably the primitive condition [L. J. Flynn, personal commun.]), and a buccal layer of enamel is poorly differentiated in Mimolagus. Lagomorphs have one layer of enamel and rodents have two, but which is advanced is not certain. In any case, the details of lagomorph enamel microstructure are not comparable to that of any studied rodent. A pair of nasal bones is also preserved, lying dorsomedial to a groove that apparently housed a long rearward projection ofthe premaxilla. Based on more recent work (Szalay, 1977; McKenna, 1982; Bleefeld, MS), we concur with Bohlin's (195 1) taxonomic assignment of the cranial and part of the postcranial material ofmimolagus rodens to the Lagomorpha. Although his descriptions of that material are complete, we supplement them with a revised analysis ofthe associated astragalus IVPP no. RV5 1002.5. Lateral compression of the astragalar body is strong, and articulation surfaces are sharply delineated. A stable articulation with the tibia is created by a deep, well-defined trochlear groove. Parallel axes ofrotation occur between the astragalar tibial trochlea and the astragalar navicular facet;

1985 BLEEFELD AND MCKENNA: MIMOLAGUS RODENS 5 the major rotational axes of both lie in the sagittal plane, roughly parallel to the long axis of the astragalus (see fig. 2). The astragalar neck is slightly medial to the tibial trochlea and the bone preserves a small fibular facet (fig. 1). A striking feature is the rather broad, triangular shaped extension of the navicular facet onto the dorsal aspect of the astragalar neck. The broad ectal facet is largely vertically oriented (fig. 1). Bleefeld (Ms) has presented an analysis of lagomorph phylogeny based primarily on characters of the pes. In particular, the lagomorph astragalus is laterally compressed, and there are sharp delineations between articular surfaces. The navicular facet lies in the sagittal plane and its axis of rotation is parallel to that ofthe astragalar tibial trochlea (fig. 1). It is curious that Bohlin (1951) referred the astragalus to Rodentia, incertae sedis, while including a statement that "the rotational plane of the astragalonavicular articulation evidently was approximately parallel to that of the tibioastragalar articulation." In more advanced lagomorphs (Palaeolagus, Oryctolagus), the astragalar fibular facet is lost, although it is retained by the Paleocene lagomorph Pseudictops. In all known lagomorphs the navicular facet extends onto the dorsal surface of the astragalar neck, increasing the area for navicular articulation. The "rodent" astragalus figured by Bohlin agrees with this description in all details. The calcaneus referred to the Lagomorpha by Bohlin (IVPP no. RV51 102.4) bears two major medial articular surfaces: the calcanear sustentacular facet, and one proximodistally oriented facet on the anteromedial wall of the bone. These occur in all known lagomorphs, and serve as articular surfaces for the astragalus. Moreover, the astragalus referred to here, IVPP no. RV1002.5, articulates medially with Bohlin's lagomorph calcaneus (leaving exposed a large calcanear fibular facet) at each of those surfaces. These are diagnostically lagomorph features (Szalay, 1977; Bleefeld, MS) and offer no evidence of any close relationship to rodents. We therefore conclude that the calcaneus and Bohlin's "rodent" astragalus are of the same individual, and we refer the astragalus to Mimolagus rodens, with whose type specimen the astragalus and other postcranial remains were associated in the field. Mimolagus rodens is indeed a lagomorph. LITERATURE CITED Bleefeld, Ann R. [MS] Lagomorph phylogeny: a revised analysis with new data from the tarsus. Bohlin, Birger 1940. Notes on the hydrography of Western Kansu. Repts. Sci. Exped. N.W. Prov. China under Leadership of Dr. Sven Hedin, Sino-Swedish Exped. Publication 10, III. Geology 3, pp. 1-54, figs. 1-36, pls. 1, 2. 1951. Some mammalian remains from Shihehr-ma-ch'eng, Hui-hui-p'u area, Western Kansu. Ibid., Publication 35, VI. Vert. Paleont. 5, pp. 1-47, figs. 1-83, pls. 1-7. 1953. Fossil reptiles from Mongolia and Kansu. Ibid., Publication 37, VI. Vert. Paleont. 6, pp. 1-105, figs. 1-75, pls. 1-3. Cifelli, Richard L. 1983. Eutherian tarsals from the late Paleocene of Brazil. Amer. Mus. Novitates, no. 2761, pp. 1-31, figs. 1-12, tables 1-6. Li Chuan-kuei 1977. Paleocene eurymyloids (Anagalida, Mammalia) of Qianshan, Anhui. Vertebrata PalAsiatica, vol. 15, no. 2, pp. 103-118, figs. 1-3, 2 pls., 1 table. McKenna, Malcolm C. 1982 Lagomorph interrelationships. Geobios, Mem. Special, no. 6, pp. 213-223, 2 figs., 1 table. Stoll, N. R., R. P. Dollfus, J. Forest, N. D. Riley, C. W. Sabrosky, C. W. Wright, and R. V. Melville (eds.) 1961. International Code of Zoological Nomenclature adopted by the XV International Congress of Zoology. London, Internatl. Trust Zool. Nomencl., xvii + 176 pp. Szalay, Frederick S. 1977. Phylogenetic relationships and a classification of eutherian mammals. In Hecht, M. K., P. C. Goody, and B. M. Hecht (eds.), Major Patterns in Vertebrate Evolution. New York, Plenum Press, pp. 315-374, figs. 1-17. Tobien, Heinz 1978. Brachyodonty and hypsodonty in some Paleogene Eurasian lagomorphs. Mainzer. geowiss. Mitt., vol. 6, pp. 161-175, figs. 1-31. Yeh Hsing-k'uei 1963. Fossil turtles ofchina. Palaeont. Sinica, new ser. C, no. 18, pp. 1-112, figs. 1-34, pls. 1-2 1, tables 1-7.