Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

Similar documents
Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

APPENDIX III - DOUBLE DISK TEST FOR ESBL

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

Understanding the Hospital Antibiogram

Antimicrobial Stewardship Strategy: Antibiograms

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

Other β-lactamase Inhibitor (BLI) Combinations: Focus on VNRX-5133, WCK 5222 and ETX2514SUL

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

European Committee on Antimicrobial Susceptibility Testing

Intrinsic, implied and default resistance

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Original Article. Suthan Srisangkaew, M.D. Malai Vorachit, D.Sc.

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

ABSTRACT ORIGINAL RESEARCH. Gunnar Kahlmeter. Jenny Åhman. Erika Matuschek

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

EARS Net Report, Quarter

2015 Antimicrobial Susceptibility Report

ESCMID Online Lecture Library. by author

EUCAST Subcommitee for Detection of Resistance Mechanisms (ESDReM)

CONTAGIOUS COMMENTS Department of Epidemiology

PROTOCOL for serotyping and antimicrobial susceptibility testing of Salmonella test strains

DR. MICHAEL A. BORG DIRECTOR OF INFECTION PREVENTION & CONTROL MATER DEI HOSPITAL - MALTA

ABSTRACT INTRODUCTION

Version 1.01 (01/10/2016)

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

CONTAGIOUS COMMENTS Department of Epidemiology

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

Journal of Antimicrobial Chemotherapy Advance Access published October 3, 2011

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

Concise Antibiogram Toolkit Background

Antimicrobial Cycling. Donald E Low University of Toronto

European Committee on Antimicrobial Susceptibility Testing

Background and Plan of Analysis

National Clinical Guideline Centre Pneumonia Diagnosis and management of community- and hospital-acquired pneumonia in adults

Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); August 2017

EUCAST recommended strains for internal quality control

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

Prevalence of Extended-spectrum β-lactamase Producing Enterobacteriaceae Strains in Latvia

Breaking the Ring. β-lactamases and the Great Arms Race. Bryce M Kayhart, PharmD, BCPS PGY2 Pharmacotherapy Resident Mayo Clinic - Rochester

ALARMING RATES OF PREVALENCE OF ESBL PRODUCING E. COLI IN URINARY TRACT INFECTION CASES IN A TERTIARY CARE NEUROSPECIALITY HOSPITAL

1 INTRODUCTION OBJECTIVES OUTLINE OF THE SALM/CAMP EQAS

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Antimicrobial Susceptibility Testing: The Basics

Principles and Practice of Antimicrobial Susceptibility Testing. Microbiology Technical Workshop 25 th September 2013

Antimicrobial Susceptibility Testing: Advanced Course

The Nuts and Bolts of Antibiograms in Long-Term Care Facilities

Detecting / Reporting Resistance in Nonfastidious GNR Part #2. Janet A. Hindler, MCLS MT(ASCP)

Streptococcus pneumoniae. Oxacillin 1 µg as screen for beta-lactam resistance

ETX2514: Responding to the global threat of nosocomial multidrug and extremely drug resistant Gram-negative pathogens

DISCLAIMER: ECHO Nevada emphasizes patient privacy and asks participants to not share ANY Protected Health Information during ECHO clinics.

Witchcraft for Gram negatives

Service Delivery and Safety Department World Health Organization, Headquarters

Mercy Medical Center Des Moines, Iowa Department of Pathology. Microbiology Department Antibiotic Susceptibility January December 2016

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

Taiwan Surveillance of Antimicrobial Resistance (TSAR)

International Journal of Antimicrobial Agents

January 2014 Vol. 34 No. 1

2016 Antibiotic Susceptibility Report

Educating Clinical and Public Health Laboratories About Antimicrobial Resistance Challenges

2016 Antibiogram. Central Zone. Alberta Health Services. including. Red Deer Regional Hospital. St. Mary s Hospital, Camrose

Barriers to Intravenous Penicillin Use for Treatment of Nonmeningitis

Tel: Fax:

Other Enterobacteriaceae

on February 12, 2018 by guest

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

2015 Antibiogram. Red Deer Regional Hospital. Central Zone. Alberta Health Services

SMART WORKFLOW SOLUTIONS Introducing DxM MicroScan WalkAway System* ...

Received: February 29, 2008 Revised: July 22, 2008 Accepted: August 4, 2008

IMPORTANCE OF GLOBAL HARMONIZATION OF ANTIMICROBIAL SUSCEPTIBILITY TESTING IN CANADA FOR DEFINING ANTIMICROBIAL RESISTANCE

Recommendations to take it forward!

Antibiotic Updates: Part II

Detection of Inducible AmpC β-lactamase-producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India

Sheffield User Group Day October Members of the BSAC Working party on Susceptibility Testing present:

Mechanism of antibiotic resistance

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

Collecting and Interpreting Stewardship Data: Breakout Session

Phenotypic Detection and Occurrence of Extended-Spectrum Beta-Lactamases in Clinical Isolates of Klebsiella pneumoniae and Escherichia coli

Recommendations for Implementation of Antimicrobial Stewardship Restrictive Interventions in Acute Hospitals in Ireland

International Journal of Health Sciences and Research ISSN:

Antimicrobial Susceptibility Patterns

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Nova Journal of Medical and Biological Sciences Page: 1

ETX0282, a Novel Oral Agent Against Multidrug-Resistant Enterobacteriaceae

How is Ireland performing on antibiotic prescribing?

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

2017 Antibiogram. Central Zone. Alberta Health Services. including. Red Deer Regional Hospital. St. Mary s Hospital, Camrose

What s new in EUCAST methods?

THE NAC CHALLENGE PANEL OF ISOLATES FOR VERIFICATION OF ANTIBIOTIC SUSCEPTIBILITY TESTING METHODS

ENTEROCOCCI. April Abbott Deaconess Health System Evansville, IN

MDR Acinetobacter baumannii. Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta

Antibiotic Resistance in the Post-Acute and Long-Term Care Settings: Strategies for Stewardship

Protocol for Surveillance of Antimicrobial Resistance in Urinary Isolates in Scotland

The International Collaborative Conference in Clinical Microbiology & Infectious Diseases

Transcription:

Infect Dis Ther (2015) 4:513 518 DOI 10.1007/s40121-015-0094-6 BRIEF REPORT Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing Christina A. Sutherland. Jared L. Crandon. David P. Nicolau To view enhanced content go to www.infectiousdiseases-open.com Received: September 21, 2015 / Published online: October 20, 2015 The Author(s) 2015. This article is published with open access at Springerlink.com ABSTRACT Introduction: While the Clinical and Laboratory Standards Institute (CLSI) recommends against routine screening for extended spectrum b-lactamases (ESBLs), knowledge of these data can provide valuable insights regarding epidemiology and drug therapy decisions. The purpose of this study was to compare the impact of minimum inhibitory concentration (MIC)-based screening versus phenotypic confirmatory testing of ESBLs on the susceptibility profile of selected antimicrobials. Methods: Broth microdilution MICs were determined for various antimicrobial agents against a collection contemporary clinical Escherichia coli and Klebsiella pneumoniae isolates. Isolates identified as ESBL-positive by MIC Electronic supplementary material The online version of this article (doi:10.1007/s40121-015-0094-6) contains supplementary material, which is available to authorized users. C. A. Sutherland J. L. Crandon D. P. Nicolau (&) Center for Anti Infective Research and Development, Hartford Hospital, Hartford, CT, USA e-mail: david.nicolau@hhchealth.org Present Address: J. L. Crandon Actavis plc, Jersey City, NJ, USA screening were then subjected to confirmatory phenotypic testing. Percent susceptibility was based on CLSI or United States Food and Drug Administration breakpoints. Results: Four-hundred and forty-two (18%) isolates screened positive for ESBL production. Of these, 274 (62%) were confirmed positive for ESBL production; 28 (10%) were also carbapenem non-susceptible. We found an under-prediction of activity for ceftolozane/tazobactam (C/T), ertapenem (ETP), meropenem (MEM), and piperacillin/tazobactam (TZP) when considering only the screen-positive testing. Conclusion: For agents with potential activity against ESBLs such as C/T, TZP, ETP, and MEM, reduced susceptibility was noted when only considering the MIC screen-positive test. Although phenotypic screening selects for resistant organisms, inclusion of other genotypes besides ESBL (i.e., AmpC, carbapenemase) may falsely under-predict the potency against some ESBL producers and may limit applicability of surveillance data to geographic areas not plagued with carbapenemase producers. Funding: Cubist Pharmaceuticals.

514 Infect Dis Ther (2015) 4:513 518 Keywords: Extended spectrum b-lactamase (ESBL); Minimum inhibitory concentration (MIC); Screening INTRODUCTION Extended spectrum b-lactamases (ESBL) are enzymes capable of hydrolyzing penicillins, broad-spectrum cephalosporins, and monobactams [1]. ESBL-based infections have been noted to result in increased morbidity and mortality. These infections increase cost of care if inappropriate therapy, defined as non-susceptibility of pathogen to therapy by laboratory criteria, is administered [2]. At present, the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) do not recommend routine screening for ESBLs or subsequent phenotypic confirmation testing that had been advocated previously [3, 4]. While this approach has been supported in the clinical practice setting by the introduction of reduced breakpoints for many beta-lactams [5], it may be of value, particularly when evaluating novel therapies, to understand the potency of various agents against ESBL producers. However, if one utilizes ESBL classification with aztreonam (ATM), ceftriaxone (CRO), or ceftazidime (CAZ) minimum inhibitory concentrations (MIC) as a simple screen, without phenotypic confirmation via the clavulanate test, this approach may include other resistant genotypes (i.e., carbapenemase producers) that may not accurately predict the clinical utility of therapeutic agents under consideration [6]. Phenotypic screening tests to detect resistance mechanisms such as carbapenemase production or AmpC expression are available and can be used. While molecular testing would yield the most definite results, it is also cost prohibitive and unavailable to most clinical microbiological laboratories. In this study, we tested the recently US Food and Drug Administration (FDA)-approved compound, ceftolozane/tazobactam (C/T), which has demonstrated in vitro activity against some ESBL organisms [7]. The purpose of this study was to compare the impact of MIC-based screening versus confirmatory testing of ESBLs on the susceptibility profile of C/T versus selected antimicrobials. METHODS In this study, 44 US hospitals collected non-duplicate, non-urine Escherichia coli (n = 1306) and Klebsiella pneumoniae (n = 1205) over the period of June 2013 and October 2014. Participating sites identified the organisms using their established method and then transferred each isolate to trypticase soy agar slants for shipping. Isolates were transferred onto trypticase soy agar plates containing 5% sheep blood at the central processing laboratory (Center for Anti-Infective Research and Development, Hartford Hospital, Hartford Hospital, Hartford, CT, USA) for MIC determination using broth microdilution as described by CLSI [5]. MICs were determined for C/T, cefepime (FEP), CRO, CAZ, ciprofloxacin (CIP), ATM, ertapenem (ETP), piperacillin/tazobactam (TZP), meropenem (MEM), and tobramycin (TOB) against this collection of 2511 contemporary clinical Enterobacteriaceae isolates. MIC trays were prepared using the Biomek 3000 (Beckman Instruments, Inc., Fullerton, CA, USA) and frozen at -80 C until use. C/T was provided by Cubist Pharmaceuticals, while all others antibiotics were purchased from Sigma-Aldrich

Infect Dis Ther (2015) 4:513 518 515 (St. Louis, MO, USA). E. coli 25922 and Pseudomonas aeruginosa 27853 were utilized as quality control strains as recommended by CLSI. CLSI states that the initial MIC-based ESBL screening for E. coli and K. pneumoniae should be performed by evaluating the MIC profile of one of the following drugs: cefpodoxime 4 lg/ml, CAZ 1 lg/ml, ATM 1 lg/ml, or cefotaxime 1 lg/ml. It is noted that the use of more than one of these agents will improve detection of ESBLs. We defined a positive ESBL screen as having an MIC of C1 lg/ml to 2 of the following: ATM, CRO, or CAZ. Subsequent CLSI defined, phenotypic, ESBL confirmation studies were undertaken using CAZ and cefotaxime with and without clavulanate [8]. Probable carbapenemase-producing organisms were excluded based on ETP (C1 lg/ml) or MEM (C2 lg/ml) susceptibility profiles. While molecular-based confirmation of these enzymes would have been definitive, methodologies readily available to the clinical microbiology laboratory were utilized. Percent susceptibility (%S) was based on CLSI breakpoints [3]. Recently, C/T has been approved in the US and susceptibility interpretative criteria have now been provided by the FDA of B2 lg/ml for the Enterobacteriaceae [7]. This surveillance program was reviewed by the institutional review board (IRB) at the coordinating center, Hartford Hospital. Since all samples were collected as part of routine Table 1 Percent susceptibility of all agents against MIC-based screen-positive (Screen?) and phenotypically confirmed (Confirmed?) ESBL Escherichia coli and Klebsiella pneumoniae isolates Percent susceptibility for antimicrobials C/T FEP CRO CAZ CIP ATM ETP TZP MEM TOB All Screen? (n = 442) 64 21 10 18 23 16 74 53 79 45 Confirmed? (n = 274) 75 8 2 9 14 6 91 61 93 42 Confirmed?, carbapenem NS removed (n = 246) 82 9 2 9 13 7 100 67 100 42 E. coli Screen? (n = 231) 79 29 13 24 27 23 86 69 90 54 Confirmed? (n = 146) 88 9 3 10 10 10 96 75 98 47 Confirmed?, carbapenem NS removed (n = 139) 91 9 4 11 10 10 100 78 100 47 K. pneumoniae Screen? (n = 211) 47 12 5 11 18 9 62 36 65 34 Confirmed? (n = 128) 61 7 1 7 18 2 82 46 88 35 Confirmed?, carbapenem NS removed (n = 107) 71 7 1 7 16 2 100 52 100 36 ATM aztreonam, CAZ ceftazidime, CIP ciprofloxacin, CRO ceftriaxone, C/T ceftolozane/tazobactam, ETP ertapenem, ESBL extended spectrum b-lactamase, FEP cefepime, MEM meropenem, MIC minimum inhibitory concentration, NS non-susceptible, TOB tobramycin, TZP piperacillin/tazobactam

516 Infect Dis Ther (2015) 4:513 518 medical care and no interventions were undertaken as a result of this testing, informed consent was deemed unnecessary by the IRB. RESULTS Four-hundred and forty-two (18%) isolates [E. coli (n = 231), K. pneumoniae (n = 211)] screened positive for ESBL production based on MIC-based criteria. Of these, 274 (62%) isolates [E. coli (n = 146), K. pneumoniae (n = 128)] were phenotypically confirmed positive for ESBL production. With further exclusion of the 28 (10%) isolates [E. coli (n = 13), K. pneumoniae (n = 14)] that demonstrated carbapenem non-susceptible, a left shift in the MIC distribution (i.e., enhanced potency) against phenotypically confirmed ESBL was noted for C/T, ETP, TZP, and MEM (Table 1). Figure 1 highlights these screening- and confirmation-based observations for C/T and TZP. Improvements in %S between 8% and 17% were noted for confirmed versus screened-positive ESBL isolates for C/T, ETP, TZP, and MEM. (Table 1) Overall, %S of the other b-lactams, TOB and CIP, was poor against phenotypically confirmed ESBLs. Comparing the MIC 90 values for all ESBL MIC-based screen-positive versus phenotypically confirmed positive, we observed a reduction of twofold for C/T, sixfold for ETP, and eightfold for MEM (Table 2). Fig. 1 The MIC distribution of C/T and TZP for the MIC-based screen-positive isolates (Screen?), phenotypically confirmed positive (Confirmed?) and Confirmed? with carbapenem NS isolates removed (Confirmed?, no carbapenem NS) of all Enterobacteriaceae. C/T ceftolozane/tazobactam, MIC minimum inhibitory concentration, NS non-susceptible, TZP piperacillin/tazobactam

Infect Dis Ther (2015) 4:513 518 517 Table 2 MIC 90 (lg/ml) of all agents against MIC-based screen-positive (Screen?) and phenotypically confirmed (Confirmed?) Escherichia coli and Klebsiella pneumoniae isolates MIC 90 (lg/ml) for antimicrobials C/T FEP CRO CAZ CIP ATM ETP TZP MEM TOB All Screen? (n = 442) 128 128 128 128 32 128 32 512 32 64 Confirmed? (n = 274) 32 128 128 128 32 128 0.5 512 0.125 64 Confirmed?, carbapenem NS removed (n = 246) 2 128 128 128 32 64 0.125 64 0.064 64 ATM aztreonam, CAZ ceftazidime, CIP ciprofloxacin, CRO ceftriaxone, C/T ceftolozane/tazobactam, ETP ertapenem, ESBL extended spectrum b-lactamase, FEP cefepime, MEM meropenem, MIC minimum inhibitory concentration, NS non-susceptible, TOB tobramycin, TZP piperacillin/tazobactam CONCLUSION After confirmatory ESBL testing using the clavulanate test, 38% of strains identified as potential ESBL producers using a simple MIC screen were excluded. For agents with potential activity against ESBLs such as C/T, TZP, ETP, and MEM, reduced susceptibility was noted when only considering MIC screen positivity. The reason for this discordance is that carbapenemase producers, AmpC, and other types of resistance would not be differentiated by MIC-based screen testing alone. As such, although MIC screening selects for resistant organisms, inclusion of these other genotypes may falsely under-predict the potency of several antibiotics against ESBL producers and if such a method is used during published surveillance studies, it may limit applicability of these data to geographic areas not plagued with carbapenemase producers. For this reason, in scenarios, such as the clinical laboratory, when molecular testing is not available, clavulanate-based phenotypic confirmatory testing is recommended to better evaluate empiric therapy options against ESBL. ACKNOWLEDGMENTS This study was supported by a grant from Cubist Pharmaceuticals, Lexington, MA, USA. The article processing charges for this publication were funded by The Center for Anti-Infective Research and Development at Hartford Hospital. The sponsor of the study was not involved in the design, collection, analysis or interpretation of the data or in decision to submit the manuscript for publication. We would like to thank Kimelyn Greenwood, Jennifer Hull, Lucinda Lamb, Sara Robinson, and Debra Santini for their collective efforts with MIC determination. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval to the version to be published. Disclosures. David P. Nicolau is on the speaker bureau for Cubist and has received grants from Cubist. Christina A. Sutherland and Jared L. Crandon have nothing to disclose. Jared Crandon was employed at Hartford Hospital during the study period.

518 Infect Dis Ther (2015) 4:513 518 Compliance with ethical guidelines. This surveillance program was reviewed by the institutional review board (IRB) at the coordinating center, Hartford Hospital. Since all samples were collected as part of routine medical care and no interventions were undertaken as a result of this testing, informed consent was deemed unnecessary by the IRB. Open Access. This article is distributed under the terms of the Creative Commons Attribution- NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4. 0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. REFERENCES 1. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969 76. 2. Thabit AK, Crandon JL, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother. 2015;16(2):159 77. 3. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24 U. Wayne: Clinical and Laboratory Standards Institute; 2014. 4. European Committee on Antimicrobial Susceptibility Testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 1; 2013. 5. Dudley MN, Ambrose PG, Bhavnani SM, Craig WA, Ferraro MJ, Jones RN, Antimicrobial Susceptibility Testing Subcommittee of the Clinical and Laboratory Standards Institute. Background and rationale for revised clinical and laboratory standards institute interpretive criteria (Breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I. Cephalosporins and Aztreonam. Clin Infect Dis. 2013;56(9):1301 9. 6. Thomas Kenneth. Extended-spectrum-b-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol. 2010;48(4):1019 25. 7. Cubist Pharmaceuticals. Zebraxa-US prescribing information. Lexington: Cubist Pharmaceuticals; 2015. 8. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI document M07-A9. Wayne: Clinical and Laboratory Standards Institute; 2012.