The first human case of Trichinella spiralis infection in Korea

Similar documents
Trichinosis in Pregnant woman with intercostal pain and swelling leading to Miscarriage: A case report

Efficacyof Albendazole Against Early and Late Stage of Trichinellaspiralis Infection in Mice

Epidemiology of Opisthorchis felineus in the European Union

s. MUKARATIRWA 1, K. MAGWEDERE1, E. MATENGA 1 and C.M. FOGGIN2

UNIVERSITY OF KWAZULU-NATAL

Raw Pork,Trichinosis & Doctor B s BARF

Salwa AT EL-Mansoury, Ph. D.

Antihelminthic Trematodes (flukes): Cestodes (tapeworms): Nematodes (roundworms, pinworm, whipworms and hookworms):

Canine giardiosis in an urban are Title source on infection of man. NikoliĆ, Aleksandra, DimitrijeviĆ Author(s) BobiĆ, Branko

General introduction

Opinion on the diagnosis and treatment of human trichinellosis

Helminthic food-borne infection in Japan

Data were analysed by SPSS, version 10 and the chi-squared test was used to assess statistical differences. P < 0.05 was considered significant.

The use of serology to monitor Trichinella infection in wildlife

ECHINOCOCCUS GRANULOSUS

ELlSA Seropositivity for Toxocara canis Antibodies in Malaysia,

Coccidia. Nimit Morakote, Ph.D.

Diurnal variation in microfilaremia in cats experimentally infected with larvae of

Helminth Infections. Pinworms

Outlines. Introduction Prevalence Resistance Clinical presentation Diagnosis Management Prevention Case presentation Achievements

Hydatid Disease. Overview

Author: Ifor L. Owen Columba Awui Eric Langelet Wenda Soctine Simon Reid

Title. Author(s)OOI, Hong-Kean; OKU, Yuzaburo; KAMIYA, Masao; OHBAYA. CitationJapanese Journal of Veterinary Research, 32(1): 1-7

A Case of Taenia asiatica Infection Diagnosed by Colonoscopy

Surveillance of animal brucellosis

Title. CitationJapanese Journal of Veterinary Research, 54(4): 175- Issue Date DOI. Doc URL. Type. File Information /jjvr.54.4.

Blood protozoan: Plasmodium

Trichinellosis in pigs: country perspective preventing human infection through on farm measures

Presentation of Quiz #85

Schistosoma mansoni, S. japonicum, S. haematobium

Experimental induction of the two-host life cycle of Sarcocystis cruzi between dogs and Korean native calves

OIE Collaborating Centres Reports Activities

PARASITOLOGICAL EXAMINATIONS CATALOGUE OF SERVICES AND PRICE LIST

The tapeworm eggs are also infective if ingested by humans as in pigs; they

TTX - Inject 1: Early warning indicators Part I. Regional Table Top Exercise for Countries of Middle East and North Africa Tunisia; July 2017

FOR RISK ASSESSMENT FEDERAL INSTITUTE. The raccoon dog as reservoir and vector for Trichinella in Germany?

Journal home page:

Drug therapy of Filariasis. Dr. Shareef sm Asst. professor pharmacology

Running head: CLOSTRIDIUM DIFFICILE 1

Contains most of the medically important tapeworms Scolex has 4 suckers and compact vitelline gland are characteristic Range from mm to >10m

SEROPREVALENCE TO CATTLE BABESIA SPP. INFECTION IN NORTHERN SAMAR ABSTRACT

Breast Mass on Mammography

OIE Collaborating Centres Reports Activities

Blood protozoan: Plasmodium

OIE global strategy for rabies control, including regional vaccine banks

POST-OPERATIVE ANALGESIA AND FORMULARIES

The occurrence of Trichinella zimbabwensis in naturally infected wild crocodiles (Crocodylus niloticus) from the Kruger National Park, South Africa

The prevalence of anti-echinococcus antibodies in the North-Western part of Romania

Feline zoonoses. Institutional Animal Care and Use Committee 12/09

Hydatid Cyst Dr. Nora L. El-Tantawy

ECHINOCOCCOSIS. By Dr. Ameer kadhim Hussein. M.B.Ch.B. FICMS (Community Medicine).

A Field Study on Efficacy of Albendazole (Albezol ) Against Gastro-intestinal Nematodes in Ruminants

HYDATID CYST DISEASE

Clinical Manifestations and Treatment of Plague Dr. Jacky Chan. Associate Consultant Infectious Disease Centre, PMH

Brucellosis in Kyrgyzstan

2014 Update of the odd Zoonotic Diseases on Navajo

EXPERIMENTAL INFECTION WITH PARAGONIMUS HETEROTREMUS METACERCARIAE IN LABORATORY ANIMALS IN MANIPUR, INDIA

Efficacies of fenbendazole and albendazole in the treatment of commercial turkeys artificially infected with Ascaridia dissimilis

Above: life cycle of toxoplasma gondii. Below: transmission of this infection.

Echinococcus multilocularis Diagnosis. Peter Deplazes. Medical Faculty. Swiss TPH Winter Symposium 2017

SEMESTER ONE 2007 INFECTION and IMMUNITY GRADUATE ENTRY PROGRAMME PARASITOLOGY PRACTICAL 9 Dr TW Jones NEMATODES

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 4, Issue 2, March 2016

HOOKWORM FAQ SHEET (rev ) Adapted from the CDC Fact Sheet

11-ID-10. Committee: Infectious Disease. Title: Creation of a National Campylobacteriosis Case Definition

Guard against intestinal worms with Palatable All-wormer

School-based Deworming Interventions: An Overview

Does history-taking help predict rabies diagnosis in dogs?

Cestodes (tapeworms) Pro. Dr. Mohammed Sabri

Therapeutic efficacy of a mixture of ivermectin and closantel against gastrointestinal parasites in draft horses

Title. Author(s) ALKARMI, Tarif; BEHBEHANI, Kazem; ABDOU, Sahar. Citation Japanese Journal of Veterinary Research, 38(3- Issue Date DOI

Burn Infection & Laboratory Diagnosis

THE CONTROL AND SURVEILLANCE OF FILARIASIS IN HAINAN PROVINCE, CHINA

Principles of Antimicrobial Therapy

THE CURRENT TAENIA SOLIUM TAENIASIS/CYSTICERCOSIS SITUATION IN INDONESIA

Hepatic Toxocariasis with Atypical CT and MR Imaging Findings: a Case Report

Sera from 2,500 animals from three different groups were analysed:

Title. CitationJapanese Journal of Veterinary Research, 52(2): 101- Issue Date Doc URL. Type. File Information

Vibrio vulnificus. Vibrio vulnificus V. vulnificus. pectinata japonica)

Johne s Disease and its Impact on Red Meat Production

New Insights into the Treatment of Leishmaniasis

Introduction- Rickettsia felis

Campylobacter species

Large Animal Topics in Parasitology for the Veterinary Technician Jason Roberts, DVM This presentation is designed to review the value veterinary

Infection status of dragonflies with Plagiorchis muris metacercariae in Korea

P<0.05 ٢٠٠٧ ٣ ﺩﺪﻌﻟﺍ ﺮﺸﻋ ﺚﻟﺎﺜﻟﺍ ﺪﻠﺠﳌﺍ ﺔﻴﳌﺎﻌﻟﺍ ﺔﺤﺼﻟﺍ ﺔﻤﻈﻨﻣ ﻂﺳﻮﺘﳌﺍ ﻕﺮﺸﻟ ﺔﻴﺤﺼﻟﺍ ﺔﻠﺠﳌﺍ

Supplementary Appendix

TREATMENT OF EXPERIMENTAL TOXOCARA CATI INFECTION IN MICE WITH IVERMECTIN AND MOXIDECTIN

Eukaryotic Parasites. An Illustrated Guide to Parsitic Life Cycles to Accompany Lecture. By Noel Ways

National Research Center

Clostridium difficile Colitis

Multi-Drug Resistant Gram Negative Organisms POLICY REVIEW DATE EXTENDED Printed copies must not be considered the definitive version

Public Health Risks in Asia s Growing Dairy Sector

Repeated Tourniquet Testing as a Diagnostic Tool in Dengue Infection

FACULTY OF VETERINARY MEDICINE

ANIMAL RABIES IN NEPAL AND RACCOON RABIES IN ALBANY COUNTY, NEW YORK

. - many countries in Asia. Twenty species of Gnathostoma have been recorded in the literature although only

Extraintestinal Migration of Centrorhynchus sp. (Acanthocephala: Centrorhynchidae) in Experimentally Infected Rats

A review of Filariasis

Toxocariasis: serological diagnosis by enzyme

Transcription:

111 The Korean Journal of Parasitology Vol. 38, No. 2, 111-115, June 2000 Brief Communication The first human case of Trichinella spiralis infection in Korea Woon-Mok SOHN 1) *, Han-Mo KIM 2), Dong-Il CHUNG 3) and Sung Tae Yee 4) Department of Parasitology 1), College of Medicine, Gyeongsang National University, Chinju 660-751, Department of Internal Medicine 2), Seokyong Hospital, Kochang 670-800, Department of Parasitology 3), Kyungpook National University School of Medicine, Taegu 700-422, and Department of Biology 4), College of Natural Sciences, Sunchon National University, Sunchon 540-742, Korea Abstract: Three cases of human infection by Trichinella spiralis were first confirmed by detecting encysted larvae in the biopsied muscle in December 1997, in Korea. The patients were one 35- and two 39-year-old males residing in Kochang-gun, Kyongsangnam-do. They had a common past history of eating raw liver, spleen, blood and muscle of a badger, Meles meles melanogenys, and complained of high fever, facial and periorbital edema, and myalgia. Hematologic and biochemical examinations revealed leukocytosis and eosinophilia, and highly elevated levels of GOT, GPT, LDH and CPK. In the gastrocnemius muscle of a patient, roundly coiled nematode larvae were detected. The larvae measured 0.775-1.050 (av. 0.908) mm in length, and 0.026-0.042 (av. 0.035) mm in maximum width. The specific IgG antibody levels in three patients sera were significantly higher when compared with those of normal controls. The patients were treated with flubendazole and albendazole for 15-30 days, and discharged at 13-34 days post-admission. From the above findings, it was confirmed that T. spiralis is present in Korea, and the badger plays a role of as the natural host. Key words: epidemiology, Trichinella spiralis, Korea, human, badger Trichinosis is one of the most widespread helminthic zoonoses. Unlike other parasite infections, it has been the main public health problem in advanced countries where there is a great amount of meat consumption such as European countries and USA. This nematode infection has been reported in all of the continents except Australia (Despommier, 1998). Due to the widespread of trichinosis in many Asian countries including China and Japan (Yamaguti, 1989; Miyazaki, 1991), it has been suspected to be prevalent in Korea Received 18 April 2000, accepted after revision 22 May 2000. This work was supported by a research grant for basic medical sciences, Ministry of Education (1996-1998), Republic of Korea. *Corresponding author (e-mail: wmsohn@ nongae.gsnu.ac.kr) for a long time. However, trichinosis had not been reported in Korea until 1997. In December 1997, the first human infection with Trichinella spiralis was confirmed by detecting encysted larvae in the biopsied muscle. A 35- and two 39-year-old men residing in Kochang-up were admitted to Seokyong Hospital in Kochang-gun, Kyongsangnam-do on December 4, 1997. They chiefly complained of high fever, facial and periorbital edema, and myalgia, and had a common past history of eating raw liver, spleen, blood and muscle of a badger, Meles meles melanogenys. They mentioned that the severe symptoms such as abdominal pain, watery diarrhea, high fever, chill, headache, facial and periorbital edema, general pain, and myalgia, appeared 3-14 days after eating a badger. Hematologic examinations performed at 26,

112 Table 1. Results of the biochemical examination on GOT a) and GPT b) Days from Patient A Patient B Patient C eating row badger to examination GOT GPT GOT GPT GOT GPT 22 31 56 - - - - 26 52 47 194 111 62 65 30 80 92 419 322 134 208 33 81 124 611 637 183 334 35 87 113 420 561 72 221 41 155 332 122 275 - - 49 - - - - 49 145 59 - - 23 31 - - a) normal value, 3-40 unit; b) normal value, 5-35 unit. Table 2. Results of the biochemical examination on LDH a) and CPK b) Days from Patient A Patient B Patient C eating row badger to examination LDH CPK LDH CPK LDH CPK 26 54 28 - - - - 30 803 560 1121 1208 805 934 33 609 702 1421 760 821 670 41 897 382 830 334 - - 49 - - - - 503 202 59 - - 348 210 - - a) normal value, 50-400 unit; b) normal value, 5-50 unit. 30, 33 and 35 days after infection revealed eosinophilia (2-19%, 7-16% and 0-6% in each patients) and leukocytosis (18,000, 26,550 and 12,500/mm 3 in average). Biochemical examinations showed highly elevated levels of GOT, GPT, LDH (lactic dehydrogenase) and CPK (creatine phosphokinase) (Table 1, 2). Becuase the symptoms and the laboratory findings were highly suggestive of trichinosis, muscle biopsy was performed to verify it. The biopsied muscles were examined by the pressure method using two slide glasses. Roundly coiled nematode larvae were detected in the gastrocnemius muscle of a patient at 34 days after eating raw badger flesh (Fig. 1). Larvae were measured to be 0.775-1.050 (0.908 in average) mm in length, and 0.026-0.042 (0.035 in average) mm in the maximum width. In sectioned specimen of the biopsied muscle, the worm cyst was surrounded by numerous inflammatory cells and a nurse cell-larva Fig. 1. A coiled Trichinella spiralis larva in the biopsied gastrocnemius muscle of a patient at 34 days after eating raw badger.

113 complex was observed (Figs. 2, 3). The muscle biopsied at 34 days after eating raw badger was artificially digested with pepsin-hcl solution to investigate the intensity of infection. A total of 212 larvae per gram of muscle was recovered. The recovered larvae were given orally to a ICR mouse. At 50 days after experimental infection, a large number of larval T. spiralis was harvested from the mouse. However, after treatment with flubendazole for 7 days and with albendazole for 3 days, the larvae in biopsied muscle were uncoiled (Figs. 4, 5), and they did not infect four mice and a hamster experimentally To alleviate symptoms, antibiotics and steroids were administered. Praziquantel, flubendazole and albendazole were also given orally to eradicate helminths. All patients were discharged at 13-34 days post-admission because most of symptoms disappeared. We measured the specific IgG antibody levels in three patients sera sampled at 32 days after infection. The absorbances were measured by ELISA. As a normal control, the sera from four adults were used. The values were significantly higher when compared with those of normal controls (Table 3). By the present study, it was confirmed for the first time that T. spiralis is distributed in Korea. This nematode infection has been found in humans and various mammals in many Asian countries such as Far East USSR, China, Japan, Tailand, Indonesia, Vietnam and Laos (Yamaguti, 1989). The presence of T. spiralis in Korea has been suspected for a long time; however, this nematode infection has not been reported before the present study. The prevalence of human trichinosis in Figs. 2-5. Larvae of Trichinella spiralis detected from muscle biopsy of the patient. Fig. 2. A sectioned larva in the worm cyst of muscle biopsied at 34 days after infection (H-E stained). Fig. 3. Enlarged view of Fig. 2, showing the intense inflammatory response around the nurse cells (arrow heads)-larva (L) complex (H-E stained). Figs. 4 & 5. Two larvae in press preparation of muscle biopsyed at 41 days after eating raw badger (at 10 days after treatment with flubendazole and albendazole). The larvae detected at the same day were uncoiled and did not show the infectivity in mice and a hamster. The bar represents µm in length.

114 Table 3. Specific IgG antibody levels in sera of three patients sampled at 32 days after infection Antibody levels a) Patient A 1.064 ± 0.068 B 1.111 ± 0.024 C 1.584 ± 0.039 Control b) I 0.107 ± 0.016 II 0.118 ± 0.021 III 0.132 ± 0.023 IV 0.091 ± 0.019 a) Absorbance were measured by ELISA. b) Control I: 40-year old male; II: 25-year old male; III: 23- year old female; IV: 22-year old female. endemic countries cannot be estimated because there are no recent systematic surveys. However, sporadic outbreaks are still common in Spain, France, Italy, Yugoslavia, USA and Canada, and it recently occurred in China, Japan, and the Middle East (MacLean et al., 1989; Olaison and it Ljungstrom, 1992; Pozio et al., 1993; Dworkin et al., 1996). Especially, it is noteworthy that the recent incidence of human trichinosis in China (about 10,000 cases annually) is the highest in the world (Markell et al., 1999). The present study showed that an outbreak of trichinosis occurred in a nearby country of China. Until recently, T. spiralis was the only human infecting species in the genus Trichinella. However, four other distinct species, i.e. T. pseudospiralis, T. britovi, T. nativa and T. nelsoni, have been recognized (Pozio et al., 1992). They can be distinguished from T. spiralis by the inability to form cysts, pathogenicity and regional medical importance. While T. spiralis is the most important species among these parasites in most part of the world due to the widespread distribution and higher pathogenicity, T. pseudospiralis does not form the worm cyst and is infectious to avian hosts. The remaining three species are of more regional importance (Markell et al., 1999). On the basis of the aforementioned characteristics, the nematode parasite isolated in this study was identified as T. spiralis. Trichinosis is definitely diagnosed by the detection of larvae in the biopsied muscle. However, prior to diagnosis, past histories, manifesting symptoms and laboratory findings provide helpful information in making a decision before conducting a muscle biopsy (Despommier, 1998). Because the patients in this study showed symptoms and laboratory findings suggesting the trichinosis, and had a common past history of eating raw badger, muscle biopsy was undertaken for definite diagnosis. A laboratory finging that is always associated with T. spiralis infection is eosinophilia in the blood examination (Gould, 1970). In severely infected cases, eosinophils may be as high as 80-95%. Overall, the total WBC count is slightly elevated. In patients moderately or severely infected with this nematode, muscle enzymes such as CPK and LDH are released into the circulating blood and their presence in the serum can be another clue to the diagnosis of trichinosis (Murrell and Bruschi, 1994; Capo and Despommier, 1996). In the present study, although eosinophilia was not so high, other laboratory findings such as leukocytosis and elevated enzyme levels were similar to those of previous reports. ELISA can detect antibodies in some patients as early as 12 days after infection (Ljungstrom, 1983). In the present study, the specific IgG antibody levels were measured in three patients sera sampled at 32 days after infection by the ELISA. The antibody levels were significantly higher than those of normal controls. Two out of three patients, who were larva negative in biopsied muscles, were serologically confirmed to be infected with T. spiralis. It has been known that thiabendazole and mebendazole are useful for treatment against trichinosis (Miyazaki, 1991). Albendazole may be effective, but its role is not yet established (Markell et al., 1999). On the other hand, during an outbreak of T. pseudospiralis in Thailand, treatment with albendazole for 2 weeks was found to be effective, but administration of thiabendazole and mebendazole was ineffective (Jongwutiwes et al., 1998). The present cases were ultimately treated by flubendazole and albendazole from the 6th day after admission for 15-30 days. After treatment for 10 days, the larvae were uncoiled, and they did not show the infectivity in

115 experimental animals. They were probably damaged by the antihelminthics, and lost their coilings and infectivities. REFERENCES Capo V, Despommier DD (1996) Clinical aspects of infection with Trichinella spp. Clin Microbiol Rev Jan: 47-54. Despommier DD (1998) Trichinella and Toxocara. In Parasitology (Vol 5) of Topley & Wilson s Microbiology and Microbial Infections. 9th ed. Cox FEG, Kreier JP, Wakelin D (Vol. eds.), pp597-602. Arnold, London, UK. Dworkin MS, Gamble HR, Zarlenga DS, Tennican PO (1996) Outbreak of trichinellosis associated with eating cougar jerky. J Infect Dis 174: 663-666. Gould SE (1970) Clinical pathology: diagnostic laboratory procedures, Trichinosis in man and animals. Gould SE, Thomas CC (ed.) pp191-221, Springfield, Illinois, USA. Jongwutiwes S, Chantachum N, Kraivichian P, et al. (1998) First outbreak of human trichinellosis caused by Trichinella pseudospiralis. Clin Infect Dis 26: 111-115. Ljungstrom I (1983) Immunodiagnosis in man, Trichinella and trichinosis. Campbell WC (ed.) pp403-424, Plenum Press, New York, USA. MacLean JD, Viallet J, Law C, Staudt M (1989) Trichinosis in the Canadian Arctic: report of five outbreaks and a new clinical syndrome. J Infect Dis 160: 513-520. Markell EK, John DT, Krotoski WA (1999) Markell and Voge s Medical Parasitology. 8th ed. pp340-345, W.B. Saunders, Philadelphia, USA. Miyazaki I (1991) Helminthic Zoonoses. pp452-459, International Medical Foundation of Japan, Tokyo, Japan. Murrell D, Bruschi F (1994) Clinical trichinellosis. In Progress in Clinical Parasitology, Tsien Sun (ed.), pp117-150, CRC Press, Boca Raton. Olaison L, Ljungstrom I (1992) An outbreak of trichinosis in Lebanon. Trans Roy Soc Trop Med Hyg 86: 658-660. Pozio E, La Rosa G, Murrell KD, Lichtenfels JR (1992) Taxonomic revisions of the genus Trichinella. J Parasitol 78: 654-659. Pozio E, Varese P, Morales MA, Croppo GP, Pelliccia D, Bruschi F (1993) Comparison of human trichinellosis caused by Trichinella spiralis and by Trichinella britovi. Am J Trop Med Hyg 48: 568-575. Yamaguti T (1989) Trichinella and trichinelliasis in Japan. NKD, Tokyo, Japan.