Heterosis retained in different generations of inter se mating between D man and Sardi sheep

Similar documents
HETEROSIS RETENTION IN SHEEP CROSSBREEDING L. D. YOUNG* G. E. DICKERSON* UNITED STATES T. S. CH'ANG** R. EVANS** AUSTRALIA SUMMARY

1 of 9 7/1/10 2:08 PM

BORDER LEICESTER AND FINNSHEEP CROSSES. I. SURVIVAL, GROWTH AND CARCASS TRAITS OF FI LAMBS 1

OVULATION RATE AND LITTER SIZE OF BARBADOS, TARGHEE AND CROSSBRED EWES'

LIFETIME PRODUCTION OF 1/4 AND 1/2 FINNSHEEP EWES FROM RAMBOUILLET, TARGHEE AND COLUMBIA DAMS AS AFFECTED BY NATURAL ATTRITION ABSTRACT

Milk yield measured by oxytocin plus hand milking and weigh-suckle-weigh methods in ewes originating from local crossbred in Turkey

RELATIONSHIP BETWEEN GROWTH OF SUFFOLK RAMS ON CENTRAL PERFORMANCE TEST AND GROWTH OF THEIR PROGENY

Summary. investigation programs. Estimation of general and specific combining abilities from a diallel cross of three inbred lines of Fayoumi chicks

Summary. Plymouth Rock (PP), Light Sussex (SS) and their recriprocal Crosses. Sixteen

Summary. Inheritance of body weight and breast length of age in meat type strains of chickens. Introduction. at 8 weeks. Faculty of agriculture

Crossbreeding to Improve Productivity ASI Young Entrepreneur Meeting. David R. Notter Department of Animal and Poultry Sciences Virginia Tech

CROSS-BREEDING BETWEEN THREE FAIT-TAILED IRANIAN BREEDS OF SHEEP. Cruzamiento entre tres razas ovinas iranies de cola grasa

AN ABSTRACT OF THE THESIS OF. Breed and Heterosis Effects on Wool and Lamb Production of

KANSAS SHEEP RESEARCH

THE EFFECT OF IBR/PI3 AND PASTEURELLA VACCINATION ON THE MORTALITY RATE OF HIGH PERCENTAGE EAST FRIESIAN LAMBS

University of Wyoming, Laramie

11 Genetic and Environmental Impacts on Prenatal Loss H.H. Meyer

HERITABILITY ESTIMATES OF HATCHING

Evaluation of Egyptian sheep production systems: I. Breed crosses and management systems

Sheep Breeding. Genetic improvement in a flock depends. Heritability, EBVs, EPDs and the NSIP Debra K. Aaron, Animal and Food Sciences

Effects of ewe age and season of lambing on proli cacy in US Targhee, Suffolk, and Polypay sheep

MILK AND LAMB PRODUCTION OF EAST FRIESIAN-CROSS EWES IN NORTHWESTERN WISCONSIN

Environmental and genetic factors affecting udder characters and milk production in Chios sheep

Estimation of correlations between

GENETIC AND NON GENETIC FACTORS AFFECTING THE LITTER TRAITS OF BROILER RABBITS*

of Columbia and Targhee Ewes

Original article. Genetic study on Dandarawy chickens. II. Heritability of live and carcass measurements. M.A. Abdellatif

DEVELOPMENT OF THE POLYPAY BREED OF SHEEP

Josefina de Combellas, N Martinez and E Gonzalez. Instituto de Producción Animal, Facultad de Agronomia, Universidad Central de Venezuela, Maracay

KANSAS SHEEP RESEARCH 1994

RELATIONSHIPS AMONG WEIGHTS AND CALVING PERFORMANCE OF HEIFERS IN A HERD OF UNSELECTED CATTLE

Diallel Cross of Three Inbred Lines Of Suffolk Sheep

Breeding Performance of Purebred vs. Crossbred Hampshire and Suffolk Ramsl. David L. Thomas, Debi J. Stritzke and John E. Fields.

Feedlot Performance and Carcass Characteristics of Lambs Sired by Texel, Romanov, St. Croix or Dorset Rams from Polypay and St.

Lifetime Production Performance by Suffolk x Rambouillet Ewes in Northwestern Kansas

REPRODUCTIVE PERFORMANCE FOR FOUR BREEDS OF SWINE: CROSSBRED FEMALES AND PUREBRED AND CROSSBRED BOARS

An assessment of the benefits of utilising Inverdale-carrying texel-type rams to produce crossbred sheep within a Welsh context

Daryl L. Kuhlers 3, Steve B. Jungst 3 and J. A. Little 4. Auburn University 3, AL ABSTRACT

The breeding scheme of the Karagouniko sheep in Greece

Increase of egg weight with age in normal and dwarf, purebred and crossbred laying hens

STRATEGY FOR DEVELOPING RABBIT MEAT PRODUCTION IN ALGERIA : CREATION AND SELECTION OF A SYNTHETIC STRAIN

Communication de la session de Reproduction

Evaluation of terminal sire breeds in hair sheep production systems

International sheep session Focus on Iceland Eyþór Einarsson 1, Eyjólfur I. Bjarnason 1 & Emma Eyþórsdóttir 2 1

The effect of weaning weight on subsequent lamb growth rates

GROWTH OF LAMBS IN A SEMI-ARID REGION AS INFLUENCED BY DISTANCE WALKED TO WATER

Sand & Sage Round-Up SHEEP STUDY GUIDE Junior and Intermediate Division (8-13 years old as of December 31)

Can. J. Anim. Sci. Downloaded from by on 04/12/19. Lethbridge Research Station, Canada Department

Effects on egg quality traits of crossing Egyptian Golden Montazah with White Leghorn chickens

1981 Sheep and Wool Days

INFLUENCE OF FEED QUALITY ON THE EXPRESSION OF POST WEANING GROWTH ASBV s IN WHITE SUFFOLK LAMBS

Adjustment Factors in NSIP 1

ECONOMIC studies have shown definite

Key Information. Mountain Hill Vs Lowland Production. Breeding Strategy

Post-weaning Growth and Carcass Traits of St. Croix White and Dorper X St. Croix White Lambs Fed a Concentrate Diet in the U.S.

EDUCATION AND PRODUCTION. Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs

HETEROSIS, DIRECT AND MATERNAL ADDITIVE EFFECTS ON RABBIT GROWTH AND CARCASS CHARACTERISTICS

AUTUMN AND SPRING-LAMBING OF MERINO EWES IN SOUTH-WESTERN VICTORIA

Redacted for privacy

Preweaning litter growth and weaning characteristics among inbred and cross bred native by exotic piglet genotypes

Genetic analysis of swine production traits

Udder conformation and its heritability in the Assaf (Awassi East Friesian) cross of dairy sheep in Israel

Genetic (co)variance components for ewe productivity traits in Katahdin sheep 1

The Caldes Strain (Spain)

Crossbred ewe performance in the Welsh hills

CLUSTERING AND GENETIC ANALYSIS OF BODY RESERVES CHANGES THROUGHOUT PRODUCTIVE CYCLES IN MEAT SHEEP

Sheep Farm Walk. Farm of Peadar Kearney. Nicolastown, Ardee, Co. Louth

{Received 21st August 1964)

quality factors when a one-sided selection for shell quality is practised?

Redacted for privacy

EAAP 2010 Annual Meeting Session 43, Paper #2 Breeding and Recording Strategies in Small Ruminants in the U.S.A.

FINAL REPORT OF RABBIT PROJECTS

Derivation of a new lamb survival trait for the New Zealand sheep industry 1

Genetic evaluation of ewe productivity and its component traits in Katahdin and Polypay sheep. Hima Bindu Vanimisetti

Richard Ehrhardt, Ph.D. Sheep and Goat Extension Specialist Michigan State University

Late pregnancy nutrition the key to flock profitability

Ram Buyers Guide.

FLOCK CALENDAR OUTLINE. a. Be sure they are vigorous, healthy and in good breeding condition.

Revised models and genetic parameter estimates for production and reproduction traits in the Elsenburg Dormer sheep stud

Inheritance of coat and colour in the Griffon Bruxellois dog

An Introduction to Sheep Debra K. Aaron and Donald G. Ely, Animal and Food Sciences

NSIP EBV Notebook June 20, 2011 Number 2 David Notter Department of Animal and Poultry Sciences Virginia Tech

Innovating sheep genetics

Managing your flock during the breeding season

Polymorphism of egg white proteins

How to accelerate genetic gain in sheep?

A Summary of Swine Crossbreeding Research at. Auburn University. Bulletin 595 September 1988 Alabama Agricultural Experiment Station.

Like to see more lambs?

pasture groups. Jerome John Dahmen for the Ph. D. in Genetics Abstract approved selected as high and low on the basis of post -weaning performance

HIGH DENSITY DIETS FOR DWARF LAYERS (1)

7. Flock book and computer registration and selection

Cotter Suffolks and White Suffolks, with Wongarra Poll Dorsets

THE UTILISATION OF BREED RESOURCES IN THE IMPROVEMENT OF SHEEP PRODUCTIVITY

C.z. Raux and G.A. Wyma

Strategies for Increasing the Number of Lambs Marketed per Ewe

We got our start in Dorsets when we bought out Dr. Fred Groverman's flock in We now have about 75 Dorset ewes bred to Dorset rams.

Sheep Breeding in Norway

Regulations and Procedures for the Registration of Dorper/White Dorper Sheep

EFFECTS OF EWE BREED AND MANAGEMENT SYSTEM ON EFFICIENCY OF LAMB PRODUCTION: I. EWE PRODUCTIVITY'

The Effect of Ewe Body Condition at Lambing on Colostral Immunoglobulin G Concentration and Lamb Performance 1,2

Transcription:

J. Anim. Breed. Genet. 116 (1999), 151 159 Ms. received: 5.6.1997 1999 Blackwell Wissenschafts-Verlag, Berlin ISSN 0931 2668 Department of Animal Production, Institut Agronomique et Vétérinaire Hassan II, B.P. 6202 Rabat- Instituts, Rabat 10101, Morocco Heterosis retained in different generations of inter se mating between D man and Sardi sheep By I. BOUJENANE, A. CHAFIK and M. BENBIHI Introduction The improvement of sheep productivity requires efficient actions on different components, mainly on prolificacy. The use of prolific breeds in the creation of synthetic breeds allows this objective to be attained and the wishes of breeders who like to have one breed type which permits replacement from their own flock to be realized. Nevertheless, the efficiency of such a breeding system is related to the heterosis at the first generation and to the proportion of retained heterosis in the subsequent generations of inter se mating (YOUNG et al. 1986). A programme for the creation of a synthetic breed of sheep having 50% D man and 50% Sardi was initiated (BOUJENANE and BRADFORD 1991), and preliminary results were reported (BOUJENANE and CHAFIK 1994). The objectives of this study were to analyse the reproduction, growth and survival performance of Sardi, D man and F 1 to F 5 generations of crossbred sheep, and to calculate the heterosis and the heterosis retained at different generations. Material and methods Animals The study was undertaken at the Tadla Farm of the Institut Agronomique et Vétérinaire Hassan II. The farm is located at 32.5 N, 7 W at approximately 415 m elevation in an irrigated area of the interior of Morocco, 20 km north of the High Atlas mountain, 150 km east-northeast of Marrakech and approximately 160 km from Casablanca on the Atlantic Coast. The analysis has concerned 1418 litter records of 751 ewes and 1702 growth records of 1996 lambs born from 97 sires. The mean age and weight at mating of the ewes were 34 months and 42 kg, respectively. The average number of lambings was 2.4. Data were collected during six lambing periods from 1990 to 1995 inclusive. The matings were made to establish a new synthetic breed. Ewes were of Sardi, D man, F 1,F 2,F 3 and F 4 breed groups, whereas lambs were of Sardi, D man, F 1,F 2,F 3,F 4 and F 5 breed groups. In this study the F 1 is defined as the first generation that reflects the final breed composition of the synthetic breed which was established by using the same sires and dams used in the parental breeds. Animals of the F 1 to F 5 generations were produced by inter se mating. Crossbred ewes were mated to rams of their own breed group, but purebred D man (D) and Sardi (S) ewes were mated to both D man and Sardi rams in order to produce purebred and reciprocal F 1 (S D and D S) lambs. Details concerning the parental breeds and the origin of their samples were reported by LAHLOU-KASSI et al. (1989). U.S. Copyright Clearance Center Code Statement: 0931 2668/99/1602 0151 $14.00/0

152 I. Boujenane, A. Chafik and M. Benbihi Management Ewes were managed under an annual lambing system. They were mated for the first time at 16 months of age. Mating periods started on average at June 25 and lasted 40 days. Each year, ewes were placed at random in different pens, with an average of 20 25 ewes per ram. Mating was performed indoors at night. The rams were used for 1 or 2 years. Apart from the mating period, all ewes and their subsequent lambs were subjected to the same management. The ewes were kept on pasture (fallow and wheat stubble), except during the mating and lambing periods, when they were kept in confinement and fed on alfalfa hay, barley, sugar beet pulp and a mineral and vitamin mixture such as their dietary requirements were covered. When the lambs reached 1 month of age they were creep-fed ad libitum on a concentrate composed of barley, sunflower and mineral and vitamin mixture. The ewes were vaccinated against enterotoxemia. The lambs were injected with 1 ml of a commercial product (Bioselenium; BCI, Rabat, Maroc) containing 1 mg/ml of selenium and 50 IU/ml of vitamin E to avoid white muscle disease, and they were vaccinated against enterotoxemia at weaning. At birth, the lambs were ear tagged and weighed. Subsequent weighings were taken every 2 weeks until weaning at 90 days. The weights at 30 days, at 60 days and at 90 days were calculated by linear interpolation. Sheep were shorn approximately 2 months before the mating season. The lambs were not docked and the ram lambs were kept intact. No selection was practised between generations for any trait, but the ewes were culled at approximately 6 years of age. Statistical analyses Traits studied The ewe traits studied were litter size at birth, litter weight at birth, litter size at 60 days per ewe lambing and litter weight at 60 days per ewe lambing. The litter weights were computed after the individual lamb weights at birth and at 60 days were corrected for sex, since the analysis showed that both of these weights were affected by the sex of the lamb. The lamb traits studied were weight at birth, at 30 days, at 60 days and at 90 days, as well as survival from birth to weaning. Analysis of variance Data were analysed by least-squares mixed-model procedures (HARVEY 1990). The model used to analyse litter traits included the effects of breed group of ewe (Sardi, D man, F 1,F 2, F 3 and F 4 ), ewe within breed group of ewe (random effect), age of ewe at lambing (³2.5, 3.5, 4.5 and 4.5 years), period of lambing (1990, 1991, 1992, 1993, 1994 and 1995), and the interaction breed group age of ewe. The other interactions were not significant (p 0.05). For lamb weights, only those lambs that had performance on all weights studied were included in the analyses. The mixed model used to analyse lamb weights and survival included the effects of breed group of lamb (Sardi, D man, F 1,F 2,F 3,F 4 and F 5 ), sire within breed group (random effect), age of dam (³2.5, 3.5, 4.5 and 4.5 years), sex of lamb (male and female), type of birth and rearing (1 1, 2 2, 3 3, 2 or greater 1 and 3 or greater 2), and the period of birth of lamb (1990, 1991, 1992, 1993, 1994 and 1995). However, for birth weight, instead of the type of birth and rearing, only type of birth (singles, twins and triplets or greater) was considered. Due to the computer program limitations, two way interactions that included the period of birth, were not tested, except for the interaction sex period of birth. The two way interactions tested that were not significant (p 0.05) for lamb survival were deleted from the final analyses. For weights, interactions that were not significant for any trait were deleted from the final models. The mean squares for ewe within breed group of ewe and the mean squares for sire within breed group were used as the error term to test

Heterosis retained in different generations of inter se mating of sheep 153 the significance of differences among breed groups (F-test) for litter traits and preweaning lamb survival and weights, respectively. Estimation of heterosis and heterosis retained. If heterosis is primarily determined by dominance, then heterosis in advanced generations of crossbreeding programmes should be retained in the proportion of the retained heterozygosity. Since the Sardi and D man breeds contributed equally to the synthetic breed, retention of initial (F 1 ) heterozygosity after crossing and subsequent random (inter se) mating within the crosses is equal to 0.5 (DICKERSON 1969, 1973). This loss of heterozygosity occurs between the F 1 and F 2 generations, and, if inbreeding is avoided, further loss of heterozygosity in inter se mated populations does not occur (DICKERSON 1969, 1973). Thus, the expectation for mean heterosis (individual heterosis H i, maternal heterosis H m and paternal heterosis H p ) was (1 H i +0H m +0H p ) for the F 1 generation (0.5 H i +1H m +1H p ) for the F 2 generation, and (0.5 H i + 0.5 H m + 0.5 H p ) for the F 3 and subsequent generations of the synthetic breed. However, since BOUJENANE and BRADFORD (1991) and BOUJENANE et al. (1991a,b) showed that maternal and paternal heterosis were negligible for most traits from the crossbreeding between D man and Sardi sheep, individual heterosis was estimated assuming H m = H p = 0. Thus, linear functions of the means of parental breeds and crossbred generations were computed to estimate the heterosis. The heterosis was estimated by the difference between the performance of crossbred for the ith generation and the mean for the parental breeds. The mean heterosis was computed as the difference between the average performance of crossbred for different generations and the mean for the parental breeds. The heterosis retained was computed as the difference between one-half of the initial (F 1 ) heterosis and the mean heterosis found for subsequent generations. Results and discussion Analysis of variance for litter traits Results for the analysis of variance and least squares breed group means for litter traits are presented in Tables 1 and 2. The effects of breed group were important for all litter traits studied. D man ewes had the highest litter size at birth and at 60 days, Sardi ewes had the lowest performance, and the crossbred ewes were intermediate. For litter weight at birth and at 60 days, ewes of the F 1 generation had the heaviest litters and ewes of the F 4 generation had the lightest litters. The latter result is mainly due to the low individual weight at birth Table 1. Analysis of variance for litter traits Litter size at Litter wt at birth Litter wt at 60 days Litter size at birth 60 days (kg) (kg) Source of variation df MS df MS df MS df MS Breed group (B) 5 16.3*** 5 7.6*** 5 7.7*** 5 411.3*** Ewes (B) 745 0.5*** 745 0.4* 745 1.8* 745 44.6** Age (A) 3 0.8 3 1.9 3 6.7** 3 344.7*** Period of lambing 5 0.9* 5 0.8* 5 38.6*** 5 213.3*** B A 14 77.6* Residual 659 0.3 659 0.3 659 1.3 645 37.2 *p ³ 0.05; **p ³ 0.01; ***p ³ 0.001

154 I. Boujenane, A. Chafik and M. Benbihi Table 2. Least squares breed group means for litter traits Litter size at Litter wt at birth Litter wt at 60 days Number Litter size at birth 60 days (kg) (kg) Least squares means (m) 1418 1.57 1.36 4.02 16.6 Breed group Sardi 308 1.10d 1.04d 3.87c 15.1c D man 155 1.90a 1.52a 4.18ab 16.9b F 1 243 1.68b 1.48a 4.32a 19.0a F 2 262 1.62bc 1.44ab 4.00bc 17.2b F 3 127 1.53bc 1.35bc 3.98bc 16.8b F 4 323 1.59c 1.32c 3.79c 14.6c a d Means within a column that does not have a common superscript differ (p ³ 0.05) and at 60 days of lambs from F 4 dams. Except for litter size at birth, which was not affected by the age of ewe, all the other traits were influenced by both age of ewe and period of lambing. Ewes that were 2.5 years of age at lambing had the lowest performance, and those that were 4.5 years or older had the highest performance. These results are in agreement with those reported by BOUJENANE and BRADFORD (1991) and BOUJENANE et al. (1991b). On the other hand, the interaction age of ewe period of lambing had a significant effect on litter weight at 60 days. Analysis of variance for lamb weights and survival Results for the analysis of variance and least squares breed group means for lamb weights and survival are presented in Tables 3 and 4. Except for lamb survival, which was not affected by the breed group of lamb and the period of birth, all weights and survival were significantly affected by the breed group of lamb, age of dam, sex of lamb, type of birth and rearing and period of birth of lamb. Sardi lambs had the highest weight at birth, at 30 days and at 60 days, lambs of the F 2 generation had the highest weight at 90 days, and lambs of the F 5 generation had the lowest weights at any age. This result may be explained by the fact that lambs of the F 5 generation were born from dams that were at their first or second lambing. In fact, lambs born from young dams had the lowest weights, and those produced by old dams had the heaviest weights. Also, ram lambs were heavier than ewe lambs at all ages. Single-born lambs were consistently the heaviest at all ages, whereas those born as triplets or greater and raised as triplets or greater were the lightest. In general, lambs raised as twins excelled those raised as triplets or greater. Within the same type of rearing, the advantage was in favour of those born in small litters. These results are in agreement with those reported by BOUJENANE et al. (1991a). Moreover, breed group of lamb sex, breed group of lamb type of birth and rearing, and age of dam type of birth and rearing interactions had significant effects (p ³ 0.05) for weight at 30 days and survival, whereas weight at birth and at 90 days was significantly (p ³ 0.05) affected by sex of lamb period of birth of lamb interaction. Heterosis for litter traits Estimates of heterosis in crossbred ewes, resulting from crossing D man and Sardi breeds, are presented in Table 5. The effects of heterosis were significant for all litter traits for F 1 generation, significant for litter size at birth (p ³ 0.05), litter size at 60 days (p ³ 0.01), and litter weight at 60 days (p ³ 0.05) for F 2 generation, and not significant (p 0.05) for any

Heterosis retained in different generations of inter se mating of sheep 155 Table 3. Analysis of variance for lamb weights and survival Birth wt (kg) 30-day wt (kg) 60-day wt (kg) 90-day wt (kg) Survival 0 90 days Source of variation df MS df MS df MS df MS df MS Breed group (B) 6 2.8*** 6 15.5** 6 36.2* 6 64.8** 6 0.17 Sires/B 90 0.6*** 90 4.7*** 90 13.3*** 90 19.0*** 90 0.14* Age of dam (A) 3 10.1*** 3 43.8*** 3 100.3*** 3 154.8*** 3 0.49** Sex (S) 1 6.0*** 1 50.8*** 1 161.5*** 1 484.2*** 1 0.47* Type of birth and rearing (T) 2 58.7*** 4 397.7*** 4 715.6*** 4 1207.5*** 4 1.03*** Period of birth (P) 5 12.6*** 5 12.8*** 5 50.1*** 5 164.8*** 5 0.18 B S 6 0.2 6 6.0* 6 9.8 6 9.5 6 0.35** B T 12 0.5 23 4.0* 23 7.0 23 12.9 24 0.28*** A T 6 0.3 12 6.3** 12 9.8 12 16.6 12 0.54*** S P 5 0.8* 5 4.6 5 11.3 5 32.8** Residual 1565 0.3 1546 2.5 1546 5.8 1546 9.6 1844 0.10 *p ³ 0.05; **p ³ 0.01; ***p ³ 0.001

156 I. Boujenane, A. Chafik and M. Benbihi Table 4. Least squares breed group means for lamb weights and survival Birth wt 30-day wt 60-day wt 90-day wt Number (kg) (kg) (kg) (kg) Survival 0 90 days Least squares means (m) 1702 2.64 6.89 11.8 16.8 1996 0.82 Breed group Sardi 160 3.31a 7.96a 12.7a 17.6a 191 0.75 D man 159 2.42cd 6.47de 11.4c 16.8bc 195 0.83 F 1 207 2.71b 7.00bc 12.0b 17.0b 236 0.82 F 2 347 2.64b 7.27b 12.6a 18.0a 402 0.87 F 3 290 2.48cd 6.57d 11.3cd 16.3c 328 0.87 F 4 398 2.52c 6.75cd 11.6bc 16.7bc 466 0.80 F 5 141 2.37d 6.21e 10.9d 15.5d 178 0.79 a e Means within a column that does not have a common superscript differ (p ³ 0.05) Table 5. Effects of heterosis on litter traits Litter size at Litter size at Litter wt at birth Litter wt at 60 days Item birth 60 days (kg) (kg) Linear contrasts Heterosis F 1 minus purebreds 0.18*** 0.20*** 0.29** 2.96*** F 2 minus purebreds 0.12* 0.16** 0.03 1.15* F 3 minus purebreds 0.03 0.06 0.05 0.80 F 4 minus purebreds 0.09 0.04 0.24 1.44 F 1,F 2,F 3 &F 4 minus 0.10** 0.12** 0.07 0.87* purebreds Retained heterosis 0.5HF 1 minus 0.33 0.01 0.01 0.25*** 1.31** (HF 2 +HF 3 +HF 4 ) *p ³ 0.05; **p ³ 0.01; ***p ³ 0.001 trait for F 3 and F 4 generations. There was a tendency towards a decrease in heterosis for litter traits in advancing generations. On the other hand, mean heterosis effects for F 1,F 2, F 3 and F 4 generations were significant for all litter traits, except for litter weight at birth (p 0.05). Percentage of mean heterosis was 6.7 (p ³ 0.01), 9.4 (p ³ 0.01), and 5.4% (p ³ 0.05) for litter size at birth, litter size at 60 days and litter weight at 60 days, respectively. These values are within the range reported (NITTER 1978). Heterosis retained for litter size at birth and litter size at 60 days did not differ (p 0.05) from expectation based on retained heterozygosity (Table 5). However, for litter weight at 60 days, the retained heterosis was less (p ³ 0.01) than expectation based on retained heterozygosity. In a crossbreeding experiment including Romanov and Berrichon de Cher breeds, RICORDEAU et al. (1982a) reported no heterosis for litter size at birth in F 1 nor any significant difference among the first four generations. VISSCHER (1987) reported that there was no apparent loss in reproductive traits of the synthetic ewes from a reciprocal cross

Heterosis retained in different generations of inter se mating of sheep 157 Table 6. Effects of heterosis on lamb weights and survival Birth wt 30-day wt 60-day wt 90-day wt Survival Item (kg) (kg) (kg) (kg) 0 90 days Linear contrasts Heterosis F 1 minus purebreds 0.16 0.22 0.01 0.22 0.02 F 2 minus purebreds 0.22* 0.05 0.51 0.79 0.08 F 3 minus purebreds 0.38*** 0.64* 0.78 0.87 0.08 F 4 minus purebreds 0.34*** 0.46 0.42 0.48 0.00 F 5 minus purebreds 0.50*** 1.00** 1.15* 1.70** 0.00 F 1,F 2.F 3,F 4 &F 5 0.32** 0.45 0.37 0.49 0.04 minus purebreds Retained heterosis 0.5HF 1 minus 0.25 0.40*** 0.57* 0.59 0.64 0.04 (HF 2 +HF 3 +HF 4 +HF 5 ) *p ³ 0.05; **p ³ 0.01; ***p ³ 0.001 between Finnsheep and Ile de France compared with F 1 ewes. HIGHT and JURY (1970) reported a decrease in most reproductive traits from the F 1 to the F 2 and from F 2 to the F 3, such that the F 3 approached the performance of the least productive parental breed. BOYLAN (1985), analysing data from a crossbreeding experiment including Finnsheep and Suffolk breeds, as well as Finnsheep and Targhee breeds concluded that the recombination effects were large and negative for Finn Suffolk crosses. Heterosis for lamb weights and survival The effects of heterosis for lamb survival and weights are presented in Table 6. The effects of heterosis were positive and not significant (p 0.05) for lamb survival for each generation of the synthetic breed. Heterosis effects were negative and significant (p ³ 0.05) for birth weight for the F 2,F 3,F 4 and F 5 generations, negative and significant for weight at 30 days for the F 3 and F 5 generations, negative and significant for weight at 60 days and at 90 days for the F 5 generation. On the other hand, mean heterosis effects for the F 1,F 2,F 3,F 4 and F 5 generations were negative and significant (p ³ 0.01) for birth weight, negative and not significant (p 0.05) for the other weights, and positive and not significant (p 0.05) for preweaning lamb survival. The percentage of heterosis for weight at birth was 11.2%. RASTOGI et al. (1982) reported estimates of individual heterosis of 4.6% for birth weight but near zero for weaning weight, whereas NITTER (1978), reviewing heterosis for growth in sheep, reported average estimates of individual heterosis to be about 3.2 and 5% for birth and weaning weights, respectively. Heterosis retained for weight at birth and at 30 days was less than the expectation based on retained heterozygosity, and not significantly different (p 0.05) from the expectation based on retained heterozygosity for the other weights and survival. These results are consistent with those of RICORDEAU et al. (1982b) who reported that there was no decline in lamb survival and weights from the F 1 to the F 4 generations of a crossbreeding between the Romanov and Berrichon de Cher breeds, and also with those of RASTOGI et al. (1982) who reported small recombination effects for various growth traits from data involving the Columbia, Suffolk and Targhee breeds. However, during the development of the Romnelet breed, PETERS et al. (1961) found reductions in birth weight and weaning weight from the first-cross to the F 2 generation, and a further significant decline in birth weight from the F 2

158 I. Boujenane, A. Chafik and M. Benbihi to the F 7 generations, but an increase in weaning weight in the later generations. Similar results were reported by HIGHT and JURY (1971). General The results of the present study showed that the proportion of retained heterosis was not less than the proportion of retained heterozygosity for most traits. They are in agreement with the negligible epistatic recombination effects on litter traits, weights and survival from the F 1 and the F 2 generations D man Sardi crosses reported by BOUJENANE and BRADFORD (1991) and BOUJENANE et al. (1991a,b). Consequently, these results suggested that heterosis in sheep can be accounted for by the dominance effects of genes. The low performance of ewes for the F 4 generation and their lambs were mainly due to their younger age compared to ewes of the other breed groups. Therefore, the development of a synthetic breed from crosses among D man and Sardi should be effective. Summary Heterosis and heterosis retained for different generations of a crossbreeding between D man and Sardi sheep were estimated from 1418 litter records of ewes, and 1702 lamb preweaning weights from 1996 lamb born. These data were collected from D man, Sardi and their F 1 to F 5 lambs during six lambing seasons. Mean heterosis for the F 1 to F 4 generations were significant for all litter traits, except for litter weight at birth (p 0.05). Heterosis retained for litter size at birth and at 60 days did not differ (p 0.05) from the expectation based on retained heterozygosity, whereas it was less (p ³ 0.01) than the expectation based on retained heterozygosity for litter weight at 60 days. Mean heterosis effects for the F 1 to F 5 generations were negative and significant (p ³ 0.01) for birth weight, and not significant (p 0.05) for weight at 30 days, at 60 days and at 90 days, as well as for lamb survival. For weight at birth, the heterosis retained was less than the expectation (p ³ 0.001) based on retained heterozygosity. It was concluded that for most traits the proportion of retained heterosis was not less than the proportion of retained heterozygosity, which suggested that heterosis in sheep can be accounted for by the dominance effects of genes. Résumé Hétérosis retenu dans différentes générations de croisement entre les ovins D man et Sardi L hétérosis et l hétérosis retenu dans les générations F 1 à F 5 d un croisement entre les races ovines D man et Sardi ont été estimés àpartir de 1418 données sur les caractères de portée des brebis et 1702 performances pondérales de 1996 agneaux collectées pendant six ans. Les effets de l hétérosis moyen pour les générations F 1 à F 4 sont significatifs pour tous les caractères de portée, sauf pour le poids de portée àla naissance (p 0.05). L hétérosis retenu pour la taille de portée àla naissance et à 60 jours ne diffère pas (p 0.05) de ce qui est attendu basé sur l hétérozygosité retenue, alors qu il est inférieur (p ³ 0.01) à ce qui est attendu pour le poids de portée à60 jours. Les effets de l hétérosis moyen pour les générations F 1 à F 5 sont négatifs et significatifs (p ³ 0.01) sur le poids à la naissance, et non significatifs (p 0.05) sur les poids à 30 jours, à 60 jours et à 90 jours, ainsi que la viabilité des agneaux. Pour le poids à la naissance, l hétérosis retenu est inférieur à ce qui est attendu (p ³ 0.001) basé sur l hétérozygosité retenue. Il a été conclu que pour la majorité des caractères, la proportion de l hétérosis retenu n est pas inférieure à la proportion de l hétérozygosité retenue, ce qui indique que l hétérosis chez les ovins peut être déterminé par les effets de dominance des gènes. References BOUJENANE, I.; BRADFORD, G. E., 1991: Genetic effects on ewe productivity of crossing D man and Sardi breeds of sheep. J. Anim. Sci. 69: 525 530. BOUJENANE, I.; BRADFORD, G. E.; BERGER, Y. M.; CHIKHI, A., 1991a: Genetic and environmental effects on growth to one year and viability of lambs from a crossbreeding study of D man and Sardi breeds. J. Anim. Sci. 69: 3989 3998. ; ; FAMULA, T. R., 1991b: Inheritance of litter size and its components in crosses between the D man and Sardi breeds of sheep. J. Anim. Sci. 69: 517 524. ; CHAFIK, A., 1994: Heterosis retention in advanced generation of crosses among D man and Sardi sheep. In: SMITH C.; GAVONA J. S.; BENKEL B.; CHESNAIS J.; FAIRFULL W.; GIBSON J. P.;

Heterosis retained in different generations of inter se mating of sheep 159 KENNEDY B. W.; BURNSIDE E. B. (eds), Proc. 5th World Congr. Genet. Appl. Livest. Prod., Vol 18. Guelph, Ontario, Canada. pp. 75 78. BOYLAN, W. J., 1985: Crossbreeding for fecundity. In: LAND R. B.; ROBINSON D. W. (eds), Genetics of Reproduction in Sheep, Butterworths, London pp. 19 24. DICKERSON, G. E., 1969: Experimental approaches in utilizing breed resources. Anim. Breed. Abstr. 37: 191 202., 1973: Inbreeding and heterosis in animals. In: American Society of Animal Science (eds) Proc. of the Animal Breeding and Genetics Symposium. in honour of Dr Jay Lush. Am. Soc. of Anim. Sci., Champaign, IL. pp. 54 77. HARVEY, W. R., 1990: LSMLMW and MIXMDL. University of Ohio, Columbus, OH. HIGHT, G. K.; JURY, K. E., 1970: Hill country sheep production. I. The influence of age, flock, and year on some components of reproduction rate in Romney and Border Leicester Romney ewes. N. Z. J. Agric. Res. 13: 641 659. ;, 1971: Hill country sheep production. III. Sources of variation in Romney and Border Leicester Romney lambs and hoggets. N. Z. J. Agric. Res. 14: 669 686. LAHLOU-KASSI, A.; BERGER, Y. M.; BRADFORD, G. E.; BOUKHLIQ, R.; TIBARY, A.; DERQAOUI, L.; BOUJENANE, I., 1989: Performance of D man and Sardi sheep on accelerated lambing. I. Fertility, litter size, post partum anoestrus and puberty. Small Ruminant Res. 2: 225 239. NITTER, G., 1978: Breed utilization for meat production in sheep. Anim. Breed. Abstr. 46: 131 143. PETERS, H. F.; SLEN, S. B.; HARGRAVE, H. J., 1961: Genetic trends in performance of the Romnelet sheep during the period of breed development. Can. J. Anim. Sci. 41: 126 133. RASTOGI, R.; BOYLAN, W. J.; REMPEL, W. E.; WINDELS, H. F., 1982: Crossbreeding in sheep with evaluation of combining ability, heterosis and recombination effects for lamb growth. J. Anim. Sci. 54: 524 532. RICORDEAU, G.; RAZUNGLES, J.; TCHAMITCHIAN, L.; LEFEVRE, C.; BRUNEL, J. C., 1982a: Paramètres phénotypiques et génétiques des caractères de croissance et de reproduction des brebis croisées Berrichon du Cher Romanov F1 à F4. Ann. Génét. Sél. Anim. 14: 327 352. ; ; ; ;, 1982b: Comparison of the first four generations of crossbred Berrichon du Cher Romanov ewes. In: Proc. 2nd World Congr. Genet. Appl. Livest. Prod., Vol. 8. Ministrio de Agricultura, Pesca y Alimentacion, Madrid, Spain. pp. 728 731. VISSCHER, A. H., 1987: Development of a synthetic dam line in a reciprocal cross between Finnish Landrace and Ile de France in The Netherlands. Livest. Prod. Sci. 17: 77 87. YOUNG, L. D.; DICKERSON, G. E.; CH ANG, T. S.; EVANS, R., 1986: Heterosis retention in sheep crossbreeding. In: DICKENSON G. E.; JOHNSON R. K. (eds), Proc. 3rd World Congr. Genet. Appl. Livest. Prod., Vol. 9. University of Nebraska, Lincoln, Nebraska. pp. 497 508. Authors addresses: I. BOUJENANE, Department of Animal Production, Institut Agronomique et Vétérinaire Hassan II, B.P. 6202 Rabat-Instituts, Rabat 10101, Morocco; A. CHAFIK, Department of Animal Biology, Faculté des Sciences d El Jadida, Morocco; M BENBIHI, Centrale Laitière, Casablanca, Morocco.