Sexing freshwater turtles: penile eversion in Phrynops tuberosus (Testudines: Chelidae)

Similar documents
Good vibrations: a novel method for sexing turtles

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

FIRST RECORD OF Platemys platycephala melanonota ERNST,

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA)

Diane C. Tulipani, Ph.D. CBNERRS Discovery Lab July 15, 2014 TURTLES

A Three Year Survey of Aquatic Turtles in a Riverside Pond

Gulf and Caribbean Research

Reptiles. Ectothermic vertebrates Very successful Have scales and toenails Amniotes (lay eggs with yolk on land) Made up of 4 orders:

The Ecology of Freshwater Turtle Communities on the Upper-Coastal Plain of South Carolina

RWO 166. Final Report to. Florida Cooperative Fish and Wildlife Research Unit University of Florida Research Work Order 166.

Reptilia, Squamata, Amphisbaenidae, Anops bilabialatus : Distribution extension, meristic data, and conservation.

Werner Wieland and Yoshinori Takeda. Department of Biological Sciences University of Mary Washington Fredericksburg, VA

Great Science Adventures Lesson 12

Amniote Relationships. Reptilian Ancestor. Reptilia. Mesosuarus freshwater dwelling reptile

Notes on the reproductive ecology of the rough-footed mud turtle (Kinosternon hirtipes) in Texas, USA

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination

Use of Tomahawk traps in freshwater Testudines capture

Title Temperature among Juvenile Green Se.

Diet of Phrynops geoffroanus (Schweigger 1812) (Chelidae) in an Environmental Protection Area in the Amazon Region of Maranhão State, Brazil

Diel Activity Patterns of the Turtle Assemblage of a Northern Indiana Lake

Bycatch records of sea turtles obtained through Japanese Observer Program in the IOTC Convention Area

Courtship behavior of Mesoclemmys vanderhaegei (Bour, 1973) (Testudines: Chelidae) under natural conditions in the Brazilian Cerrado

B-Division Herpetology Test. By: Brooke Diamond

Dietary Notes on the Red-eared Slider (Trachemys scripta) and River Cooter (Pseudemys concinna) from Southern Illinois

Representation, Visualization and Querying of Sea Turtle Migrations Using the MLPQ Constraint Database System

Canadian Journal of Zoology. The Effects of Climate on Annual Variation in Reproductive Output in Snapping Turtles (Chelydra serpentina).

MERCURY IN NEW JERSEY S DIAMONDBACK TERRAPINS (Malaclemys terrapin) Natalie Sherwood, Meiyin Wu, Peddrick Weis

Today there are approximately 250 species of turtles and tortoises.

Who Really Owns the Beach? The Competition Between Sea Turtles and the Coast Renee C. Cohen

Conservation Sea Turtles

Sent via and U.S. Mail. Please Stop Using Wild-Caught Turtles at the Bel Air Turtle Race

WATER plays an important role in all stages

Taxonomy. Chapter 20. Evolutionary Development Diagram. I. Evolution 2/24/11. Kingdom - Animalia Phylum - Chordata Class Reptilia.

Sea Turtle, Terrapin or Tortoise?

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017

INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS

ACTIVITY #6: TODAY S PICNIC SPECIALS ARE

THE SPATIAL DYNAMICS OF SEA TURTLES WITHIN FORAGING GROUNDS ON ELEUTHERA, THE BAHAMAS

Reproductive ecology of the endangered Beal s-eyed turtle, Sacalia bealei

St. Lawrence River AOC at Massena/Akwesasne. Jessica L. Jock Saint Regis Mohawk Tribe (SRMT) Environment Division NYS AOC Meeting April 21, 2015

Animal Information Michigan Turtles Table of Contents

Structure and Composition of a Southern Illinois Freshwater Turtle Assemblage

Ohio Biological Survey Notes 3: 21-28, Ohio Biological Survey, Inc.

Diagnosis of Living and Fossil Short-necked Turtles of the Genus Elseya using skeletal morphology

First record of visual displays in Scinax cardosoi (Anura: Hylidae)

click for previous page SEA TURTLES

Introduction. A western pond turtle at Lake Lagunitas (C. Samuelson)

Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)

The Canadian Field-Naturalist

The Rufford Foundation Final Report

Movement patterns and activity of the Brazilian snake-necked turtle Hydromedusa maximiliani (Testudines: Chelidae) in southeastern Brazil

Common Musk Turtles (Sternotherus odoratus) select habitats of high thermal quality at the northern extreme of their range

Marine Reptiles. Four types of marine reptiles exist today: 1. Sea Turtles 2. Sea Snakes 3. Marine Iguana 4. Saltwater Crocodile

ABSTRACT. Ashmore Reef

The effectiveness of reptile exclusion techniques as revealed by photorecognition

Biology Of Sea Turtles, Vol. 1

When a species can t stand the heat

When a species can t stand the heat

GNARALOO TURTLE CONSERVATION PROGRAM 2011/12 GNARALOO CAPE FARQUHAR ROOKERY REPORT ON FINAL RECONNAISSANCE SURVEY (21 23 FEBRUARY 2012)

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

Station 1 1. (3 points) Identification: Station 2 6. (3 points) Identification:

PORT MANAGEMENT ECO-EFFICIENCY IN BRAZIL. Authors:

PERCEPTION OF OCEAN WAVE DIRECTION BY SEA TURTLES

Movement and habitat use of the snapping turtle in an urban landscape

Home ranges and movements of the Chinese stripe-necked turtle (Ocadia sinensis) in the Keelung River, northern Taiwan

Reptilian Requirements Created by the North Carolina Aquarium at Fort Fisher Education Section

ARTICLES. Status of the Alligator Snapping Turtle (Macrochelys temminckii) in South Alabama with Comments on Its Distribution

Distribution Unlimited

Road occurrence and mortality of the northern diamondback terrapin

Sexual Dimorphism in Red-Eared Sliders (Trachemys scripta elegans) from the Wild Animal Triage Center of the Tiete Ecological Park, São Paulo, Brazil

Growth analysis of juvenile green sea turtles (Chelonia mydas) by gender.

The influence of propagule size and maternal nest-site. selection on survival and behaviour of neonate turtles. J. J. KOLBE* and F. J.

The Effects of Sex and Season on Patterns of Thermoregulation in Blanding s Turtles (Emydoidea blandingii) in Ontario, Canada

Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae)

University of Canberra. This thesis is available in print format from the University of Canberra Library.

Tortoises And Freshwater Turtles: The Trade In Southeast Asia (Species In Danger) By Martin Jenkins READ ONLINE

EXECUTIVE SUMMARY OF THE NATIONAL ACTION PLAN FOR THE CONSERVATION OF SEA TURTLES IN BRAZIL

Zander Srodes. Turtle Talks Activity Book

The Influence of Maternal Size on the Eggs and Hatchlings of Loggerhead Sea Turtles

Sexual size dimorphism and diet specialization in the common map turtle (Graptemys geographica) Marie-Ange Gravel

Endangered Species Origami

SEA TU RTL ES AND THE GU L F O F MEXICO O IL SPIL L

Petrie Island Turtle Nesting Survey Report

GROWTH AND MATURITY OF SPINY SOFTSHELL TURTLES (APALONE SPINIFERA) IN A SMALL URBAN STREAM

United States Turtle Mapping Project with a Focus on Western Pond Turtle and Painted Turtle

Reptiles of Tennessee

Ethogram of Sacalia quadriocellata (Reptilia: Testudines: Geoemydidae) in Captivity

S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

REPRODUCTIVE BIOLOGY AND CONSERVATION STATUS. OF THE LOGGERHEAD SEA TURTLE (Caretta caretta) IN ESPÍRITO SANTO STATE, BRAZIL

Dive-depth distribution of. coriacea), loggerhead (Carretta carretta), olive ridley (Lepidochelys olivacea), and

NETHERLANDS ANTILLES ANTILLAS HOLANDESAS

Chapter 5 Male and female reproductive systems

Rookery on the east coast of Penins. Author(s) ABDULLAH, SYED; ISMAIL, MAZLAN. Proceedings of the International Sy

Field Herpetology Final Guide

REPTILES. Scientific Classification of Reptiles To creep. Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Class: Reptilia

Human Impact on Sea Turtle Nesting Patterns

Types of Data. Bar Chart or Histogram?

Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination

FACT FUN! *Loggerheads are the most common species of sea turtle in the ocean off of South Carolina.

SILENT TURTLE DWELLERS: BARNACLES ON RESIDENT GREEN (CHELONIA MYDAS) AND HAWKSBILL TURTLES (ERETMOCHELYS IMBRICATA) OF MABUL AND SIPADAN ISLANDS

Transcription:

Acta Herpetologica 9(2): 259-263, 2014 DOI: 10.13128/Acta_Herpetol-14736 Sexing freshwater turtles: penile eversion in Phrynops tuberosus (Testudines: Chelidae) João F. M. Rodrigues 1,2,3, *, Diego de O. Soares 2, José R. F. Silva 3 1 Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Departamento de Ecologia, Goiânia, GO, Brazil. *Corresponding author. E-mail: fabriciorodrigues303@gmail.com 2 Núcleo Regional de Ofiologia da Universidade Federal do Ceará (NUROF-UFC), Fortaleza, CE, Brazil 3 Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal do Ceará, Centro de Ciências, Fortaleza, CE, Brazil Submitted on 2014, 25 th July; revised on 2014, 15 th November; accepted on 2014, 17 th November Editor: Paolo Casale Abstract. Here, we described a noninvasive method for sexing freshwater turtles by stimulating penile eversion. We immobilized the neck and limbs of animals using fingers and, after some seconds, turtles everted their penis. This method was tested in 33 male Phrynops tuberosus, and 28 everted the penis. The efficiency of the method was not dependent of animal size, which reinforces its applicability. Our method allows sexing turtles in the field, avoiding killing the animal or causing major injuries in order to assess the sex. Keywords. Defensive behaviour, penis, pleurodira, sexing method. Determining the gender of individuals is useful in most population studies. However, sexing might be difficult for many species, especially freshwater turtles, because some species lack clear morphological differences between males and females (Rueda-Almonacid et al., 2007). Examples of general noninvasive sexing methods include hormone profiles of blood and amniotic fluid (Wibbels et al., 1987; Gross et al., 1995; Xia et al., 2011), chromosome analysis in species having Genetic Sex Determination (GSD) (Ferreira Júnior, 2009), searching for mature eggs through palpation on the inguinal region of females (Rueda-Almonacid et al., 2007), sexual dichromatism in head spots (Moll et al., 1981; Bulté et al., 2013) and morphometry (Gibbons and Lovich, 1990; Valenzuela et al., 2004; Casale et al., 2005; Rueda-Almonacid et al., 2007; Readel et al., 2008). This last method is the most used in field conditions. Tail size and shape, cloaca position, claws length, and plastron morphology are examples of secondary sexual characteristics, being tail analysis applicable for all turtles (Rueda-Almonacid et al., 2007; Reed and Tucker, 2012). However, not experienced researchers might have difficulty to evaluate if a tail is large or small. Penises of turtles are found in the cloaca s ventral surface and are inflatable copulatory organs (Zug, 1966; Carvalho et al., 2010; Cabral et al., 2011). A method to sex turtles is to insert the finger into the cloaca in order to find the penis (Rueda-Almonacid et al., 2007). However, this method is invasive and useless in small animals. Manual hemipenile eversion (copulatory structure found in Squamata) is a common method used to sex snakes, lizards, and amphisbaenians (Reed and Tucker, 2012). However, in chelonians, this method has been explored only recently (de Solla et al., 2001; Dustman, 2013; Lefevbre et al., 2013). De Solla et al. (1998) used this technique to sex individuals of Chelydra serpentina, but they did not explain how it was performed. Recently, Lefevbre et al. (2013) described a method to stimulate penial erection ISSN 1827-9635 (print) ISSN 1827-9643 (online) Firenze University Press www.fupress.com/ah

260 J.F.M. Rodrigues et alii and ejaculation by applying vibrations to the animal shell, while de Solla et al. (2001) and Dustman (2013) stimulated penis eversion in Chelydra serpentina by gently shaking the turtle horizontally and vertically, respectively. In July 2012, we observed that when captured male turtles were much stressed (trying to bite, moving their limbs, head, and tail very much), they everted the penis during handling after a few seconds [a behaviour already observed in Chelydra serpentina (de Solla et al., 2001) and Hydromedusa maximiliani (Famelli et al., 2011), which may be considered a defensive display]. In August 2012, when we were attempting to measure a stressed male of Phrynops tuberosus, we held its neck and limbs against its body in order to safely and accurately measure it. When the specimen was held in this manner, the male rapidly everted the penis. These observations were the starting point for the development of the method described herein. This study aims to describe a method for sexing freshwater turtles, based in penile eversion, which do not require any additional material and may be easily performed in field conditions. The sexing method was tested in 33 males of Phrynops tuberosus (Peters, 1870) (Phrynops geoffroanus sensu latu, populations of Ceará referred by Rueda-Almonacid et al. (2007) as Phrynops tuberosus), captured at the Banabuiú River, village of Laranjeiras (05º17 S, 38º31 W, DATUM WGS84), Banabuiú, Ceará, northern Brazil, between August and November 2012. Phrynops tuberosus is a chelid freshwater turtle distributed in northeastern South America (Rueda-Almonacid et al., 2007). Turtles were hand-captured using snorkels, measured (Carapace Length (cm) CL), sexed through tail size (males having a larger precloacal length than females) following Rueda-Almonacid et al. (2007) and marked following Cagle (1939). Males had their limbs and head immobilized (Fig. 1). In some occasions, gently applying a little pressure on hind limbs and head was necessary to accelerate penile eversion in males that were calm (they did not try to bite or move their limbs, head and tail; their only action was to retract the neck and limbs when handled). The method was tested at a maximum twice in each male, the second trial being performed only if the first one had a negative result, in order to avoid excessive stress. Eversion occurred after a few seconds, which was dependent on animal stressing level (most stressed individuals completely everted the penis in 9 s, while calmer turtles took approximately 30 s to only partially evert it). All animals retracted the penis after release and had no alteration in their normal behaviour. We also observed a small cloacal wall eversion in some females (see Dustman, 2013). However, it was not employed an evaluation for females as systematic as it was performed for males. Captures were authorized by the responsible environmental institution (see license number in Acknowledgments). No animal suffered injuries or mistreatment in capture and handling processes, and no invasive method was performed. We used a logistic regression to evaluate the relationship between the efficiency of our method and male size. A chi-square test was used to compare the number of successes and failures using the method. The sexing method reliability was assessed as a proportion of males that exposed their penises. Statistical tests were performed in R ver. 3.0.1 (R Development Core Team, 2013). Descriptive statistics are reported as mean ± standard deviation. We found that 28 males everted the penis when we used the method reported herein. The reliability of the method was 84.85% (28/33) and the vast majority of males were correctly sexed (Χ 2 = 16.03, df = 1, P < 0.001). Males ranged in CL from 7.63 to 26.91 cm and averaged 20.96 ± 4.02 cm. The efficiency of the method was independent of animal size (logistic regression: z = -1.39, P = 0.16) (Fig. 2). All stressed animals everted the penis. The five individuals that did not evert were calm. Probably there was no error in sex identification, since these males had evident male characteristics, such as a large precloacal distance. If they were females, we would have observed a small cloacal wall evertion, but their tail did not show any response to the method. The development of non-lethal techniques to sex turtles is essential in conservation and demographic studies (Rueda-Almonacid et al., 2007; Lefevbre et al., 2013). The method proposed here was able to properly sex the Fig. 1. Illustration of a male Phrynops tuberosus captured in Banabuiú River, being sexed following the method explained in this study (Rodrigues et al.). a) Male P. tuberosus with head and limbs hold; b) Male P. tuberosus everting the penis after a little pressure in the hind limbs and neck. Note the arrows indicating the pressure points. Arrows and letters were included in the original drawing using Adobe Photoshop. Drawings: Diego de Oliveira Soares.

Freshwater turtles sexing method 261 Fig. 2. Relationship between the probability of success of the method and carapace length of Phrynops tuberosus in centimeters. vast majority of captured males. Our study is the first to describe a technique of penis eversion tested in Pleurodira turtles. Previous methods were successfully tested in Chelydra serpentina (de Solla et al., 2001; Dustman, 2013) and Emydoidea blandingii (Lefevbre et al., 2013). The efficiency of most methods using penile eversion was tested in only one species (including ours). However, the potential contribution of these methods to field studies cannot be underestimated due to this limitation, and future studies in other turtle populations may provide more data about their success. Penis is an inflatable copulatory organ, which also depends on blood influx to become everted and erected (Zug, 1966; Carvalho et al., 2010; Cabral et al., 2011). Stressing conditions, such as handling, may increase heart-beating rate in freshwater turtles (Cabanac and Bernieri, 2000), which could raise blood flow, easing penile eversion. A high efficiency of a penis eversion method in stressed turtles was also found in Lefebvre et al. (2013). There were reports of other freshwater turtles everting penis after being handled (de Solla et al., 2001; Famelli et al., 2011), which reinforce the potential application of our method in other species. Although our method was not efficient enough to sex all males, it had a high reliability (84.85%). Manual hemipenile eversion in Squamata also has some problems and is difficult to use in large bodied species, with muscular tails or in fragile species (Reed and Tucker, 2012). Penile eversion could be used in parallel to traditional methods based on tail length size, in order to have an improved result. The lack of relationship between method efficiency and animal size is advantageous, because it reinforces its general applicability. A male with carapace length of 7.63 cm, for example, was successful sexed (see Fig. 2 for more details about the lack of relationship between efficiency and animal size). Most sexing methods of chelonians are size-dependent and could be performed only in large individuals, such as secondary sexual characteristics identification (for example, plastron concavity and claws size) and penis identification inside the cloaca (Rueda- Almonacid et al., 2007; Reed and Tucker, 2012). Unfortunately, we cannot make a prediction about the applicability of our method to immature individuals based on our data, which could be an interesting topic for future studies regarding this method. Penis display may be considered a defensive behaviour in freshwater turtles (de Solla et al., 2001; Famelli et al., 2011). It may be an explanation for the eversion as a consequence of immobilization, because males everted the penis when they had been completely immobilized, with all their limbs and head held. Hence, this behaviour would be a final strategy to try to scary the predator (the researchers, herein) and escape. Our method allows sexing turtles in the field, avoiding killing the animal or causing major injuries in order to assess the sex. Studies reporting sexing methods based in penile eversion are increasing, reinforcing the impor-

262 J.F.M. Rodrigues et alii tance of invest in such methods, which are already very common for Squamata. Finally, this manuscript enriches the list of studies of noninvasive and reliable sexing methods for turtles, and its employment may be useful in future population studies with these animals. ACKNOWLEDGMENTS We thank all the friends that helped in field survey. Flávio de Barros Molina gave valuable suggestions on the first version of the manuscript and provided literature. Diogo Borges Provete and Roger Bour gave valuable suggestions in the last version of the manuscript. CNPq and Programa de Pós-Graduação em Ecologia e Recursos Naturais da Universidade Federal do Ceará provided a master fellowship to JFMR. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) granted a measuring, marking, and capture license (Sisbio/ICMBio 32548-1). REFERENCES Bulté, G., Germain, R.R., O Connor, C.M., Blouin-Demers, G. (2013): Sexual dichromatism in the northern map turtle, Graptemys geographica. Chelonian Conserv. Biol. 12: 187-192. Cabanac, M., Bernieri, C. (2000): Behavioural rise in body temperature and tachycardia by handling of a turtle (Clemmys insculpta). Behav. Process. 49: 61-68. Cabral, S.R.P., Santos, R.L.S., Franco-Belussi, L., Zieri, R., Zago, C.E.S., Oliveira, C. (2011): Anatomy of the male reproductive system of Phrynops geoffroanus (Testudines: Chelidae). Acta Sci. Biol. Sci. 33: 487-492. Cagle, F.R. (1939): A system of marking turtles for future identification. Copeia 1939: 170-173. Carvalho, R.F., Oliveira, S.C.R., Bombonato, P.P., Oliveira, A.S., Sousa, A.L. (2010): Morfologia dos órgãos genitais masculinos do jurará Kinosternon scorpioides (Chelonia: Kinosternidae). Pesq. Vet. Bras. 30: 289-294. Casale, P., Freggi, D., Basso, R., Argano, R. (2005): Size at male maturity, sexing methods and adult sex ration in loggerhead turtles (Caretta caretta) from Italy waters investigated through tail measurements. Herpetol. J. 15: 145-148. De Solla, S.R., Bishop, C.A., Van Der Kraak, G., Brooks, R.J. (1998): Impact of organochlorine contamination on levels of sex hormones and external morphology of common snapping turtles (Chelydra serpentina serpentina) in Ontario, Canada. Environ. Health Persp. 106: 253-260. De Solla, S.R., Portelli, M., Spiro, H., Brooks, R.J. (2001): Penis displays of snapping turtles (Chelydra serpetina) in response to handling: Defensive or displacement behavior. Chelonian Conserv. Biol. 4: 187-189. Dustman, E.A. (2013): Sex identification in the common snapping turtle (Chelydra serpentina): A new technique and evaluation of previous methods. Herpetol. Rev. 44: 235-238. Famelli, S., Bertoluci, J., Molina, F.B., Matarazzo-Neuberger, W.M. (2011): Structure of a population of Hydromedusa maximiliani (Testudines, Chelidae) from Parque Estadual da Serra do Mar, an Atlantic Rainforest Preserve in southeastern Brazil. Chelonian Conserv. Biol. 10: 132-137. Ferreira Júnior, P.D. (2009): Aspectos ecológicos da determinação sexual em tartarugas. Acta Amaz. 39: 139-154. Gibbons, J.W., Lovich, J.E. (1990): Sexual dimorphism in turtles with emphasis on the slider turtle (Trachemys scripta). Herpetol. Monogr. 4: 1-29. Gross, T.S., Crain, D.A., Bjorndal, K.A., Bolten, A.B., Carthy, R.R. (1995): Identification of sex in hatchling loggerhead turtles (Caretta caretta) by analysis of steroid concentrations in chorioallantoic/amniotic fluids. Gen. Comp. Endocr. 99: 204-210. Lefevbre, J., Carter, S., Mockford, S.W. (2013): New experimental method for semen extraction in freshwater turtles. Herpetol. Rev. 44: 595-600. Moll, E.O., Matson, K.E., Krehibel, E.B. (1981): Sexual and seasonal dichromatism in the asian river turtle Callagur borneoensis. Herpetologica 37: 181-194. R Development Core Team (2013): R: A language and environment for statistical computing. R Foundation for statistical computing, Viena. Readel, A.M., Dreslik, M.J., Warner, J.K., Banning, W.J., Phillips, C.A. (2008): A quantitative method for sex identification in emydid turtles using secondary sexual characters. Copeia 2008: 643-647. Reed, R.N., Tucker, A.D. (2012): Determining age, sex, and reproductive condition. In: Reptile Biodiversity: Standard Methods for Inventory and Monitoring, pp. 151-163. McDiarmid, R.W., Foster, M.S., Guyer, C., Gibbons, J.W., Chernoff, N., Eds, University of California Press, Berkeley. Rueda-Almonacid, J.V., Carr, J.L., Mittermeier, R.A., Rodriguez-Marecha, J.V., Mast, R.B., Vogt, R.C., Rhodin, A.G., Ossa-Velásquez, J., Rueda, J.N., Mittermeier, C.G. (2007): Las tortugas e los cocodrilianos de los países andinos del trópico. Serie de guias tropicales de campo, Nº 6. Conservación Internacional Editorial Panamericana, Formas e Impresos, Bogotá. Valenzuela, N., Adams, D.C., Bowden, R.M., Gauger, A.C. (2004): Geometric morphometric sex estimation for

Freshwater turtles sexing method 263 hatchlings turtles: A powerful alternative for detecting subtle sexual shape dimorphism. Copeia 2004: 735-742. Wibbels, T., Owens, D.W., Morris, Y.A., Amoss, M.S. (1987): Sexing techniques and sex ratios for immature loggerhead sea turtles captured along the Atlantic coast of the United States. In: Ecology of East Florida Sea Turtles, pp. 65-74. Witzell, W.N., Ed, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Miami, Florida. Xia, Z., Li, P., Gu, H., Fong, J.J., Zhao, E. (2011): Evaluating noninvasive methods of sex identification in green sea turtles (Chelonia mydas) hatchlings. Chelonian Conserv. Biol. 10: 117-123. Zug, G.R. (1966): The penial morphology and the relationships of cryptodiran turtles. Occ. Papers. 647: 1-24.