Acinetobacter baumannii

Similar documents
Acinetobacter lwoffii h h

Is Clostridium difficile infection influenced by antimicrobial use density in wards?

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Antibiotic Susceptibilities of Pseudomonas aeruginosa Isolated from Blood Samples and Antibiotic Utilization in a University Hospital in Japan

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Intrinsic, implied and default resistance

levofloxacin (LVFX) LVFX LVFX LVFX Key words: Levofloxacin Escherichia coli LVFX levofloxacin (LVFX) Vol. 18 No

Antimicrobial Susceptibility Testing: Advanced Course

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

Witchcraft for Gram negatives

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

Detecting / Reporting Resistance in Nonfastidious GNR Part #2. Janet A. Hindler, MCLS MT(ASCP)

GENERAL NOTES: 2016 site of infection type of organism location of the patient

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

What does multiresistance actually mean? Yohei Doi, MD, PhD University of Pittsburgh

Methicillin-resistant coagulase-negative staphylococci Methicillin-resistant. spa Staphylococcus aureus

Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Antibiotic. Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

2015 Antimicrobial Susceptibility Report

Acinetobacter Resistance in Turkish Tertiary Care Hospitals. Zeliha KOCAK TUFAN, MD, Assoc. Prof.

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

2016 Antibiotic Susceptibility Report

Breaking the Ring. β-lactamases and the Great Arms Race. Bryce M Kayhart, PharmD, BCPS PGY2 Pharmacotherapy Resident Mayo Clinic - Rochester

Available online at ISSN No:

CONTAGIOUS COMMENTS Department of Epidemiology

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

Comparative Assessment of b-lactamases Produced by Multidrug Resistant Bacteria

2010 ANTIBIOGRAM. University of Alberta Hospital and the Stollery Children s Hospital

2015 Antibiotic Susceptibility Report

Antimicrobial Susceptibility Patterns

Prevalence of Extended-spectrum β-lactamase Producing Enterobacteriaceae Strains in Latvia

ORIGINAL ARTICLE /j x. Mallorca, Spain

Received: February 29, 2008 Revised: July 22, 2008 Accepted: August 4, 2008

Concise Antibiogram Toolkit Background

Surgical infection ผ.ศ. น.พ. กำธร มำลำธรรม หน วยโรคต ดเช อ ภำคว ชำอำย รศำสตร คณะแพทยศำสตร โรงพยำบำลรำมำธ บด

Appropriate antimicrobial therapy in HAP: What does this mean?

ETX2514: Responding to the global threat of nosocomial multidrug and extremely drug resistant Gram-negative pathogens

crossm Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-negative pathogens between

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

10/9/2012. Unprecedented success of antibiotics in 1960s. Infectious diseases are #1 cause of mortality worldwide

European Committee on Antimicrobial Susceptibility Testing

Clinical Usefulness of Multi-facility Microbiology Laboratory Database Analysis by WHONET

Antimicrobial Susceptibility Testing: The Basics

Nippon AMR One Health Report (NAOR) 2017

The impact of antimicrobial resistance on enteric infections in Vietnam Dr Stephen Baker

2009 ANTIBIOGRAM. University of Alberta Hospital and the Stollery Childrens Hospital

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002

2016 Antibiogram. Central Zone. Alberta Health Services. including. Red Deer Regional Hospital. St. Mary s Hospital, Camrose

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

2017 Antibiogram. Central Zone. Alberta Health Services. including. Red Deer Regional Hospital. St. Mary s Hospital, Camrose

Antibiotic sensitivity of bacteria on the oral mucosa. after hematopoietic cell transplantation

International Journal of Antimicrobial Agents

January 2014 Vol. 34 No. 1

ESCMID Online Lecture Library. by author

جداول میکروارگانیسم های بیماریزای اولویت دار و آنتی بیوتیک های تعیین شده برای آزمایش تعیین حساسیت ضد میکروبی در برنامه مهار مقاومت میکروبی

ANTIMICROBIAL RESISTANCE SURVEILLANCE FROM SENTINEL PUBLIC HOSPITALS, SOUTH AFRICA, 2014

1. The preferred treatment option for an initial UTI episode in a 22-year-old female patient

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

2015 Antibiogram. Red Deer Regional Hospital. Central Zone. Alberta Health Services

Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City

Sepsis is the most common cause of death in

RESEARCH ARTICLE ANTIBIOGRAM

Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

EUCAST recommended strains for internal quality control

Non-Susceptibility of Bacterial Pathogens Causing Hospital-Onset Pneumonia UK and Ireland,

Mechanism of antibiotic resistance

Antimicrobial Cycling. Donald E Low University of Toronto

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Epidemiology and Microbiology of Surgical Wound Infections

Analysis of drug-resistant gene detection of blaoxa-like genes from Acinetobacter baumannii

RISK FACTORS AND CLINICAL OUTCOMES OF MULTIDRUG-RESISTANT ACINETOBACTER BAUMANNII BACTEREMIA AT A UNIVERSITY HOSPITAL IN THAILAND

European Committee on Antimicrobial Susceptibility Testing

Addressing the evolving challenge of β-lactamase mediated antimicrobial resistance: ETX2514, a next-generation BLI with potent broadspectrum

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

Helen Heffernan. Rosemary Woodhouse

CONTAGIOUS COMMENTS Department of Epidemiology

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

BACTERIAL SUSCEPTIBILITY REPORT: 2016 (January 2016 December 2016)

Overnight identification of imipenem-resistant Acinetobacter baumannii carriage in hospitalized patients

THE NAC CHALLENGE PANEL OF ISOLATES FOR VERIFICATION OF ANTIBIOTIC SUSCEPTIBILITY TESTING METHODS

The β- Lactam Antibiotics. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018

Prevalence and Resistance pattern of Pseudomonas strains isolated from ICU Patients

International Journal of Health Sciences and Research ISSN:

Clinical Characteristics, Antimicrobial Susceptibilities, andoutcomesofpatientswithchryseobacterium indologenes Bacteremia in an Intensive Care Unit

Vibrio vulnificus. Vibrio vulnificus V. vulnificus. pectinata japonica)

Staphylococcus aureus β. r r

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU

Nosocomial Infections: What Are the Unmet Needs

EARS Net Report, Quarter

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

DR. MICHAEL A. BORG DIRECTOR OF INFECTION PREVENTION & CONTROL MATER DEI HOSPITAL - MALTA

Transcription:

28 2010 1 4 IMP-19 IMP-1 -b- Acinetobacter baumannii 1) 2) 1) 1) 1) 1) 1) 1) 3) 1) 1, 2) 1) 2) 3) 21 7 28 21 11 20 2004 2007 -b- (MBL) 67.6 Acinetobacter baumannii MBL A. baumannii 49 MBL A. baumannii 43 (87.8 ) IMP-19 6 (12.2 ) IMP-1 IMP-19 IPM MIC 50 MEPM IMP-1 MEPM MIC 50 IPM b- ABPC/SBT MIC 50 IMP-19 4 mg/ml, IMP-1 8 mg/ml, CPZ/SBT MIC 50 IMP-19 2 mg/ml, IMP-1 4 mg/ml MIC MBL A. baumannii ICU 19 Key words: -b- (MBL) Acinetobacter baumannii, IMP-1, IMP-19 Acinetobacter baumannii -b- (MBL) 1) MBL Ambler B b- b- (Sulbactam, Clavulanic acid) b- ( 812 8582) 3 1 1 TEL: 092 642 5757 FAX: 092 642 5755 E-mail: to-mochi@med.kyushu-u.ac.jp MBL MBL A. baumannii, Pseudomonas aeruginosa, Pseudomonas putida, Achromobacter xylosoxidans, Serratia marcescens, Klebsiella pneumoniae P. aeruginosa 2 4) 2004 4 MBL 67.6 A. baumannii MBL A. baumannii 28 Vol. 20 No. 1 2010.

IMP-19 IMP-1 MBL A. baumannii 29 1. 2004 2007 A. baumannii 935 VITEK2 Ceftazidime (CAZ) (MIC 32 mg/ml) Imipenem (IPM) (MIC 16 mg/ml) Sodium mercaptoacetic acid (SMA) MBL 49 2. SMA MBL MacFarland 0.5 CAZ 3cm 2 CAZ 1.5 2 cm SMA 35 16 18 CAZ SMA CAZ SMA CAZ 5mm MBL CAZ 12 mm MBL 5) 3. PCR MBL PCR MBL IMP-1 IMP-2 VIM-1 VIM-2 PCR 6) PCR Neuwirth 7) 4. MBL MBL PCR MBL ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) 5. Clinical and Laboratory Standards Institute (CLSI) 8) 24 Ampicillin (ABPC), Ampicillin/Sulbactam (ABPC/SBT), Piperacillin (PIPC), Piperacillin/Tazobactam fixed ratio (PIPC/TAZ-r), Piperacillin/ Tazobactam fixed concentration (PIPC/TAZ-c), Cefmetazole (CMZ), Cefoperazone (CPZ), Cefoperazone/Sulbactam (CPZ/SBT), Ceftazidime (CAZ), Cefepime (CFPM), Imipenem (IPM), Panipenem (PAPM), Meropenem (MEPM), Biapenem (BIPM), Doripenem (DRPM), Aztreonam (AZT), Flomoxef (FMOX), Minocycline (MINO), Amikacin (AMK), Arbekacin (ABK), Ciprofloxacin (CPFX), Sulbactam (SBT), Tazobactam (TAZ), Clavulanic acid (CVA) 0.125 512 mg/ml PIPC/TAZ CLSI TAZ 4 mg/ml (PIPC/TAZ-c) b- b- (PIPC/TAZ-r) 2 CLSI (susceptible) (intermediate) (resistant) PAPM, BIPM, DRPM IPM, MEPM 6. Pulsed-field gel electrophoresis (PFGE) PFGE 1 (Bio- Rad Laboratories) SmaI 1.0 17.0 18.5 6.0 V/cm 14 PFGE (Bio-Rad Laboratories) Molecular Analyst software Fingerprinting DST (Bio-Rad Laboratories) 90 7. MBL ICU (CVC) 14 A. baumannii 9 2 Yetes p 0.05 Vol. 20 No. 1 2010. 29

30 Table 1. Distribution of antibiotic susceptibilities for 43 metallo-b-lactamase IMP-19 producing A. baumannii isolates Antibiotics MIC (mg/ml) 0.125 0.3 0.5 1 2 4 8 16 32 64 128 256 512 No. ( ) resistant ABPC 3 33 4 3 ABPC/SBT (2 : 1) 1 24 13 1 4 12 PIPC 1 1 14 13 4 10 63 PIPC/TAZ-r (4 : 1) 4 30 3 5 1 2 PIPC/TAZ-c 7 1 2 1 4 11 4 5 1 1 6 16 CMZ 43 CPZ 2 41 CPZ/SBT (1 : 1) 2 22 18 1 CAZ 1 42 100 CFPM 2 31 9 1 100 IPM 40 3 100 PAPM 23 18 2 100 MEPM 38 5 12 BIPM 34 9 21 DRPM 41 2 5 AZT 7 32 2 1 1 FMOX 1 42 MINO 43 0 AMK 28 13 2 0 ABK 14 27 2 0 CPFX 34 5 4 9 SBT 9 32 1 1 TAZ 7 29 2 4 1 CVA 43 Gray bar, isolates resistant to individual antibiotics according to CLSI criteria, when available. The resistance breakpoints for panipenem, biapenem and doripenem were defined as an MIC 8 mg/ml. Under bar, MIC 50 values for the antibiotics of the isolates. 1. PCR MBL 49 43 (87.8 ) IMP-2 49 6 (12.2 ) IMP-1 VIM IMP-2 A. baumannii IMP-19 gene (AB184977) 100 IMP-1 IMP-1 2. MBL A. baumannii 49 IMP-19 43 MIC Table 1 IMP-1 6 MIC Table 2 IMP-19 IPM MEPM DRPM MIC 50 IPM 16 mg/ml 100 MEPM 8 mg/ml 12 DRPM 8 mg/ml 5 IMP-1 IPM 8 mg/ ml 50 MEPM 64 mg/ml 100 DRPM 32 mg/ml 100 IPM MIC 50 PAPM MEPM,DRPM IMP-1 MIC 50 BIPM IMP-19 8 mg/ml 21 IMP- 1 8 mg/ml 0 MBL MIC 50 CPFX MIC 50 IMP-19 1 mg/ml 9 IMP-1 32 mg/ml 83 b- IMP-19 MIC 50 ABPC / SBT 4 mg/ml 12 PIPC/TAZ-r 16 mg/ml 2 CPZ/SBT 2 mg/ml IMP-1 MIC 50 ABPC / 30 Vol. 20 No. 1 2010.

IMP-19 IMP-1 MBL A. baumannii 31 Table 2. Distribution of antibiotic susceptibilities for 6 metallo-b-lactamase IMP-1 producing A. baumannii isolates Antibiotics MIC (mg/ml) 0.125 0.3 0.5 1 2 4 8 16 32 64 128 256 512 No. ( ) resistant ABPC 6 ABPC/SBT (2:1) 2 4 0 PIPC 2 2 1 1 67 PIPC/TAZ-r (4:1) 1 2 2 1 0 PIPC/TAZ-c 1 1 1 1 1 1 17 CMZ 6 CPZ 6 CPZ/SBT (1:1) 2 3 1 CAZ 6 100 CFPM 5 1 100 IPM 3 3 50 PAPM 1 5 100 MEPM 1 1 4 100 BIPM 1 5 0 DRPM 1 5 100 AZT 1 5 FMOX 6 MINO 6 0 AMK 1 1 4 0 ABK 3 3 0 CPFX 1 5 83 SBT 2 4 TAZ 1 2 3 CVA 6 Gray bar, isolates resistant to individual antibiotics according to CLSI criteria, when available. The resistance breakpoints for panipenem, biapenem and doripenem were defined as an MIC 8 mg/ml. Under bar, MIC 50 values for the antibiotics of the isolates. SBT 8 mg/ml 0 PIPC/TAZ-r 16 mg/ml 0 CPZ/SBT 4 mg/ml IMP- 19, -1 b- IMP-19 SBT MIC 50 4 mg/ml, TAZ 8 mg/ml, CVA 32 mg / ml, IMP-1 SBT MIC 50 8 mg/ml, TAZ 8 mg/ml, CVA 32 mg/ml MBL MIC 50 SBT, TAZ, CVA MIC 50 CLSI PIPC/TAZ-c MIC 0.125 512 mg/ml 3. PFGE 19 (A S) (Fig. 1) I 9 7 O 17 I 832 2 PFGE pattern Fig. 2 2005 8 group I 3 2005 11 2006 1 group F 5 2006 5 2006 7 group C 4 PFGE pattern 2 IMP-1 6 3 A, 2 1 C 4. MBL MBL A. baumannii (40.8 ) (24.5 ) (24.5 ) (16.3 ) (14.3 ) Vol. 20 No. 1 2010. 31

32 Fig. 1. PFGE analysis of 49 A. baumannii isolates (43 of IMP-19 and 6 of IMP-1) and 19 PFGE groups. Emerg, emergency medicine; Surg, surgery including pediatric surgery, orthopedics and dermatology; Int, internal medicine including pediatrics and radiology. (69.4 ) (44.9 ) (30.6 ) (Table 3) MBL A. baumannii (44.9 ) (61.2 ) CVC (42.9 ) 14 (59.2 ) (34.7 ) (34.7 ) (46.9 ) (30.6 ) (Table 4) MBL A. baumannii 49 8 (16.3 ) 4 1 2 1 ICU (Table 4) 14 MBL MBL A. baumannii 10) A. baumannii MBL IMP VIM SIM 32 Vol. 20 No. 1 2010.

IMP-19 IMP-1 MBL A. baumannii 33 Fig. 2. Progression of metallo-b-lactamase producing A. baumannii (I, IMP-19; II, IMP-1) in the hospital. Letters (A to S) indicate pulsed-field gel electrophoresis groups of the isolates shown in Fig. 1. Table 3. Background of 49 patients infected/colonized with MBL A. baumannii Factors Total ( ) Infected ( ) Colonized ( ) No. of patients 49 8 41 Age (mean) SD 42.5 32.51 40.4 33.0 42.9 32.8 No. of males ( ) 34 (69.4) 5 (62.5) 29 (70.7) Wards surgery 22 (44.9) 4 (50.0) 18 (43.9) internal medicine 10 (20.4) 2 (25.0) 8 (19.5) pediatrics 15 (30.6) 2 (25.0) 13 (31.7) emergency 2 (4.1) 0 0 2 (4.9) 11) IMP IMP-1 IMP-1, 6, 10 IMP-2 IMP-2, 8, 15 IMP-1 2, 4, 6, 11, 12) IMP-2 IMP-1 A. baumannii IMP-2 2, 6) IMP-19 A. baumannii IMP-2 IMP-19 (Gen Bank AB184977) 6) IMP-2 PCR A. baumannii IMP-2 IMP-19 IMP-19 A. baumannii PFGE IMP-1 69.3 PFGE MBL A. baumannii 49 19 90 2 MBL MBL A. baumannii IMP-19 A. baumannii 13) 14, 15) PFGE 2 Vol. 20 No. 1 2010. 33

34 Table 4. Risk factors for MBL A. baumannii infection Risk factors Total ( ) Infected ( ) Colonized ( ) Underlying disease hematological 11 (22.4) 2 (25.0) 9 (22.0) cardiovascular 9 (18.4) 1 (12.5) 8 (19.5) respiratory 4 (8.2) 0 (0) 4 (9.8) gastrointestinal without liver 22 (44.9) 2 (25.0) 20 (48.8) liver 14 (28.6) 5 (62.5) 9 (22.0) renal 5 (10.2) 1 (12.5) 4 (9.8) urologic 2 (4.1) 0 (0) 2 (4.9) cerebrovascular 2 (4.1) 0 (0) 2 (4.9) malignancy 13 (26.5) 2 (25.0) 11 (26.8) solid organ transplantation 10 (20.4) 5 (62.5) 5 (12.2) bone marrow transplantation 6 (12.2) 1 (12.5) 5 (12.2) diabetes 8 (16.3) 1 (12.5) 7 (17.1) Experience of surgical procedure 30 (61.2) 5 (62.5) 25 (61.0) ICU 5 (10.2) 4 (50.0) 1 (2.4) bronchoscope 2 (4.1) 0 (0) 2 (4.9) hemodialysis 1 (2.0) 1 (12.5) 0 (0) Hospital stay until isolation (days) 63 41 67 Use of mechanically ventilation 7 (14.3) 2 (25.0) 5 (12.2) central venous catheter 21 (42.9) 5 (62.5) 16 (39.0) urinary catheter 11 (22.4) 3 (37.5) 8 (19.5) Administration of carbapenems 29 (59.2) 7 (87.5) 22 (53.7) third-generation cephalosporins 5 (10.2) 1 (12.5) 4 (9.8) fourth-generation cephalosporins 14 (28.6) 4 (50.0) 10 (24.4) oxacephems 3 (6.1) 0 (0) 3 (7.3) aminoglycosides 4 (8.2) 0 (0) 4 (9.8) glycopeptides 17 (34.7) 4 (50.0) 13 (31.7) ampicillin-sulbactam 1 (2.0) 1 (12.5) 0 (0) cefoperazone-sulbactam 4 (8.2) 1 (12.5) 3 (7.3) piperacillin-tazobactam 2 (4.1) 0 (0) 2 (4.9) quinolones 12 (24.5) 3 (37.5) 9 (22.0) trimethoprim-sulfamethoxazole 9 (18.4) 2 (25.0) 7 (17.1) antifungal agent 17 (34.7) 6 (75.0) 11 (26.8) steroid 23 (46.9) 7 (87.5) 16 (39.0) immunosuppressant 15 (30.6) 5 (62.5) 10 (24.4) WBC 1,000 or N 500 6 (12.2) 2 (25.0) 4 (9.8) p 0.05 for the infected versus colonized patients 34 Vol. 20 No. 1 2010.

IMP-19 IMP-1 MBL A. baumannii 35 Table 5. Occurrence of patients infected or colonized with metallo-b-lactamase producing organisms in the hospital between 2004 and 2008 No. ( ) of isolates 2004 2005 2006 2007 2008 Total A. baumannii 3 (38) 16 (70) 19 (76) 11 (65) 2 (13) 51 (58) P. aeruginosa 2 (25) 4 (17) 2 (8) 2 (12) 4 (27) 14 (16) P. putida 2 (25) 3 (13) 4 (16) 3 (18) 12 (14) A. xylosoxidans 1 (13) 1 (6) 2 (2) Acinetobacter sp. 1 (7) 1 (1) K. oxytoca 5 (33) 5 (6) K. pneumoniae 1 (7) 1 (1) E. cloacae 2 (13) 2 (2) 8 (100) 23 (100) 25 (100) 17 (100) 15 (100) 88 (100) MBL A. baumannii CVC 14 A. baumannii ICU CVC 16) ICU 10.2 14.3 ICU MBL A. baumannii ICU 30 9) MBL A. baumannii IMP-19 IMP-1 IMP MIC IMP-19 Aeromonas IPM MEPM MIC 7, 17) IMP-1 A. baumannii IPM MEPM MIC IMP-19 IPM MIC MIC 7, 17) IMP-1, IMP-19 IMP-1 CPFX 83 b- 2 MBL AZT MIC 50 IMP-19 16 mg/ml, IMP-1 32 mg/ml b- b- MIC b- SBT A. baumannii penicillin binding protein 2, 18 20) CLSI TAZ 4 mg/ml PIPC/TAZ TAZ MIC 50 MIC 0.125 512 mg/ml MIC A. baumannii PIPC TAZ 2004 2007 MBL A. bauamnnii P. aeruginosa, P. putida, A. xylosoxidans 0 4 2008 Acinetobacter sp. 1 Klebsiella oxytoca 5 K. pneumoniae 1 Enterobacter cloacae 2 (Table 5) 2007 MBL Vol. 20 No. 1 2010. 35

36 MBL A. baumannii A. baumannii 2004 3 (1.4 ), 2005 16 (8.1 ), 2006 19 (7.5 ) 2007 11 (4.2 ), 2008 2 (1.1 ) 1) Dijkshoorn, L., A. Nemec, H. Seifert. 2007. An increasing threat in hospitals: multidrugresistant Acinetobacter baumannii. Nat. Rev. Microbiol. 5: 939 951. 2) Nishio, H., M. Komatsu, N. Shibata, et al. 2004. Metallo-b-lactamase-producing Gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. J. Clin. Microbiol. 42: 5256 5263. 3) Franklin, C., L. Liolios, A. Y. Peleg. 2006. Phenotypic detection of carbapenem-susceptible metallo-b-lactamase-producing Gram-negative bacilli in the clinical laboratory. J. Clin. Microbiol. 44: 3139 3144. 4) Picao, R. C., S. S. Andrade, A. G. Nicoletti, et al. 2008. Metallo-b-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J. Clin. Microbiol. 46: 2028 2037. 5) Arakawa, Y., N. Shibata, K. Shibayama, et al. 2000. Convenient test for screening metallo-blactamase-producing Gram-negative bacteria by using thiol compounds. J. Clin. Microbiol. 38: 40 43. 6) Shibata, N., Y. Doi, K. Yamane, et al. 2003. PCR typing of genetic determinants for metallo-blactamases and integrases carried by Gramnegative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 41: 5407 5413. 7) Neuwirth, C., E. Siebor, F. Robin, et al. 2007. First occurrence of an IMP metallo-b-lactamase in Aeromonas caviae: IMP-19 in an isolate from France. Antimicrob. Agents. Chemother. 51: 4486 4488. 8) Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard eighth edition. CLSI document M7-A8, CLSI, Wayne, Pennsylvania. 9) Shelburne, S. A., 3rd, K. V. Singh, A. C. White, Jr., et al. 2008. Sequential outbreaks of infections by distinct Acinetobacter baumannii strains in a public teaching hospital in Houston, Texas. J. Clin. Microbiol. 46: 198 205. 10) Maltezou, H. C. 2009. Metallo-b-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int. J. Antimicrob. Agents. 33: 405 e1-e7. 11) Poirel, L., P. Nordmann. 2006. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect. 12: 826 836. 12) Lee, M. F., C. F. Peng, H. J. Hsu, et al. 2008. Molecular characterisation of the metallo-blactamase genes in imipenem-resistant Gramnegative bacteria from a university hospital in southern Taiwan. Int. J. Antimicrob. Agents. 32: 475 480. 13) 2008. -b- 1991 2005 15 -b- 82: 285 291. 14) Corbella, X., A. Montero, M. Pujol, et al. 2000. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J. Clin. Microbiol. 38: 4086 4095. 15) Wang, H., P. Guo, H. Sun, et al. 2007. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob. Agents. Chemother. 51: 4022 4028. 16) Baran, G., A. Erbay, H. Bodur, et al. 2008. Risk factors for nosocomial imipenem-resistant Acinetobacter baumannii infections. Int. J. Infect. Dis. 12: 16 21. 17) Mushtaq, S., Y. Ge, D. M. Livermore. 2004. Comparative activities of doripenem versus isolates, mutants, and transconjugants of Enterobacteriaceae and Acinetobacter spp. with characterized b-lactamases. Antimicrob. Agents. Chemother. 48: 1313 1319. 18) Brauers, J., U. Frank, M. Kresken, et al. 2005. Activities of various b-lactams and b-lactam/ b-lactamase inhibitor combinations against Acinetobacter baumannii and Acinetobacter DNA group 3 strains. Clin. Microbiol. Infect. 11: 24 30. 19) Corbella, X., J. Ariza, C. Ardanuy, et al. 1998. E$cacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J. Antimicrob. Chemother. 42: 793 802. 36 Vol. 20 No. 1 2010.

IMP-19 IMP-1 MBL A. baumannii 37 20) Higgins, P. G., H. Wisplingho#, D. Stefanik, et al. 2004. In vitro activities of the b-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with b-lactams against epidemiologically characterized multidrug-resistant Acinetobacter baumannii strains. Antimicrob. Agents. Chemother. 48: 1586 1592. Susceptibility and Molecular Epidemiology of IMP-19 and IMP-1 Metallo-b-lactamase Producing Acinetobacter baumannii Isolated in a University Hospital during 4 Years Tomomi Mochimaru, 1) Yujiro Uchida, 2) Yuiko Morokuma, 1) Satoko Yogata, 1) Makiko Kiyosuke, 1) Masako Fujise, 1) Toshiharu Tsutsui, 1) Fujiko Eto, 1) Nobuyuki Shimono, 3) Yuzo Kayamori, 1) 1), 2) Dongchon Kang 1) Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital 2) Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences 2) Faculty of Medicine and Biosystemic Science, Graduate School of Medical Science, Kyushu University The isolation ratio of MBL producing Acinetobacter baumannii was 67.6 among all MBL producing bacteria isolated in our hospital from 2004 to 2007, although the most popular MBL producing bacteria were Pseudomonas aeruginosa in Japan. Therefore we studied on molecular epidemiology for the MBL producing A. baumannii and clinical characteristics of patients with the isolates. In 49 MBL producing A. baumannii, 43 (87.8 ) of IMP-19 and 6 (12.2 ) of IMP-1 were detected by PCR and DNA sequence analysis. Antimicrobial tests showed a MIC 50 value of Imipenem (IPM) for IMP-19 isolates was higher than Meropenem (MEPM), while the value of MEPM for IMP-1 isolates was higher than IPM. MIC 50 values of Ampicillin/Sulbactam for IMP-19 and IMP-1 were 4 mg/ml and 8 mg/ml, respectively, and the values of Cefoperazone/Sulbactam (CPZ/SBT) for IMP-19 and IMP-1 were 2 mg/ml and 4 mg/ml, respectively. Statistical analyses revealed that the risk factors for infections with MBL producing A. baumannii were associated with severe underlying diseases or immunosuppressive state with the administration of steroids or antifungals, the history of solid organ transplantation and the stay in ICU. Pulsed-field gel electrophoresis analysis demonstrated 19 groups among 49 isolates, which supposed to exist nosocomial infections in our hospital. The ratio of the MBL producing A. baumannii reduced after improvement of infection controls for patients with the isolates, which indicated that the coordination between a hospital laboratory and an infection control team were the most important for infection controls in a hospital. Vol. 20 No. 1 2010. 37