Epidemiology of Gastrointestinal Parasites of Ruminants in Western Oromia, Ethiopia

Similar documents
Gastrointestinal Helminthes Parasites in Sheep: Prevalence and Associated Risk Factors, in and Around Gondar Town, Northwest Ethiopia

Epidemiology of Gastrointestinal Parasites of Small Ruminants in Gechi District, Southwest Ethiopia

Prevalence of Liver Fluke in Sheep and Goat Slaughtered at Abattoirs in Zaria, Kaduna State, Nigeria

Helminth Parasites in Small Ruminants: Prevalence, Species Composition and Associated Risk Factors in and Around Mekelle Town, Northern Ethiopia

Occurrence of Gastro Intestinal Nematodes of Cattle in and Around Gondar Town, Amhara Regional State, Ethiopia

Gastro-intestinal nematodes of sheep and goats in three districts of Kaffa and Bench Maji Zones, Southwest Ethiopia

Small Ruminant GIT Helminthiasis in Select Pastoral and Agro-pastoral Areas of Afar Region, Ethiopia

Epidemiology of Gastrointestinal Parasitism in Small Ruminants in Pudukkottai District, India

Prevalence of lungworm infection in small ruminants in North Gondar zone, Amhara National Regional State, Ethiopia

The point prevalence of gastro-intestinal parasites in calves, sheep and goats in Magadi division, south-western Kenya

Detection of Gastrointestinal Helminthic and Protozoan Infections in Diarrhoeic Goats

Infection of Oesophagostomum columbianum in Small ruminants of the Nigerian Sahel Region and its Economic Importance

Cross-Sectional Study on The Prevalence of Stilesia Hepatica on Small Ruminants Slaughtered at Modjo Modern Export Abattoir, Ethiopia

Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi 2

The Prevalence and Economic Significance of Bovine Fasciolosis at Jimma, Abattoir, Ethiopia

A Field Study on Efficacy of Albendazole (Albezol ) Against Gastro-intestinal Nematodes in Ruminants

The prevalence of gastrointestinal nematode infection and their impact on cattle in Nakuru and Mukurweini districts of Kenya

Study on the Prevalence of Ovine Lungworm Infection in Minijar Shenkora Woreda, North Shoa, Ethiopia

Ectoparasite Prevalence in Small Ruminant Livestock of Ginir District in Bale Zone, Oromia Regional State, Ethiopia Tesfaye Belachew 1 *

Prevalence of gastrointestinal round worms in calves in Sokoto, northwestern, Nigeria

Prevalence of Gastro-Intestinal Parasites of Dairy Cows in Thailand

Prevalence of Major Gastrointestinal Parasites of Donkeys in Finfinne Donkey Sanctury Clinic, Finfinne, Ethiopia

Prevalence of Strongyle Parasites in Working Horses in Goba Woreda, Bale Zone, Ethiopia

Prevalence study of poultry coccidosis in small and large scale farms in Adis Ababa, Ethiopia

Prevalence of gastro-intestinal parasites of cattle. in Udon Thani, Thailand

Cross sectional survey of equine gastro intestinal stroglylosis and Fasciolosis in Goba District of Bale Zone, Oromia Regional State, Ethiopia.

The role of parasitic diseases as causes of mortality in cattle in a high potential area of central Kenya: a quantitative analysis

Prevalence of common gastro-intestinal nematode infections in commercial goat farms in Central Uganda

Prevalence of Eimeria infection in calves in and around Sekota town, North Wollo, Ethiopia

Study on Gastro Intestinal Parasite of Cattle at Horoguduru Animal Production and Research Center of Wollega University, Oromia, Ethiopia

Assessment of Major Animal Production and Health Problems of Livestock Development in Lay-Armacheho District, Northwestern Ethiopia

Developing parasite control strategies in organic systems

Prevalence of gastro-intestinal strongyles in native beef cattle under small holder management condition in Udon Thani, Thailand

Study on Major Parasitic Problems of Rural Cattle in and Around Ambo, Western Oromia, Ethiopia

Study on Prevalence of Small Ruminants Lungworm in Asella Municipal Abattoir, Arsi Zone, South East Ethiopia

Gastrointestinal Nematode Parasites of Small Ruminants and Anthelmintics Efficacy Test in Sheep of Haramaya District, Eastern Ethiopia

A Prevalence of Gastro Intestinal Nematode Parasitic Infections In Horses and Donkeys in and Around Bishoftu Town, Ethiopia

Large Animal Topics in Parasitology for the Veterinary Technician Jason Roberts, DVM This presentation is designed to review the value veterinary

Prevalence of gastrointestinal helminthes among dogs and owners perception about zoonotic dog parasites in Hawassa Town, Ethiopia

Endoparasites of donkeys in Dessie and its surroundings, Northeastern Ethiopia

Major Gastrointestinal Nematodes of Small Ruminants in Dembia District, Northwest Ethiopia

Prevalence of Gastro-intestinal Nematodes Infection of Cattle in Bangladesh

Sheep Infection by Haemonchus Species: Effect on Haematocrit and Evaluation of the FAMACHA Method in Arsi Negele District, Oromia, Ethiopia

Prevalence of Ascaridia galli in Intensive Poultry Production System in Eastern Hararghe Zone, Eastern Ethiopia

Prevalence, Infectivity Rate and Prospective Determinants of Ovine Fasciolosis in Wadla District, Northeast Ethiopia

Prevalence of ovine gastrointestinal nematodes in Meskan district, Gurage zone, Southern Ethioipa

Ecology/Physiology Workgroup. Nematode Parasites and Grazing Research

Report and Opinion 2017;9(11) Birara Ayalneh 1, Balemual Abebaw 2

Therapeutic efficacy of a mixture of ivermectin and closantel against gastrointestinal parasites in draft horses

Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi 2

AARJMD VOLUME 1 ISSUE 19 (MARCH 2014) ISSN : A Peer Reviewed International Journal of Asian Academic Research Associates AARJMD

Prevalence and Identification of Ovine Lungworms in and Around Assela Town, Central Ethiopia

Presence of Parasite Larvae in Goat Manure for Use as Fertiliser

Prevalence and Associated Risk Factors of Major Sheep Gastro Intestinal Parasites in and around Wolaita Sodo, Southern Ethiopia

Prevalence of Gastrointestinal Parasite in Goats in Shillong, Meghalaya, India

Parasite Control on Organic Sheep Farms in Ontario

INTERNAL PARASITES OF SHEEP AND GOATS

Study on Prevalence of GI Nematodes in Indigenous Bonga Sheep Breed at Three Selected Agro Ecologies of Kaffa and Bench Maji Zones, Ethiopia

The Prevalence of Mange Infestations in Small Ruminants in Three Agro-Ecological Zones of Wolaita Zone, Southern Ethiopia

Study on Distribution of Gastrointestinal Nematodes and Coccidian Parasites of Cattle in West Arsi zone, Ormia Regional State, Ethiopia

TEMPORAL DENSITY OF TRICHOSTRONGYLID LARVAE ON A COMMUNAL PASTURE IN A SUB-TROPICAL REGION OF PAKISTAN

Epidemiological Survey on Small Ruminant Fasciolosis in Hawassa Zuria and Dale Districts, Sidama Zone, Southern Ethiopia

Estimation of Milk Losses due to Fasciolosis in Uttarakhand

Prevalence of sub clinical mastitis in small holder dairy farms in Selale, North Shewa Zone, Central Ethiopia

THE EPIDEMIOLOGY OF CAPRINE FASCIOLIASIS IN JAMMU (J&K) INDIA

Prevalence and Economic Importance of Stilesia Hepatica in Small Ruminants Slaughtered at Helmix Abattoir, Bishoftu, Ethiopia

ESTIMATION OF ECONOMIC LOSSES ON NEMATODE INFESTATION IN GOATS IN SRI LANKA

World Journal of Pharmaceutical and Life Sciences WJPLS

Report and Opinion 2017;9(7)

Epidemiological study of small ruminant mange mites in three agro-ecological zones of Wolaita, Southern Ethiopia

Epidemiological study on gastrointestinal tract helminthosis of small ruminants in Dawuro Zone

Sheep CRC Conference Proceedings

Seasonal availability of gastrointestinal nematode larvae to cattle on pasture in the central highlands of Kenya

PREVALENCE OF MAJOR GASTROINTESTINAL PARASITES OF HORSES IN AND AROUND MEKELLE (QUIHA AND WUKRO)

Study on the impact and control of disease of tethered goats in Morogoro Region, Tanzania

DYNAMICS OF GASTROINTESTINAL PARASITIC INFECTIONS AND PREDICTION OF HAEMONCHUS CONTORTUS

PREVALENCE OF NEMATODE INFESTATION IN GOATS REARED IN NASARAWA STATE, NIGERIA

Biomedicine and Nursing 2016;2(2)

Study on Comparative Prevalence of Lungworms of Sheep and Cattle Slaughtered at Addis Ababa Abattoir, Ethiopia

Survey on Chicken Production Performance and Marketing Systems in Kaffa and Benchmaji Zone, Southwest Ethiopia

Prevalence of gastrointestinal parasites of buffalo at Mongla, Bagerhat

EPIDEMIOLOGICAL STUDIES ON PARASITIC INFESTATIONS IN CAMELS (CAMELUS DROMEDARIES) IN EGYPT

Risk factors associated with occurrence of nematodes in free range pigs in Busia District, Kenya

Epidemiology of Eimeria Infections in Calves in Addis Ababa and Debre Zeit Dairy Farms, Ethiopia

Prevalance of Ovine Lungworm Infection in and Around Kombolcha, Ethiopia

Economic Assessment of Bovine Fasciolosis in Some Selected Abattoirs of Adamawa State, Nigeria

Prevalence of Worm Infection in Yankasa sheep and West African dwarf goats in Lafia Town and Environs, Nigeria.

A survey of parasitic infection on small ruminant farms in Kinta and Hilir Perak districts, Perak, Malaysia

Basaznew Bogale, Mersha Chanie, Achenef Melaku, Tewodros Fentahun and Ayalew Berhanu

Traditional Rearing System. Oyeduntan A. Adediran, Adebowale I. Adebiyi, Emmanuel C. Uwalaka

EFFECTS OF GARLIC, TURMERIC AND BETEL LEAF AGAINST GASTROINTESTINAL NEMATODES IN CATTLE. M. R. Amin, M. Mostofa, M. A. Awal and M. A.

Reedy Fork Dairy Farm Parasitology Report Fall 2016

HAGENIA ABYSSINICA (KOSSO) FOR INTERNAL PARASITE CONTROL IN GOATS

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

"Our aim is to improve the health and productivity of livestock through evidence based collaborative research, knowledge and experience"

Prevalence of Wounds and Associated Risk Factors in Working Equines in Jimma Town of Oromia Region, South-Western Ethiopia

Endoparasites and Associated Worm Burden of Captive and Free-Living Ostriches (Struthio camelus) in the Semi-Arid Region of North Eastern Nigeria

Short Communication. Retrospective Assessment of Black Leg in Kafta Humera Woreda

Prevalence of Gastrointestinal Helminthes among Dogs in Bahir Dar Town, Ethiopia

REEDY FORK DAIRY FARM

Transcription:

Epidemiology of Gastrointestinal Parasites of Ruminants in Western Oromia, Ethiopia Fikru Regassa, DVM 1 Teshale Sori, DVM 1 Reta Dhuguma, DVM 2 Yosef Kiros, DAH 3 1 Addis Ababa University Faculty of Veterinary Medicine Debre Zeit, Ethiopia 2 Debre Zeit Agricultural Research Center Debre Zeit, Ethiopia 3 Bako Agricultural Research Center Bako, Ethiopia KEY WORDS: parasites, eggs, Ethiopia, prevalence, risk factors, ruminants, western Oromia ABSTRACT A study was conducted to determine the prevalence and risk factors associated with gastrointestinal parasitism in western Oromia during 2003 2004. A total of 757 ruminants (257 cattle, 255 sheep, and 245 goats) were included in the study using standard coprologic parasitological procedure. The study showed that the overall prevalence of gastrointestinal parasites was 69.6% with 50.2%, 75.3%, and 84.1% in cattle, sheep, and goats, respectively. Strongyles and Eimeria were the most prevalent parasites encountered in the area. A statistically significant difference was found in prevalence and egg output (eggs per gram; EPG) among species of animals considered. A higher rate was recovered in small ruminants than in cattle, and a greater proportion of study animals (77.3%) had low EPG compared with study animals with moderate to severe EPG (22.7%). Agroecology was found to be associated with prevalence rate and EPG. Season and age were shown to have association with prevalence but not with EPG while no association was revealed between prevalence and EPG with sex and body condition of the animals. Hence, in this study, species of the animals, agro-ecology, season, and age are important risk factors associated with gastrointestinal parasites in the study area. INTRODUCTION Gastrointestinal parasite infections are a world-wide problem for both small- and large-scale farmers, but their impact is greater in sub-saharan Africa in general and Ethiopia in particular due to the availability of a wide range of agro-ecological factors suitable for diversified hosts and parasite species. Economic losses are caused by gastrointestinal parasites in a variety of ways: they cause losses through lowered fertility, reduced work capacity, involuntary culling, a reduction in food intake and lower weight gains, lower milk production, treatment costs, and mortality in heavily parasitized animals. 1 Despite the immense progress made to control parasitosis, farmers in Ethiopia con- 51

tinue to incur significant losses due to insufficient availability of information on the epidemiology of the parasites. Furthermore, parasitosis appears to be a major factor for lowered productivity of Ethiopian livestock sector. 2 The prevalence of gastrointestinal parasites, the genera of helminth parasites involved, species, and the severity of infection also vary considerably depending on local environmental conditions, such as humidity, temperature, rainfall, vegetation, and management practices. 2 Therefore, the distribution and prevalence of the disease should be presented by geographical areas that could roughly correspond to climatic conditions. In some parts of Ethiopia, surveys have been carried out on prevalence of helminth parasites 2 8 of which most of the information obtained is from abattoir survey and animals managed in stations. Moreover, there is no sufficient information on epidemiology of the gastrointestinal parasites of ruminant farm animals in the western part of the country where mixed crop-livestock production system is the main form of agriculture. Therefore, the current study was performed to determine the prevalence of gastrointestinal parasite in ruminants in western Oromia to obtain baseline data so as to design effective control options. In this study, an attempt was made to identify agro-ecological factors; species of ruminants affected in that production systems; and management practices that are assumed to be associated with parasitosis. MATERIALS AND METHOD Study Area The study was carried out during 2003 2004 in 6 selected districts of western Oromia, 2 from each agro-ecologies (Chaliya and Arjo highland, Bako and Abay Chomen mid altitude, and Arjo-Gudetu and Wama-Boneya lowland districts). The study sites were in the altitude range of less than 1500 masl (lowland), 1500-2000 masl (mid altitude), and 2000-3000 masl (highland), with mean minimum and maximum temperature of 23.8 C and 23.5 C, 11.6 C and 22.5 C, and 11.5 C and 11.9 C, respectively. Study Design Multi-stage random sampling procedure was used to select peasant associations (PAs), households (farmers), and the animals. From each district, 5 PAs were randomly selected, and random fecal samples were collected directly from the rectum of a total of 757 ruminants (257 cattle, 255 sheep, and 245 goats). The collected feces were preserved in 10% formalin and dispatched to Bako Agricultural Research Center laboratory for coprological investigation. Parasitological examination was done by direct smear, sedimentation, and flotation techniques following the standard procedures. 9 11 Those fecal samples that were positive for strongyles were subjected to egg output (eggs per gram; EPG) of feces count using Mc Master egg counting technique, 10,12 and the degree of infestation was categorized based on literature. 12,13 The samples were collected in 2 seasons dry (Oct April) and wet (May Sept) from both sexes and all age groups. Body condition was recorded as poor or good, and age groups were determined as respective of the species based on farmers' response and observations made during the survey. Data Analysis The prevalence was calculated by dividing the number of animals harboring a given parasite by the total number of animals examined. In addition to this, the number of worm EPG of feces was categorized and the result thus obtained was analyzed to determine prevalence using SPSS version 11.1 (SPSS, Inc. Chicago, Ill). Percentages (%) to measure prevalence and chi-square (χ 2 ) to measure association between prevalence of the parasite and species of the animals, age, sex, agro-ecology, and season were the statistical tools applied. In all the analyses, confidence level was held at 95% and P < 0.05 was set for significance. 52

RESULTS Of the 757 ruminants examined, 69.6 % (n = 527) were found to harbor 1 or more parasite species. Similarly, the prevalence of gastrointestinal parasites was 50.2%, 75.3%, and 84.1% in cattle sheep and goats, respectively. The greater proportions of study animals (77.3%) were with low EPG while fewer (22.7%) were with moderate to severe infection rates (Table 1). and goats (47.8%) were infected by single parasite while the remaining 5.8%, 30.2%, and 35.3%, respectively, were infected by 2 and more than 2 types of parasites, where most of the combinations were strongyles and Eimeria. Significant differences in prevalence and EPG were shown among different study districts (Table 3). A higher prevalence rate was encountered in Wama Boneya and Arjo Table 1. Overall Prevalence of Gastrointestinal Parasite and Degree of EPG. Species Prevalence (%) Low Moderate Severe Total Cattle 129 (50.2) 209 (81.3) 34 (13.2) 14 (5.4) 257 Sheep 192 (75.3) 200 (78.4) 20 (7.8) 35 (13.7) 255 Goat 206 (84.1) 176 (71.8) 23 (9.4) 46 (18.8) 245 Table 2. Prevalence of Gastrointestinal Parasites in Study Ruminants. Type of Parasite (%) Species Ascaris Eimeria Strongyle Lungworm Trichuris Tapeworm Total Cattle 7(2.8) 10(3.9) 121 (47) 1 (0.4) 4 (1.6) 1 (0.4) 257 Sheep 4(1.6) 68 (26.7) 179 (70.2) 11 (4.3) 14 (4.5) 0 (0) 255 Goat 6 (2.5) 84 (34.3) 192 (78.4) 3 (1.2) 24 (9.8) 0 (0) 245 There was statistically significant differences in parasite prevalence and presence of more than 1 type of parasite among species of ruminants and where mostly small ruminants share the greater proportion than cattle. Moreover, statistically significant difference in degree of EPG was observed among different species of animals studied. Higher fecal EPG was recorded in small ruminants than in cattle. The gastrointestinal parasites identified were Ascaris, Eimeria, strongyles, lungworms, trichuris, and tapeworms with the prevalence of each of the parasites presented in Table 2. Strongyles and Eimeria were the most prevalent parasites encountered. Most of the cattle (44.4%), sheep (45.1%), Gudetu lowland districts followed by Bako mid altitude districts. Likewise, highest EPG was recorded in Wama Boneya (lowland) followed by Bako and Abay Chomen (mid altitude). No significant difference was observed in prevalence of the parasite and degree of EPG between male and female subjects (Table 4). Likewise, degree of EPG and prevalence of the parasites did not show significant association with body condition of the animals (Table 5). A significantly higher prevalence rate was encountered during the wet season than the drier ones while no significant difference were found in degree of EPG between the seasons (Table 6). Similarly, there was 53

Table 3. Prevalence and Degree of EPG at Each Study Districts. Districts Prevalence (%) Low Moderate Severe Total Arjo 48 (64.9) 61 (82.4) 6 (8.1) 7 (9.5) 74 Chaliya 66 (52.0) 111 (87.4) 10 (7.9) 6 (4.7) 127 Abay Chomen 74 (56.1) 119 (90.2) 3 (2.3) 10 (7.6) 132 Bako 191 (78.6) 158 (65.0) 44 (18.1) 41 (16.9) 243 Arjo Gudetu 83 (81.4) 76 (74.5) 10 (9.8) 16 (15.7) 102 Wama Boneya 65 (82.3) 60 (75.9) 4 (5.1) 15 (19.0) 79 Table 4. Prevalence and Degree of EPG of the Sex Groups. Sex Prevalence (%) Low Moderate Severe Total Female 344 (70.1) 386 (78.6) 48 (9.8) 57 (11.6) 491 Male 183 (68.8) 199 (74.8) 29 (10.9) 38 (14.3) 266 Table 5. Prevalence and Degree of EPG Across Body Condition. Body Condition Prevalence (%) Low Moderate Severe Total Good 318 (74.0) 327 (76.0) 44 (10.2) 59 (13.7) 430 Poor 209 (63.9) 258 (78.9) 33 (10.1) 36 (11.0) 327 Table 6. Prevalence and Degree of EPG Across Seasons. Season Prevalence (%) Low Moderate Severe Total Dry 121 (59.9) 159 (78.7) 20 (9.9) 23 (11.4) 202 Wet 406 (73.2) 426 (76.8) 57 (10.3) 72 (13.0) 555 Table 7. Prevalence and Degree of EPG at Different Agro-Ecology. Agro-Ecology Prevalence (%) Low Moderate Severe Total Highland 114 (56.7) 172 (85.6) 16 (8.0) 13 (6.5) 201 Mid altitude 265 (70.7) 277 (73.9) 47 (12.5) 51 (13.6) 375 Lowland 148 (81.8) 136 (75.1) 14 (7.7) 31 (17.1) 181 54

association between prevalence rates and EPG with agro-ecology where higher values were recorded for lowland areas followed by mid altitude areas with lowest values in highland areas (Table 7). Higher prevalence rates were shown in younger of all the ruminants while no association was recognized between degree of EPG and age for all the species of the study animals. DISCUSSION This study revealed that the overall prevalence of gastrointestinal parasites of ruminants to be 69.6% with 50.2%, 75.3%, and 84.1% in cattle, sheep and goats, respectively. It also disclosed that regardless of the species of ruminants, the animals are infected with variety of parasites of which strongyle and Eimeria oocysts are the most abundant. Similar prevalence rate was reported in other parts of Ethiopia 7 and Kenya 14 but slightly lower than prevalence in sheep and goats from eastern part of Ethiopia 8 and in sheep at Bako 3 and Zimbabwe. 15 The higher prevalence rate observed in sheep and goats of eastern Ethiopia could be due to difference in management system of the animals and breeds of these animals. In eastern Ethiopia, animals are managed under extensive pastoralism in which large numbers of the animals are kept together. This could increase the degree of pasture contamination leading to higher prevalence rate, whereas in western Ethiopia, mixed crop-livestock production predominates, where few numbers of various species of livestock are kept together. The higher prevalence rate recorded in small ruminants as a whole agrees with most of the reports, 5,14 but the higher prevalence rate in goats compared with sheep is in agreement with report a from eastern Ethiopia. 8 However, it contradicts the assumption of earlier works in other part of Ethiopia 2 and Kenya 16 that higher parasite prevalence is more common in sheep than in goats due to the grazing habit of sheep. The result in this study could be because most of the goats in this study were from lowland and mid altitude areas, which are thought to be suitable for survival of the larval stage of the parasites. Likewise, in the lowland areas of the country where goats are mostly reared, there is poor veterinary infrastructure and medication to goats. More importantly, the condition could be due to less or slow development of immunity in goats to gastrointestinal parasites compared with the situation in sheep and cattle. The latter 2 faced prolonged challenge over generations, but in goats, the declining of sufficient browsing area and expansion of crop agriculture forced them to graze with the other 2 species that had good resistance. The degree of EPG in most of the study animals was low, agreeing with various works 5,14 indicating the sub-clinical cases of gastrointestinal parasites with subsequent subsistent low degree of pasture contamination. But it is inconsistent with reports from eastern Ethiopia 8 that could be explained by the difference in management and breed of the respective animals. The study also indicated higher prevalence and degree of EPG in lowlands and mid altitude areas in all the study animals in consent with reports in many parts of sub- Saharan Africa as reported by Teklye. 2 These agro-ecologic zones are characterized by a hot-humid environmental situation that is favorable for the survival of the infective larval stage of most of the parasites. The study further revealed that sex and body conditions of the animal did not show significant association with the prevalence of the parasites and degree of EPG. The absence of association between sex and prevalence of EPG is in agreement with that of Keyyu et al. 17 However, that of body condition disagrees with previous reports. 17 This could be explained by the fact that loss of body condition in the study animals could be due to other factors, such as seasonal change of forageable feed staff and the presence of other concurrent disease conditions, mainly high prevalence of trypanosomiasis in most of the lowland districts. 55

Significantly higher prevalence and, though not significant, higher degree of EPG were recorded in wet season than in drier ones. This finding is in consent with many reports around the world. 4,6,15,18 24 This is due to the existence of a direct relationship between prevalence with the humidity and temperature. In this study, the presence of sufficient moisture during the rainy season favored the survival of infective larvae in the pasture and higher probability of uptake of the infective larvae leading to higher prevalence rate. In western parts of the Ethiopia, under local production systems, the animals that are completely managed on pasture grazing throughout the year succumb to seasonal variation of availability of forgeable feed and then difference in plane of nutrition. Thus, the presence of sufficient feed during rainy seasons could in turn increase the nutritional status, and these well-fed animals developed good immunity that suppressed the fecundity of the parasites. This situation was reported in Bisset et al 25 that increased plane of nutrition increases the immunity and reduces the fecundity of the worms to the contrary of the higher prevalence rate observed during the rainy season. This is in agreement with works in Burkina Faso where comparable worm counts were obtained during both seasons. 26 Similarly, a significantly higher prevalence rate was recorded in younger animals (calves and lambs) and was also higher in kids. This finding is in agreement with most literatures 9,12,17,20,23,24 from different corner of the world. This could be due to the fact that younger animals are more susceptible than adult counter parts. Adult animals may acquire immunity to the parasites through frequent challenge and expel the ingested parasite before they establish infection, 9,12 But the findings of this study are inconsistent with reports from Gambia where adults and older animals bear high worm burden. 18 There was no significant difference in EPG among different age group though higher proportions of severe cases were recorded in younger study animals. This observation is 56 in consent with previous works in Ethiopia and Kenya 24 that stated no association of degree of EPG and age of the animals. But it is to the contrary from semi-arid parts of Kenya that reported higher prevalence and intensity of EPG in older sheep and goats. 16 Therefore, this study identified the potential risk factors associated with high prevalence rate and high degree of EPG enabling to design feasible and strategic control of helminth parasites of ruminants in areas of similar ecological features. ACKNOWLEDGEMENT The authors would like to express their gratitude to Oromia Agricultural Research Institute, funding agency, and Bako Agricultural Research Center, where the lab is situated, and all the personnel directly or indirectly involved in execution of the study. REFERENCES 1. Lebbie SHB, Rey B, Irungu EK: Small ruminant research and Development in Africa. Proceedings of the Second Biennial Conference of the African Small Ruminant Research Network. ILCA. 1994:1-5. 2. Teklye B: Epidemiology of endoparasites of small ruminants in sub-saharan Africa. Proceedings of Fourth National Livestock Improvement Conference. Addis Ababa, Ethiopia; 13-15 November 1991:7-11. 3. Muktar R, Mengesha F, Feseha G, Moges W: Ovine helminthiasis at Bako. Proceedings of Fourth National Livestock Improvement Conference. Addis Ababa, Ethiopia; 13-15 November 1991:273-276. 4. Tembely S, Lahlou-Kassi K, Rege JE, Sovani S, Diedkiou ML, Baker RL: The epidemiology of nematode infections in sheep in a cool tropical environment. Vet Parasitol. 1997;70(1-3):129-141. 5. Deressa A: Economic importance of ovine helminth parasites at Sheno. Ethiopian Vet Association Proceedings of the 12th Conference. Addis Ababa, Ethiopia; June 1998:43-51. 6. Tembely S, Lahlou-Kassi K, Rege JE, et al: Breed and season effects on the peri-parturient rise in nematode egg output in indigenous ewes in a cool tropical environment. Vet Parasitol. 1998;77(2-3):123-132. 7. Tesfaye H: Ovine and bovine helminthiasis in Kelala (S. Wollo). Ethiopian Vet Association Proceedings of the 12th Conference. Addis Ababa, Ethiopia; June 1998:30-34.

8. Abebe W, Esayas G: Survey on ovine and caprine gastro-intestinal helminthosis in eastern part of Ethiopia during the dry season of the year. Revue Vet Med. 2001;152(5):379-384. 9. Dunn AM: Veterinary Helminthology. 2nd edition.london: William Heinemann Medical Books; 1978. 10. Hansen J, Perry B: The Epidemiology, Diagnosis and Control of Helminth Parasites of Ruminants. 2nd edition. Nairobi, Kenya; ILRAD: 1994. 11. Urquhart GM, Armour J, Duncan JL, Dunn AM, Jennings FW: Veterinary Parasitology. 1st edition. Singapore; Longmann: 1994. 12. Shah-Fischer M, Say R: Manual of Tropical Veterinary Parasitology. CAB International; The Technical Center for Agricultural and Rural Cooperation (CTA): 1989. 13. Solusby EJL: Helminthes, Arthropods and Protozoa of Domesticated Animals. 7th edition. London, UK; Bailliere, Tindall: 1986. 14. Maichomo MW, Kagira JM, Walker J: Point prevalence of gastrointestinal parasites in calves, sheep and goats in Magadi division, Southwestern Kenya. Onderstepool J Vet Res. 2004;71(4):257-261. 15. Moyo DZ, Bwangamoi O, Hendrikx WM, Eysker M: The epidemiology of gastrointestinal nematodes infections in communal cattle and commercial beef cattle on the highveld of Zimbabwe. Vet Parasitol. 1996;67(1-2):105-120. 16. Waruiru RM, Mutune MN, Otieno RO: Gastrointestinal parasite infections of sheep and goats in a semi-arid area of Machakos District, Kenya. Bull Anim Health Prod Afr. 2005;53(1):25-34. 17. Keyyu JD, Kassuku AA, Kyvsgaard NC, Willingham AL 3rd: Gastrointestinal nematodes in indigenous zebu cattle under pastoral and nomadic management systems in the lower plain of Southern highlands of Tanzania. Vet Res Commun. 2003;27(5):371-380. 18. Fritsche T, Kaufmann J, Pfister K: Parasite spectrum and seasonal epidemiology of gastro-intestinal nematodes of small ruminants in the Gambia. Vet Parasitol. 1993;49(2-4):271-283. 19. Pandey VS, Chitate F, Nyanzunda TM: Epidemiological observations on gastrointestinal nematodes in communal land cattle from the highveld of Zimbabwe. Vet Parasitol. 1993;51:99-106. 20. Nwosu CO, Ogunrinade AF, Fagbemi BO: Prevalence and seasonal changes in the gastrointestinal helminths of Nigerian goats. J Helminthol. 1996;70:329-333. 21. Nginyi JM, Duncan JL, Mello DJ, et al: Epidemiology of parasitic gastrointestinal nematode infections of ruminants of smallholder farms in central Kenya. Res Vet Sci. 2001;70(1):33-39. 22. Kumba FF, Katjivena H, Kauta G, Lutaaya E: Seasonal evolution of fecal egg output by gastrointestinal worms in goats on communal farms in eastern Namibia. Onderstepool J Vet Res. 2003;70(4):265-271. 23. Ng'ang'a CJ, Maingi N, Munyua WK, Kanyari PW: Epidemiology of gastrointestinal helminths infection in Dorper sheep in semi-arid area of Kenya. Ondestepool J Vet Res. 2004;71(3):219-226. 24. Githigia SM, Thamsborg SM, Maingi N, Munyua WK: The epidemiology of gastrointestinal nematodes in Goats in the low potential areas of Thika District, Kenya. Bull Anim Health Prod Afr. 2005;53(1):5-12. 25. Bisset SA, Vlassoff A, Douch PGC, Jonas WE, West CJ, Green RS: Nematode burdens and immunological responses following natural challenges in Romney lambs selectively bred for low or high fecal worm egg count. Vet Parasitol. 1996;61:249-263. 26. Belem AMG, Kabore A, Bessin R: Gastrointestinal helminthes of sheep in the central, eastern and northern parts of Burkina Faso. Bull Anim Health Prod Afr. 2005;53(1):13-23. 57