Ultrastructure of the eggshell of selected Palaeognathae species a comparative analysis*

Similar documents
International Journal of Science, Environment and Technology, Vol. 6, No 2, 2017,

EVALUATION OF SOME EGGSHELL PARAMETERS DURING THE EMBRYOGENESIS IN TURKEYS

Hatchability and Early Chick Growth Potential of Broiler Breeder Eggs with Hairline Cracks

Effect of the Date of Egg-laying on the Biological Value of Eggs and Reproductive Traits in Pheasants (Phasianus colchicus L.)

INCUBATION AND VITAL MORPHOLOGICAL TRAITS IN EGGS FROM AGE-RELATED TURKEYS

ANALYZING OF QUAIL EGGS HATCHABILITY, QUALITY, EMBRYONIC MORTALITY AND MALPOSITIONS IN RELATION TO THEIR SHELL COLORS

STUDY BEHAVIOR OF CERTAIN PARAMETERS AFFECTING ASSESSMENT OF THE QUALITY OF QUAIL EGGS BY COMPUTER VISION SYSTEM

The critical importance of incubation temperature

Morphology of Shells From Viable and Nonviable Eggs of the Chinese Alligator (Alligator sinensis)

Abstract. The purpose of this study was to describe characteristics of the egg and incubation

FFA Poultry Career Development Event 2004 NEO Aggie Day. 1. With regard to egg storage, which of the following statements is FALSE?

Effects of breeder age on mineral contents and weight of yolk sac, embryo development, and hatchability in Pekin ducks

FEEDING CHINESE RINGNECK PHEASANTS FOR EFFICIENT REPRODUCTION. Summary *

The effect of eggshell colour on early embryo development in the ring-necked pheasant (Phasianus colchicus)

SUMMARY OF THESIS. Chapter VIII "The place of research, its purpose, the biological material and method"

Section 6. Embryonic Development and Hatchery Management Notes

International Journal of Recent Scientific Research

FFA Poultry Career Development Event 2000 Poultry Judging Contest Arkansas State FFA Judging Contest

A Scanning Electron Microscopic Study of Eggshell Surface Topography of Leidynema portentosae and L. appendiculatum (Nematoda: Oxyuroidea)

Seasonal Changes Effecting thegrowth Performance of Emu Birds Reared under Intensive Farming System

206 Adopted: 4 April 1984

Arch. Tierz., Dummerstorf 49 (2006) Special Issue, Department of Poultry Breeding, Agricultural University of Szczecin, Poland

EMBRYO DIAGNOSIS AN IMPORTANT TOOL TO HELP THE HATCHERY MANAGER

The Importance of Timely Removal from the Incubator of Hatched Poults from Three Commercial Strains 1

Module Egg. MODULE NO. 25: Internal Quality of Egg

Incubation Temperature for Ostrich (Struthio camelus) Eggs

Productivity of emus (Dromaius novaehollandiae) farmed under industrial conditions in Saudi Arabia. By:

> BACK TO CONTENTS PAGE

HATCHABILITY THE TIMING OF MAJOR EMBRYONIC DEVELOPMENTS

The Effect of Oviposition Time on Egg Quality Parameters in Brown Leghorn, Oravka and Brahma Hens

The Livestock & Poultry Industries-I

Proposed APA Egg Competition MISSION STATEMENT:

The Effect of Eggshell Thickness on the Hatchability of Guinea Fowl and Pheasants

The impact of eggshell colour and spot area in Japanese quails: I. eggshell temperature during incubation and hatching results

Effects of transportation-induced jarring on ratite embryo development and hatching success

Chick Quality breeder and hatchery influences. Daniel B Pearson Veterinary Health Director Aviagen UK Ltd

EVALUATION OF PARTICULAR TRAITS OF PEKIN DUCK BREED STAR 53 OF FRENCH ORIGIN EGGS DURING EGG LAYING

REPRODUCTIVE PERFORMANCE AND SOME PHYSIOLOGICAL PARAMETERS OF JAPANESE QUAIL FEMALES VARYING IN EGGSHELL COLOR AND PATTERN USING IMAGE ANALYSIS

Eggology (Grades K-2)

Effect of location of eggs in the incubator on hatchability of eggs from Bronze turkey breeders of different ages

Eggstravaganza School Pack

Effective Hatching Egg Sanitization. Craig D. Coufal, Ph.D.

Seasonal Variations of yeso sika Deer Skin and its Vegetable Tanned Leather

Hy D. for Layers and Breeders. DSM Nutritional Products

PRODUCTION, MODELING, AND EDUCATION

Phenotype correlation of external and incubation traits of Italian White Goose eggs and goslings after hatching

DRAFT TANZANIA STANDARD

CHAPTER3. Materials and methods

Relationship between hatchling length and weight on later productive performance in broilers

Effect of Calcium Level of the Developing and Laying Ration on Hatchability of Eggs and on Viability and Growth Rate of Progeny of Young Pullets 1

Following on from the Aviagen

Systematic factors that affect ostrich egg incubation traits

EFFECT OF STORAGE METHODS AND TIME ON EGG QUALITY TRAITS OF LAYING HENS IN A HOT DRY CLIMATE

Changing patterns of poultry production in the European Union

SCANNING electron - microscopy has

Dr. Kenneth E. Anderson Poultry Science Department North Carolina State University Box 7608 Raleigh, NC

Relationships of incubational hatching egg characteristics to posthatch body weight and processing yield in Ross Ross 708 broilers 1,2

Effect of EM on Growth, Egg Production and Waste Characteristics of Japanese Quail Abstract Introduction Experimental Procedures

Title. CitationJapanese Journal of Veterinary Research, 24(1-2): 37. Issue Date DOI. Doc URL. Type. File Information

Hatching Quality Chicks

Avian Reproductive System Female

Internal Egg Temperature in Response to Preincubation Warming in Broiler Breeder and Turkey Eggs

SANITARY MANAGEMENT OF THE HATCHING EGGS

The effects of shank length on incubation results of Japanese quails (Coturnix coturnix japonica) eggs and hatched chick shank length

Effect of egg size and strain on growth performance of cockerel

Effect of Region and Stocking Density on Performance of Farm Ostriches. Mehrdad Bouyeh

Animal and Plant Health Agency Customer Registration

DIFFERENT BREEDS DEMAND DIFFERENT INCUBATION MEASURES

Taphonomic Effects of Fire on Ostrich and Emu Eggshell

Starting Up An Agricultural Business

Arkansas State FFA Poultry Exam 2016

Productivity of commercially farmed ostriches. (Struthio camelus) in Saudi Arabia. By:

IT HAS been well established that

The breeding of birds is one of the ancient

MORPHOLOGICAL DESCRIPTION OF THE DEVELOPING OSTRICH EMBRYO: A TOOL FOR EMBRYONIC AGE ESTIMATION

FFA Poultry Career Development Event 2004 Poultry Judging District Contests

Comparison of production and egg quality parameters of laying hens housed in conventional and enriched cages

Comparison of two regimes for artificially incubating kiwi eggs

Layer/Egg Breeds. This presentation is sponsored by the Beginning Farmer and Rancher Development Program

Poultry Ag Mag - Vocabulary

THE LAYING FLOCK VIRGINIA 4-H CLUB SERIES. AGIUCU LTUJiAL EXTENSION SERVICE OF V. P. I., BLACKSBURG, VA.

LAYING BEHAVIOUR OF EGG AND MEAT TYPE CHICKEN AS INFLUENCED BY NEST TIER

The microstructure of avian eggshells, adaptive significance and practical implications in aviculture

Evolution of eggshell structure during rapid range expansion in a passerine bird

2018 MN FFA Poultry CDE Exam

SCANNING ELECTRON MICROSCOPY OF THE EGGSHELL OF LIZARD, CALOTES VERSICOLOR. Vilas Deshmukh Yeshwant Mahavidyalaya, Wardha

POULTRY Allen County 4-H

CAJJFORNIA POULTRY LETTER INDEX Januarv - December ANIMAL WELFARE Three New Publications in the Animal Care Mar Series.

India s Trade Performance in Poultry Products

FEED! CHOOSE THE RIGHT

POULTRY. 4 Member Team and 2 Alternates IMPORTANT NOTE

Guide for Incubation of Eggs and Care of Newborn Livestock

HAND BOOK OF POULTRY FARMING AND FEED FORMULATIONS

Salmonella National Poultry Improvement Plan Washington State Regulations

Beginning of Life. 4-H Embryology School Enrichment Program. Samantha Nagurny Extension Agent, 4-H Youth Development Fairfax County

A STUDY ON EGG QUALITY TRAITS IN JAPANESE QUAILS * (Coturnix coturnix japonica)

CHEF S GARDE W H O L E SALE E G G C ATA LO G U E LTD.

POULTRY. 3-4 Member Team and 2 Alternates IMPORTANT NOTE

INFO SHEET. Cull Eggs: What To Expect And How To Reduce The Incidence.

Unit A: Introduction to Poultry Science. Lesson 1: Exploring the Poultry Industry

Transcription:

Ann. Anim. Sci., Vol. 14, No. 1 (2014) 167 178 DOI: 10.2478/aoas-2013-0079 Ultrastructure of the eggshell of selected Palaeognathae species a comparative analysis* * Danuta Szczerbińska, Monika Wiercińska Department of Poultry and Ornamental Birds Breeding, West Pomeranian University of Technology in Szczecin, Judyma 20, 71-466 Szczecin, Poland Corresponding author: danuta.szczerbinska@zut.edu.pl Abstract The study aimed at comparative analysis of the eggshell ultrastructure, indicating differences and similarities in its structure depending on the bird species. The study was carried out in ostrich, emu and rhea breeding flocks. The birds were kept under open system. The ostrich flock comprised 6 females and 3 males, the emu flock included 22 birds with equal sex ratio, while the rhea flock consisted of 16 females and 4 males. Emus and rheas were 5 years old and in their 3rd laying year, whereas ostriches were 4 years old and in their 2nd laying year. The analysis of eggshell ultrastructure and porosity was performed on the post-hatching eggshells being obtained after the incubation of eggs from around peak laying period of these birds. In total, 27 eggshells were evaluated, 9 of each species. Analysis of the ultrastructure of ostrich, emu and rhea eggshells showed their different architecture being dependent on the bird species. The cuticle in ostrich eggs adhered firmly to the vertical crystal layer, it mainly occurred around pore canal orifices in rhea eggs, while only its residual presence was observed in emu eggs. The percentage of the vertical crystal layer was similar in the ostrich and rhea eggshells (2 3%) but significantly higher in the emu eggshells (9%). The largest number of mammillae per unit of inner eggshell surface area was recorded in emus, while the broadest palisades in rheas. The ostrich eggshells were shown to be characterised by the least number of pores per unit of surface area, with significantly narrower pore canals. Key words: ostrich, emu, rhea, eggshell ultrastructure, eggshell porosity Numerous studies on egg quality including eggshell ultrastructure have been carried out in many poultry species (Burton and Tullett, 1983; Krystianiak et al., 2005; Michalak and Mróz, 2004; Soliman et al., 1994). However, such a range of knowledge has not been gained in the case of Palaeognathae which include, among others, ostriches, emus and rheas. These birds have been economically exploited recently for the purpose of using their meat, feathers and leathers as well as oil in the cosmetic and pharmaceutical industries (Horbańczuk, 2002; Minnaar and Min- *This work was conducted as part of University of Agriculutre in Szczecin statutory activity, project No. BW/DB/06/04.

168 D. Szczerbińska and M. Wiercińska naar, 1993). One of the reasons impeding the development of their farm breeding is a relatively low hatching rate. Limited number of scientific research causes that many questions referring to their reproduction remain unanswered. Among others, there is no information on eggshell porosity and its ultrastructure which affect incubation results. Eggshell structure in the birds belonging to the subclass Palaeognathae differs notably from that of the eggshells of other species being described in literature (Board and Tullett, 1975; Christensen et al., 1996; Tullett, 1984; Wiercińska and Szczerbińska, 2010), which is connected with a considerable weight of eggs in these birds. With a large egg weight, thick and appropriately structured eggshell, securing proper embryogenesis, is necessary. No detailed analysis of the ultrastructure of ostrich, emu and rhea eggshell, including successive layers that build it, has been carried out so far. These issues are very important not only due to cognitive reasons but also because of the interest in the breeding of productive ratites and a growing demand for their chicks. The technology of incubation of the eggs of these birds is being continuously improved. At present, thermal and humidity parameters for the ostrich, emu and rhea hatch are similar, which does not seem to be appropriate considering the differences in the egg size and the structure of eggshell surface. It was therefore appropriate to characterise the eggshell ultrastructure, indicating differences and similarities in its structure depending on the bird species. Material and methods Comparative study of the eggshell structure was carried out in African ostrich (Struthio camelus), emu (Dromaius novaehollandiae) and rhea (Rhea americana) breeding flocks. The birds were kept under open system; ostriches and rheas at private farms, and emus at an experimental farm of the Department of Poultry and Ornamental Birds Breeding, West Pomeranian University of Technology in Szczecin. The ostrich flock comprised 6 females and 3 males, the emu flock included 22 birds: 11 females and 11 males, while the rhea flock consisted of 16 females and 4 males. Emus and rheas were 5 years old and in their 3rd laying year, whereas ostriches were 4 years old and in their 2nd laying year. The analysis of eggshell ultrastructure and porosity was performed on the posthatching remnants being obtained after the incubation of eggs from around peak laying period of these birds. In total, 27 post-hatching eggshells were evaluated, 9 of each species. Observations of the eggshell ultrastructure were conducted according to the methods given by Christensen et al. (1996). Eggshell fragments from the blunt, central and pointed parts of egg, about 2 cm 2 in size, were prepared in 3% glutaraldehyde, dried and then covered with a gold and palladium alloy (AuPd40) by vacuum deposition. The samples (eggshell fragments) prepared this way were observed under a scanning electron microscope (Jeol JSM 6100, 20 KV). Measurements were made on 1120 microscopic images, using Jeol Semafor 4.0 software. The method of pore identification and counting was adopted after Tyler (1953) with necessary modifications. The eggshell fragments from the blunt and pointed egg ends and its

Ultrastructure of the eggshell of Palaeognathae species 169 central part, about 2 cm 2 in size, were boiled in 5% sodium hydroxide for 40 minutes (ostriches), 30 minutes (emus) and 25 minutes (rheas). Afterwards, the eggshells were rinsed with distilled water, dried at room temperature and stained with methylene blue. The eggshell porosity was determined using a stereoscopic microscope, at a fourfold magnification, on a surface area of 0.25 cm 2. After the data were completed and entered into a Statistica 7.1 database, mean values and standard deviations for all eggshell parameters being studied were calculated. The results were analysed with one-way analysis of variance (ANOVA). Significance of differences was verified by Duncan s test. Results In the eggshells under analysis, the outer shell membrane was formed by a layer of intersecting keratin-collagen fibres being covered by numerous small protein deposits (Figure 1). The thickness of these fibres was similar and ranged from 1.2 µm in ostriches to 1.8 µm in rheas, being not significantly different (Table 1). The outer shell membrane fibres were rooted in the tips of mammillae, forming anchor points (Figure 2). Figure 1. Outer shell membrane fibres in rhea eggs The analysis of eggshell surface showed its large differentiation in respective ratite species. The most varied eggshell surface was observed in rhea eggs, being covered by oval and spherical structures or polygonal depressions. Considerable differences were also observed in the cuticle distribution on the eggshell surface. In ostriches, the cuticle adhered firmly to the vertical crystal layer, covering the whole

170 D. Szczerbińska and M. Wiercińska surface of eggshell (Figure 3). Cracks in the mucin layer in the eggshells of these birds mostly formed quadrangular plates. The cuticle in the rhea eggshells mainly occurred around pore canal orifices (Figure 4). It was not observed either that the emu eggshells were entirely covered by that type of layer. Only in two microscopic images, small fragments of organic layer were present in depressions of the vertical crystal layer (Figure 5). Mammillae in the emu, ostrich and rhea eggshells were oval or took the shape of irregular polygons. Since the observations were made on post-hatching eggshells, clear changes were seen in the structure of mammillae due to demineralisation during embryogenesis (Figures 6 and 7). In rheas and ostriches, the mammillae were similar and larger in comparison to emu. These differences were confirmed statistically and amounted to 17.6 μm (Table 1). Interspecific differences were also observed in the number of mammillae. The largest number of mammillae per unit of inner eggshell surface area, being significantly different, was recorded in emus (Table 1). Table 1. Characteristics of the eggshell ultrastructure ( x ±SD) Item Species ostrich emu rhea Thickness of outer shell membrane fibres (μm) 1.2 a±0.2 1.7 a±0.3 1.8 a±0.3 Mammilla diameter* (μm) 104.5 a±27.2 88.9 b±17.3 108.5 a±28.8 Number of mammillae (mammillae/mm 2 ) 188.2 a±27.7 295.8 b±24.1 178.4 a±23.8 Palisade diameter (μm) 180.1 a±55.7 157.3 a±15.8 216.3 b±32.6 Thickness of the vertical crystal layer (μm) (%) 36.9 a±11.0 1.99 a±1.1 79.0 b±18.9 8.66 b±2.0 *Mean value of two measurements at the broadest and narrowest points. a, b mean values in rows marked with different letters differ significantly (P 0.05). 22.9 a±4.8 2.83 a±0.9 Figure 2. Outer shell membrane fibres rooted in the tips of mammillae in the emu eggshell

Ultrastructure of the eggshell of Palaeognathae species 171 Figure 3. Cuticle on the eggshell surface in ostrich Figure 4. Cuticle on the eggshell surface in rhea The palisade layer had very similar structure in all species under analysis. It was characterised by a compact structure, while calcium carbonate crystals in the form of plates being arranged on top of each other firmly adhered to each other, forming palisades of different size. Small air spaces were present between plates of irregular

172 D. Szczerbińska and M. Wiercińska shape (Figure 8). Despite the similar structure, the breadth of palisades in respective species significantly differed, ranging from 157 µm in emus to 216 µm in rheas (Table 1). Figure 5. Cuticle on the eggshell surface in emu Figure 6. Mammillae in the emu eggshell

Ultrastructure of the eggshell of Palaeognathae species 173 Figure 7. Mammillae in the rhea eggshell Figure 8. Air spaces in the palisade layer of the ostrich eggshell The thinnest vertical crystal layer was observed in the ostrich and rhea eggshells. Significantly thicker one (by about 49 µm) was found in the emu eggshells. The percentage of the vertical crystal layer in the eggshell was the lowest in ostriches and

174 D. Szczerbińska and M. Wiercińska amounted to nearly 2% whereas the highest in emus, more than 8% (Table 1). In the emu eggshells, it formed loaf-shaped prominences on the eggshell surface, contrary to other species (Figure 9). Figure 9. Vertical crystal layer in the emu eggshell Figure 10. Pores in the ostrich eggshell Major pore canals in the eggshells of all analysed birds started between mammillae but branched in successive layers, assuming different shapes depending on the bird species (Figures 10 and 11). The emu eggshells had reticular pore canal system,

Ultrastructure of the eggshell of Palaeognathae species 175 branching already in the palisade layer and then in the reticular one (Figure 9). Pores in the rhea eggshells were also branched, escaping to small depressions on the eggshell surface. In the rhea eggshells, organic deposits of different shape were observed at the orifice of pore canal which secured, together with the cuticle layer, pore canal inlet from outside (Figure 4). Figure 11. Pores in the rhea eggshell The rhea eggshells proved to be the most porous (Table 2), whereas the ostrich eggshells were the least porous. The broadest pore canals were observed in emus and rheas, whereas the narrowest in ostriches. Table 2. Number and breadth of the pore canals ( ±SD) Item Species ostrich emu rhea Number of pores (pores/cm 2 ) blunt end 22.6±7.4 43.7±12.6 49.2±13.6 pointed end 16.7±7.6 32.2±10.0 40.6±12.5 equator 21.4±6.6 33.1±13.7 44.2±14.5 mean value 20.2±7.2 36.3 b±10.1 44.6±13.5 Breadth of pore canals (μm) 35.3 a±10.1 53.3 b±11.8 48.4 b±4.8 a, b, c mean values in rows marked with different letters differ significantly (P 0.05). x Discussion The outer shell membrane in eggs of all bird species has a similar structure due to the functions it fulfils during embryogenesis (Solomon, 1997). A dense network of keratin-collagen fibres constitutes a mechanical protection which makes eggshell

176 D. Szczerbińska and M. Wiercińska mineral structures more elastic. It also protects the egg contents and developing embryos against microorganism infections. Typically, fibres of the outer shell membrane in emus, ostriches and rheas root into mammillae, forming anchor points, which have been previously described in other bird species (Solomon, 1997). Similar characteristics of the structure of egg membranes in the birds being phylogenetically distant from Palaeognathae were also reported by Puchajda et al. (2000) in geese and Solomon (1997) and Rosiński et al. (1993) in hens. However, in the studies cited above, protein fibres differed in their thickness and density. Different structure of the eggshell surface may result from interspecific differences but also from adaptation of birds to specific living environment. The analysis of eggshells in this study showed essential differences in the cuticle distribution on their surface. Interestingly, the cuticle of ostrich eggshell had a similar structure to that of hen and turkey eggs (Michalak and Mróz, 2004; Solomon, 1997). Its cracks, forming polygonal plates, were already described in literature (Christensen et al., 1996; Heredia et al., 2005). Such a pattern of eggshell surface does not result from its primary structure but from the fact that the mucin layer dries out and cracks during storage. A paucity of information on the morphology of rhea eggs refers also to the structure of eggshell surface. No publications have been found which confirm the presence of cuticle in this species. It was not observed either that the emu eggshells were entirely covered by that type of layer. The results of this study confirm earlier suppositions (Szczerbińska, 2002) that it appears unlikely the emu eggs are being tightly covered with the cuticle due to very waved eggshell surface. It seems most probable that the eggshell cuticle in emus disappeared during the process of evolution. Due to specific eggshell structure, it stopped playing the protective role against microorganism penetration since its functions were taken over by a very developed vertical crystal layer as well as the reticular one, acting like a specific filter. Mammillae in the Paleognathae eggshells did not differ from those in the eggshells of other bird species (Mikhailov, 1997; Panheleux et al., 1999). Similarly, the palisade and vertical crystal layer in the ostrich eggshells resembled in its structure those being described previously in literature (Christensen et al., 1996). In the earlier studies (Szczerbińska, 2002), the relative thickness of the vertical crystal layer of the emu eggshell was larger, ranging from 10.8 to 13.9%. In the emu eggshells, an additional layer was observed over the palisade layer which was not found in the eggshells of other bird species being analysed. It was characterised by a very loose structure, with numerous air spaces. The presence of this layer, being called the reticular layer, in emu and cassowary eggs was reported earlier by Board and Tullett (1975). The exceptionally complex system of pores in the eggshells of all bird species under analysis is connected with a considerable egg weight which ranges from 600 g in emus (Minnaar and Minnaar, 1993) to 1500 g in ostriches (Horbańczuk, 2002). The developed pore canals, forming different types of branching, ensure proper gaseous exchange during embryogenesis. In our previous study (Wiercińska and Szczerbińska, 2010) referring to the hatchability of nandu eggs, the least number of pores was recorded in eggs with dead embryos. This confirms a significant role of eggshell porosity in embryogenesis. By contrast, a small number of pores with nar-

Ultrastructure of the eggshell of Palaeognathae species 177 row canals being observed in the eggshell of ostriches is certainly connected with their life in the desert environment and egg protection against excessive water loss during embryogenesis. As shown by the analysis of Paleognathae eggshell structure, differences in porosity are most probably determined by birds origin. This corresponds to the findings of Kożuszek et al. (2009) who demonstrated significant differences in the number of pores depending on the colour of pheasant eggshells. In conclusion, it is possible to state that emu, ostrich and rhea eggshells have different structure. The most important interspecific differences being observed include: distribution of the cuticle, which covered the whole ostrich eggshell, while occurring mainly around pore canal orifices in rhea eggs and being rudimentary in emu eggs, differences in the breadth of palisades and vertical crystal layer and the density of mammillae. The emu eggshells were characterised by the highest percentage of vertical crystal layer and the highest density of mammillae, whereas the rhea eggshells by broadest palisades, the least number of pores per unit of surface area, with significantly narrower pore canals, was observed in the ostrich eggshells. References B o a r d R.G., Tullett S.G. (1975). The pore arrangement in the emu (Dromaius novaehollandiae) eggshell as shown by plastic models. J. Microsc., 103: 281 284. B u r t o n F.G., T u l l e t t S.G. (1983). A comparison of the effects of eggshell porosity on the respiration and growth of domestic fowl, duck and turkey embryos. Comp. Biochem. Physiol. A, 75, 2: 167 174. C h r i s t e n s e n V.L., D a v i s G.S., L u c o r e L.A. (1996). Eggshell conductance and other functional qualities of ostrich eggs. Poultry Sci., 75: 1404 1410. Heredia A., Rodriguez-Hernandez A.G., Lozano L.F., Pena-Rico M.A., Vel a z q u e z R., B a s i u k V.A., B u c i o L. (2005). Microstructure and thermal change of texture of calcite crystals in ostrich eggshell Struthio camelus. Mat. Sci. Eng. C, 25: 1 9. H o r b a ń c z u k J.O. (2002). The ostrich. Polish Academy of Sciences Institute of Genetics and Animal Breeding, Warsaw, 182 pp. Kożuszek R., Kontecka H., Nowaczewski S., Leśnierowski G., Kijowski J., R o s i ń s k i A. (2009). Quality of pheasant (Phasianus colchicus L.) eggs with different shell colour. Arch. Geflugelkd., 73, 3: 201 207. Krystianiak S., Kożuszek R., Kontecka H., Nowaczewski S. (2005). Quality and ultrastructure of eggshell and hatchability of eggs in relation to eggshell colour in pheasants. Anim. Sci. Pap. Rep., 23, 1: 5 14. M i c h a l a k K., M r ó z E. (2004). Shell microstructure of turkey hatching eggs differing in surface appearance (in Polish). Zesz. Nauk. Prz. Hod., 72, 4: 15 26. M i k h a i l o v K.E. (1997). Avian eggshells: an atlas of Scanning Electron Micrographs. The British Ornithologists Club, Occasional Publications, 3, p. 6. M i n n a a r P., M i n n a a r M. (1993). The emu farmer s hand-book. Induna Company. Groveton, Texas, 177 pp. Panheleux M., Bain M., Fernandez M.S., Morales I., Gautron J., Arias J.L., Solom o n S.E., H i n c k e M., N y s Y. (1999). Organic matrix composition and ultrastructure of eggshell: a comparative study. Brit. Poultry Sci., 40, 2: 240 252. P u c h a j d a H., P u d y s z a k K., M r ó z E., C y w a - B e n k o K. (2000). Eggshell ultrastructure and

178 D. Szczerbińska and M. Wiercińska macroscopic structure of eggs from White Kołuda and Biłgoraj geese (in Polish). Rocz. Nauk. Zoot., 27, 1: 65 78. Rosiński A., Elminowska-Wenda G., Gielecki J., Cywa-Benko K. (1993). Application of digital image analysis system in the examination of hen outer egg shell membrane (in Polish). Zesz. Nauk. Prz. Hod., 8: 36 41. S o l i m a n F.N.K., R i z k R.E., B r a k e J. (1994). Relationship between shell porosity, shell thickness, egg weight loss, and embryonic development in Japanese quail eggs. Poultry Sci., 73: 1607 1611. S o l o m o n S.E. (1997). Egg and Eggshell Quality. Iowa State University Press, Iowa, USA, 149 pp. S z c z e r b i ń s k a D. (2002). Characterisation of the reproductive performance of emu (Dromaius novaehollandiae) with particular reference to eggshell ultrastructure and its association with egg hatchability indices (in Polish). AR Szczecin, Treatises, 210. T u l l e t t S.G. (1984). The porosity of avian eggshells. Comp. Biochem. Physiol. A, 78, 1: 5 13. T y l e r C. (1953). Studies on eggshells II. A method for marking and counting pores. J. Sci. Food Agric., 4: 266 272. W i e r c i ń s k a M., S z c z e r b i ń s k a D. (2010). The characteristics of Rhea eggshell ultrastructure and hatchability (in Polish). Acta Sci. Pol. Zootech., 9, 2: 65 74. Accepted for printing 20 V 2013