LIFE HISTORY PATTERNS IN TROPICAL SOUTH AMERICAN LIZARDS

Similar documents
Ecology of the Gecko Gymnodactylus geckoides amarali in a Neotropical Savanna

Reproductive Phenology of Three Lizard Species in Costa Rica, with Comments on Seasonal Reproduction of Neotropical Lizards

Life-History Patterns of Lizards of the World

Helminths from Lizards (Reptilia: Squamata) at the Cerrado of Goiás State, Brazil

At the Water s Edge: Ecology of Semiaquatic Teiids in Brazilian Amazon

Life-History Evolution on Tropidurinae Lizards: Influence of Lineage, Body Size and Climate

Who Cares? The Evolution of Parental Care in Squamate Reptiles. Ben Halliwell Geoffrey While, Tobias Uller

Pablo A. G. de Sousa 1, 2 & Eliza M. X. Freire 1

Population dynamics of Tropidurus torquatus (Wied, 1820) (Squamata, Tropiduridae) in Southern Brazil

FLIGHT INITIATION DISTANCES OF TROPIDURUS HISPIDUS AND TROPIDURUS SEMITAENIATUS (SQUAMATA, TROPIDURIDAE)

Reproduction of a whiptail lizard (Ameivula ocellifera, Teiidae) from a coastal area in northeastern Brazil

Carlos Frederico D. Rocha 1, 2 & Davor Vrcibradic 1

Defense behavior and tail loss in the endemic lizard Eurolophosaurus nanuzae (Squamata, Tropiduridae) from southeastern Brazil

SHORT NOTES ENDOPARASITES INFECTING TWO SPECIES OF WHIPTAIL LIZARD (CNEMIDOPHORUS ABAETENSIS AND C. OCELLIFER; TEIIDAE) IN A EASTERN BRAZIL

Maturity and Other Reproductive Traits of the Kanahebi Lizard Takydromus tachydromoides (Sauria, Lacertidae) in Mito

HOW OFTEN DO LIZARDS "RUN ON EMPTY"?

Ecology of the Skink, Mabuya arajara Rebouças-Spieker, 1981, in the Araripe Plateau, Northeastern Brazil

LIFE IN THE WATER: ECOLOGY OF THE JACARERANA LIZARD, CROCODILURUS AMAZONICUS

Reproductive timing and fecundity in the Neotropical lizard Enyalius perditus (Squamata: Leiosauridae)

Western North American Naturalist

Reptilia, Squamata, Amphisbaenidae, Anops bilabialatus : Distribution extension, meristic data, and conservation.

Seasonal Shifts in Reproductive Investment of Female Northern Grass Lizards ( Takydromus septentrionalis

Lizard malaria: cost to vertebrate host's reproductive success

The Origin of Species: Lizards in an Evolutionary Tree

REPTILES OF JAMAICA. Peter Vogel Department of Life Sciences Mona Campus University of the West Indies

Head shape evolution in Tropidurinae lizards: does locomotion constrain diet?

How Often Do Lizards "Run on Empty"? Raymond B. Huey; Eric R. Pianka; Laurie J. Vitt. Ecology, Vol. 82, No. 1. (Jan., 2001), pp. 1-7.

Ovarian follicular cycle of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata: Tropiduridae) in a semiarid region of Brazil

Circumstantial evidences for mimicry of scorpions by the neotropical gecko Coleodactylus brachystoma (Squamata, Gekkonidae) in the Cerrados of central

Reproductive Strategy and Cycle of the Toad-headed Agama Phrynocephalus grumgrzimailoi (Agamidae) in Xinjiang, China

Plestiodon (=Eumeces) fasciatus Family Scincidae

Helminths of the lizard Colobosauroides cearensis (Squamata, Gymnophthalmidae) in an area of Caatinga, Northeastern Brazil

A Field Guide to the Herpetofauna on Dominica, W.I. by Brandi Quick Wildlife and Fisheries Science Texas A&M University.

Diet of the lizard Ecpleopus gaudichaudii (Gymnophthalmidae) in Atlantic Rainforest, state of Rio de Janeiro, Brazil

SEXUAL DIMORPHISM IN BODY SHAPE WITHOUT SEXUAL DIMORPHISM IN BODY SIZE IN WATER SKINKS (EULAMPRUS QUOYII)

THE HERPETOLOGICAL JOURNAL

A COMPARATIVE TEST OF ADAPTIVE HYPOTHESES FOR SEXUAL SIZE DIMORPHISM IN LIZARDS

Juxtaposition and Disturbance: Disentangling the Determinants of Lizard Community Structure

Nematodes infecting Anotosaura vanzolinia (Squamata: Gymnophthalmidae) from Caatinga, northeastern Brazil

Clutch Size in the Tropical Scincid Lizard Emoia sanfordi, a Species Endemic to the Vanuatu Archipelago

Museum. National. Proceedings. the United States SMITHSONIAN INSTITUTION WASHINGTON, D.C. Among Lizards at Belem, Para

SEXUAL DIMORPHISM IN HEAD SIZE IN THE LITTLE BROWN SKINK (SCINCELLA LATERALIS)

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF TWO SPECIES OF EGERNIA (SCINCIDAE) IN WESTERN AUSTRALIA

DECREASED SPRINT SPEED AS A COST OF REPRODUCTION IN THE LIZARD SCELOPORUS OCCIDENTALS: VARIATION AMONG POPULATIONS

DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES?

Cnemidophorus lemniscatus (Rainbow Whiptail)

8/19/2013. What is convergence? Topic 11: Convergence. What is convergence? What is convergence? What is convergence? What is convergence?

Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis

CAMBRIDGE, MASS. 26 MARCH 2010 NUMBER 519 CRUISE FORAGING OF INVASIVE CHAMELEON (CHAMAELEO JACKSONII XANTHOLOPHUS) IN HAWAI I

Local richness and distribution of the lizard fauna in natural habitat mosaics of the Brazilian Cerrado

Effect of Tail Loss on Sprint Speed and Growth in Newborn Skinks, Niveoscincus metallicus

FAT BODIES AND LIVER MASS CYCLES IN SCELOPORUS GRAMMICUS (SQUAMATA: PHRYNOSOMATIDAE) FROM SOUTHERN HIDALGO, MÉXICO

University of Canberra. This thesis is available in print format from the University of Canberra Library.

OCCASIONAL PAPERS SAM NOBLE OKLAHOMA MUSEUM OF NATURAL HISTORY

A CRITICALLY ENDANGERED NEW SPECIES OF CNEMIDOPHORUS (SQUAMATA, TEIIDAE) FROM A CERRADO ENCLAVE IN SOUTHWESTERN AMAZONIA, BRAZIL

Phenology of a Lizard Assemblage in the Dry Chaco of Argentina

Reproductive biology and sexual dimorphism in Cnemidophorus vacariensis (Sauria, Teiidae) in the grasslands of the Araucaria Plateau, southern Brazil

Mitochondrial Restriction-Site Characterization of a Brazilian Group of Eyelid-Less Gymnophthalmid Lizards

FORAGING MODE OF THE SAND LIZARD, Lacerta agilis, AT THE BEGINNING OF ITS YEARLY ACTIVITY PERIOD. Szilárd Nemes 1

and Marcelo Alves Dias 1,3 Pinto de Aguiar, Pituaçu - CEP: , Salvador, Bahia, Brazil.

Reproductive biology of Philodryas olfersii (Serpentes, Dipsadidae) in a subtropical region of Brazil

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper.

A comparison of evolutionary radiations in Mainland and West Indian Anolis lizards. Ecology

Lab VII. Tuatara, Lizards, and Amphisbaenids

Microhabitat use by species of the genera Bothrops and Crotalus (Viperidae) in semi-extensive captivity

Adaptive radiation versus intraspeci c differentiation: morphological variation in Caribbean Anolis lizards

Lygosoma laterale. Breeding Cycle in the Ground Skink, HARVARD HENRY S. Museum of Natural History DEC S. University of Kansas Lawrence

Morphological Variation in Anolis oculatus Between Dominican. Habitats

John Thompson June 09, 2016 Thompson Holdings, LLC P.O. Box 775 Springhouse, Pa

A NOVEL PATTERN OF EMBRYONIC NUTRITION IN A VIVIPAROUS REPTILE

Diet of Enyalius catenatus (Wied, 1821) (Reptilia: Leiosauridae) from Serra Bonita Reserve, Bahia, Brazil

5 Anilius scytale 6 Boa constrictor 7 Boa constrictor 8 Corallus batesii ANILIIDAE BOIDAE BOIDAE BOIDAE

Historical introduction: on widely foraging for Kalahari lizards

Herpetology Notes, volume 11: (2018) (published online on 27 September 2018)

NATURAL HISTORY NOTES

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra

Thermal adaptation of maternal and embryonic phenotypes in a geographically widespread ectotherm

Reproduction in an Introduced Population ofthe Brown Anole, Anolis sagrei, from O'ahu, Hawai'F

The Lizards of Balbina, Central Amazonia, Brazil: A qualitative Analysis of Resource Utilization.

Stuart S. Sumida Biology 342. Simplified Phylogeny of Squamate Reptiles

Helminth parasites of Phyllodactylidae and Gekkonidae lizards in a Caatinga ecological station, northeastern Brazil

Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification

For oviparous reptiles without parental

Prof. Neil. J.L. Heideman

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection

Ecological Archives E A2

Cover Page. The handle holds various files of this Leiden University dissertation.

THE EFFECTS OF MORPHOLOGY AND PERCH DIAMETER ON SPRINT PERFORMANCE OF ANOLIS LIZARDS

Reproductive cycle of the common rough-scaled lizard, Ichnotropis squamulosa (Squamata: Lacertidae) from southern Africa.

Lacerta vivipara Jacquin

Toward a Periodic Table of Niches, or Exploring the Lizard Niche Hypervolume

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF CTENOPHORUS CAUDICINCTUS (AGAMIDAE) IN WESTERN AUSTRALIA

Sympatric Ecology of Five Species of Fossorial Snakes (Elapidae) in Western Australia

Reproduction in a Nebraska Sandhills Population of the Northern Prairie Lizard Sceloporus undulatus garmani

Picking a tree: habitat use by the tree agama, Acanthocercus atricollis atricollis, in South Africa

Feeding ecology of two sympatric geckos in an urban area of Northeastern Brazil

PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024

Ecological Associations of Autopodial Osteology in Neotropical Geckos

Feeding habits of Enyalius perditus (Squamata: Leiosauridae) in an Atlantic Forest. remnant in southeastern Brazil

RESEARCH NOTE/ NOTA CIENTÍFICA

Transcription:

PÍTULO II LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Daniel O. Mesquita y Guarino R. Colli

ATRACT We use comparative methods to investigate the relative contributions of environmental conditions and historical effects upon life history aspects of tropical South American lizards. We assembled a dataset based on our sampling in 25 localities in tropical South America and additional data from 3 localities based on the literature. To investigate the roles of phylogenetic history and environmental parameters in life history variables, we used Canonical Phylogenetic Ordination CPO. Most populations from Cerrado, Amazonian Savannas, and Restinga are singlebrooded, while most populations from Amazon Forest are multiplebrooded, corroborating the hypothesis that species from seasonal regions tend to reproduce ciclically, whereas species from less seasonal regions reproduce continuously. We found no significant differences in clutch size among regions. The CPO detected a significant historical effect in life history aspects mainly in the node separating Iguania and Scleroglossa and for Cnemidophorus lizards, similar to other results reported elsewhere. Probably, the advanced age of the separation between Iguania and Scleroglossa (late Triassic), when probably most of the environmental influence occurred, are responsible for the historical significant effect encountered. Much of the life history variation exhibits today simply reflect phylogenetic conservatism, thus having an historical basis.

INTDUCTION Life history studies are essential for understanding the diversity and complexity of the vital cycles of living organisms (Roff, 992; Stearns, 992). Lizards are excellent subjects for ecological studies, because they are often abundant and easy to observe and capture. As a consequence, lizard studies have contributed enormously to the development of several areas of research, including foraging and lifehistory theory, population and community ecology, and the growing field of comparative biology (Huey et al., 983; Vitt and Pianka, 994). The number of studies on lifehistory variation has increased steadily since the classic comparative studies of Tinkle (Tinkle, 969; Tinkle et al., 970), and has developed enormously in the last decades (see Ballinger, 983; Dunham et al., 988; Shine and Schwarzkopf, 992; Shine and Charnov, 992; Stearns, 984; Vitt, 992). However, the majority of these studies was conducted either on species from temperate areas or on tropical anoles. The relevance and application of such theoretical developments to a great number of poorly known tropical species remains to be determined. For instance, the gathering and analysis of massive amounts of data indicates that both phylogenetic inertia and adaptive responses to environmental conditions seem to influence lizard lifehistory patterns (Dunham and Miles, 985; Dunham et al., 988; Vitt, 992). Therefore, several lineages restricted to tropical regions and underrepresented in lifehistory studies, such as Gymnophthalmidae, Hoplocercidae, and Leiosauridae, might possess unique attributes that can substantially affect both the generality and the predictions of lifehistory models. Conversely, tropical regions contain unique ecogeographic features and conditions that can influence lizard ecologies in ways that disagree with current lifehistory theory. Nowadays, we know that there is a great variation on lifehistory patterns of South American tropical lizards (e.g., Colli et al., 997; Colli et al., 2003; Mesquita and Colli, 2003b; Van Sluys, 993; Van Sluys, 2000; Vitt, 992; Wiederhecker et al., 2002). Lifehistory variation among populations or species can have genetic and non genetic causes (Ballinger, 983; Dunham et al., 988). Several environmental

50 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS factors can influence the life history of organisms, such as temperature, precipitation and photoperiod (Censky, 995; Wiederhecker et al., 2002), the availability of favorable sites for egg development (Andrews, 988), environmental predictability (Colli, 99; Mesquita and Colli, 2003b; Vitt and Colli, 994) and food availability (Vrcibradic and Rocha, 998b). In addition, foraging mode can affect life history traits. Vitt and Congdon (978) proposed that foraging mode, body shape, and relative clutch mass have coevolved in lizards. Actively foraging lizards rely on speed to avoid predation, have typically streamlined bodies, and clutches that comprise a relatively low proportion of total body mass. Conversely, sitandwait lizards rely on crypsis against predators, have a stocky body shape, and high relative clutch mass (Vitt and Congdon, 978). This dichotomy was corroborated by several studies (e.g., Anderson and Karasov, 98; Huey and Pianka, 98; Vitt and Price, 982; Dunham and Miles, 985). Further, habitat specialization can also constrain life history parameters. For instance, many species of anoles have fixed clutch size of a single egg, which is compensated by multiple clutches spread throughout the reproductive season, presumably related to the microhabitat used by these species (arboreal), which can limit the production of larger clutches because of the weight excess (Dunham et al., 988; Roff, 992; Stearns, 992). Likewise, the utilization of rock crevices as shelter to avoid predators has strong influences in the morphology of Tropidurus semitaeniatus, resulting in a reduced clutch size (Vitt, 98). Although environmental conditions, like precipitation, temperature, and environmental predictability no doubt influence life history traits (e.g., Vitt and Colli, 994; Censky, 995; Wiederhecker et al., 2002; Mesquita and Colli, 2003b), it is becoming increasingly clear that life history traits could also have their origins deep in evolutionary history (e.g., Dunham and Miles, 985; Dunham et al., 988; Vitt, 992). The aim of this work is to compare life history attributes of tropical South American lizards, identifying the relative contributions of environmental conditions and evolutionary history, using comparative methods combining lifehistory data with current phylogenetic hypotheses.

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 5 MATERIAL AND METHODS Figure Study sites Used data collected by the authors during ca. two decades, from 25 localities distributed in tropical South America (Fig. ). In addition, we searched the literature for the same kind of data, adding 3 more localities (Fig. ). All lizards collected by authors were deposited in Coleção Herpetológica da Universidade de Brasília (CHUNB). Reproduction We sexed lizards by dissection and direct examination of gonads. Females were considered reproductive if vitellogenic follicles or oviductal eggs were present. We regarded the simultaneous presence of enlarged vitellogenic follicles and either oviductal eggs or corpora lutea as evidence for the sequential production of more than one clutch of eggs during the year. We considered clutch size as the number of vitellogenic follicles or oviductal eggs in mature females. For each lizard, we recorded the snoutvent length (SVL) with Mitutoyo electronic calipers to the nearest 0.0 mm. The data We recorded for each population the following variables: mean SVL, mean clutch size (number of offspring per Study localities. Cuyabeno, Colombia, 2 Santander, Colombia, 3 Boa Vista, RR, 4 Porto Walter, AC, 5 GuajaráMirim,, 6 Santa Cruz da Serra,, 7 Ariquemes,, 8 Santa Barbara,, 9 Humaitá, AM, 0 Amapá, AP, Monte Alegre, PA, 2 Alter do Chão, PA, 3 CuruáUna, PA, 4 Altamira, PA, 5 Carajás, PA, 6 São Luís, MA, 7 Serra do Cachimbo, PA, 8 Chapada dos Guimarães, MT, 9 Jaru, PA, 20 Ilha do Bananal, TO, 2 Alto Araguaia, MT, 22 Barra do Garças, MT, 23 Pirenópolis, GO, 24 Minaçu, GO, 25 Jalapão, TO, 26 São Domingos, GO, 27 Dianópolis, TO, 28 Alto Paraíso, GO, 29 Alvorada do Norte, GO, 30 Paranã, TO, 3 Correntina, BA, 32 Coribe, BA, 33 Brasília, DF, 34 Cristalina, GO, 35 Paracatu, MG, 36 Mirorós,

52 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS BA, 37 Irecê, BA, 38 Petrolina, PE, 39 Exu, PE, 40 Prado, BA, 4 Buzios, RJ, 42 Barra de Maricá, RJ, 43 Ilha Grande, RJ, 44 Ubatuba, SP, 45 Caraguatatuba, SP, 46 São Sebastião, SP, 47 Bertioga, SP, 48 Alcatrazes, SP, 49 Enseada, SP, 50 Queimada Grande, SP, 5 Peruíbe, SP, 52 Valinhos, SP, 53 Campinas, SP, 54 Itirapina, SP, 55 Serra do Cipó, MG, 56 Vitória, ES, 57 Vilhena, and 58 Itatiaia, RJ. Closed symbols: data collected by authors; open symbols: data from literature. clutch for all reproductive females in the population), clutch frequency (single or multiplebrooded) and preferred habitat type. We collected life history data of tropical South American lizards from 5 populations. Data from 68 populations (45%) were collected by the authors and data the remaining 83 populations (55%) were obtained from the literature. All data collected are described in Appendix. From this data, we extracted common patterns and mean clutch size and SVL for species that were represented by more than one population (Table ). We obtained climatic data, like mean annual temperature, total annual precipitation, and annual variation in precipitation for each study locality (available in Instituto Nacional de Meteorologia, 998). To estimate annual variation in precipitation we used the coefficient of variation of total monthly precipitation. Figure 2 Individual groups used in canonical phylogenetic ordination for life history data. Phylogeny based in Estes et al. (988), Reeder et al. (2002), Frost et al. (200) and Giugliano (2003).

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 53 Statistical analyses To assess the role of evolutionary history and environmental parameters (mean annual temperature, total annual precipitation, annual variation in precipitation, preferred habitat type and biome) in life history traits, we used Canonical Phylogenetic OrdinationCPO (Giannini, 2003). CPO is a modification of Canonical Correspondence AnalysisC (Ter Braak, 986), a constrained ordination method that promotes the ordination of a set of variables in such a way that its association with a second set of variables is maximized. The significance of the association is tested via randomizations of one or both of the data sets. In our CPO, one of the matrices (Y) contained life history data (clutch size and clutch condition) measured over the lizard populations, whereas the second matrix (X) consisted of a tree matrix that contained all monophyletic groups (Fig. 2). Each coded separately as a binary variable, and environmental parameters (mean annual temperature, total annual precipitation, annual variation in precipitation, preferred habitat type and biome). The analysis thus consisted of finding the subset of X that best explained the variation in Y, using C coupled with Monte Carlo permutations. Because SVL does influence lifehistory parameters, like clutch size (e.g., Colli, 99; Vitt and Zani, 996a; Vitt and Zani, 996b; Colli et al., 2003; Mesquita and Colli, 2003a), we used mean SVL as a covariate. We performed CPO in NOCO 4.5 for Windows, using the following parameters: symmetric scaling, biplot scaling, manual selection of environmental variables (monophyletic groups and environmental Table Lizard Species SVL Clutch size Clutch condition Gekkonidae Coleodactylus meridionalis Gonatodes humeralis Gymnodactylus geckoides Phyllopezus pollicaris Thecadactylus rapicauda Gymnophthalmidae Colobosaura modesta Micrablepharus maximiliani 24.78 (2) 36.40 () 40.7 (8) 76.0 (2) 09.0 (2) 45.35 (3) 39.04 (5).00 (2).00 (2).72 (8) (2).00 (2) (3) 2.20 (5) Fixed Fixed Fixed Fixed Fixed

54 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Continuation... Polychrotidae Anolis meridionalis Polychrus acutirostris Scincidae Mabuya caissara Mabuya frenata Mabuya guaporicola Mabuya heathi Mabuya macrorhyncha Mabuya nigropunctata Teiidae Cnemidophorus cryptus Cnemidophorus lemniscatus Cnemidophorus mumbuca Kentropyx striata Polychrotidae Anolis meridionalis Polychrus acutirostris Tropiduridae Tropidurus hispidus Tropidurus itambere Tropidurus cf oreadicus 54.92 (2) 09.34 (3) 7.58 () 65.96 (4) 65.27 (3) 63.30 (2) 66.80 () 84.5 (5) 4.77 (4) 59.9 (3) 58.5 (4) 50.07 (2) 59.07 (9) 93.45 (2) 54.92 (2) 09.34 (3) 8.9 (3) 66.65 (4) 7.72 ().54 (2) 5.77 (3) 4.85 (4) 4.05 (4) 4.08 (3) 4.00 (2) 2.78 (7) 4.26 (5).46 (4).49 (3).67 (4).00 (2) 2. (9) 5.30 (2).54 (2) 5.77 (3) 5.82 (3) 3.5 (4) 4.32 () Summary of life history data of Tropical South American lizard species. Note: Clutch sizes (in parenthesis) are relative to populations. Fixed

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 55 parameters), 9,999 permutations, and unrestricted permutations. We carried out other statistical analyses using SYSTAT.0 for Windows, with a significance level of 5% to reject null hypotheses. Throughout the text, means appear ± SD. SULTS In 3% of studied populations clutch size was fixed (Table ). Apparently, similar numbers of populations of tropical South American lizards are single brooded or multiplebrooded (Table 2). Considering populations per biome, most populations from Cerrado, Amazonian Savannas, and Restinga were singlebrooded, while most populations from Amazon Forest were multiplebrooded (Table 2; Appendix ). We found no significant difference in clutch size among biomes, independently of SVL (ANCOVA F 4,,60 =.450, P = 0.538; Adjusted Means Amazon Forest = 2.74 ± 2.03, Caatinga = 2.99 ±.77, Cerrado = 3.35 ±.33, Restinga = 3.4 ±.0, and Amazonian Savannas = 3.7 ±.87). The CPO revealed a significant phylogenetic effect on life history aspects at the node separating Iguania and Scleroglossa, which accounted for 22% of total life history variation (Table 3). In addition, historical significant effects were detected in the clade containing the Cnemidophorus species from Amazonian Savannas (E ), the clade with Cnemidophorus from central and eastern Brazil (I ), in Autarchoglossa (M ), Tropidurinae and Liolaeminae (E), in the node separating Teioidea and Anguidae (L ), in Tropidurinae (F), and in Tropidurinae without Uracentron (G), accounting respectively 8, 4, 4, 2, 2, 2, and 0% of the life history variation (Table 3). No significant phylogenetic effects were detected in any other clade or in any environmental parameter (Table 3), indicating that life history parameters are shaped primarily by historical factors. Table 2 Biome All biomes Amazon Forest Singlebrooded 52.38% (55) 0.53% (2) Multiplebrooded 47.62% (50) 89.47% (7) Comparison x 2 = 0.238; df = ; P = 0.626 x 2 =.842; df = ; P = 0.00 Amazonian Savannas Caatinga Cerrado Restinga 6.54% (8) 53.33% (8) 64.58% (3) 62.50% (5) 38.46% (5) 46.67% (7) 35.42% (7) 37.50% (3) x 2 = 0.692; df = ; P = 0.405 x 2 = 0.067; df = ; P = 0.796 x 2 = 4.083; df = ; P = 0.043 x 2 = 0.500; df = ; P = 0.480 Percentages of populations of South American Tropical lizards per biome according with clutch frequency. Sample sizes are in parenthesis.

LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS 56 J C K J L M A Preferred habitat type X C O S Mean annual temperature T 0.004 0.003 0.003 0.002 0.002 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00 6.00 6.00 4.00 4.00 4.00 3.056 2.395 2.390.864.809.452.20.8.040 0.972 0.945 0.942 0.88 0.836 0.0856 0.63 0.30 0.803 0.862 0.2275 0.3590 0.2954 0.4023 0.3232 0.354 0.3389 0.3574 0.3675 Group(s) D/R E I M E L F G H Z I B K Variation 0.0 0.009 0.007 0.007 0.006 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.004 Variation % 2 8.00 4.00 4.00 0.00 0.00 8.00 8.00 8.00 8.00 F 9.42 6.8 5.804 5.545 4.774 4.659 4.385 4.50 3.803 3.396 3.3 3.209 3.098 P 0.0023 0.0056 0.065 0.0204 0.0287 0.034 0.0394 0.0444 0.0520 0.0667 0.0724 0.066 0.0770 Table 3

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 57 Continuation... V W Biome D P N B G H Annual variation in precipitation Y Q U A F Total annual precipitation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.77 0.749 0.670 0.638 0.546 0.446 0.295 0.242 0.205 0.67 0.39 0.089 0.058 0.054 0.06 0.479 0.457 0.3849 0.4205 0.4295 0.4726 0.5227 0.5899 0.6279 0.6489 0.6782 0.728 0.7756 0.8695 0.8277 0.900 Historical effects on the life history parameters South American Tropical lizards. Results of Monte Carlo permutation tests of individual groups (defined in Figs. 2) and environmental variables, for the Y matrix of life history data, with mean SVL as a covariate. Percentage of the variation explained (relative to total unconstrained variation), and F and P values for each variable are given (9999 permutations were used) for each main matrix. DISCUSSION Reproductive parameters are often related to environmental factors that limit reproduction (Tinkle et al., 970; Dunham et al., 988). In temperate regions, the main limiting factor is the rigorous winter, being the reproductive timing and the clutch size affected (McCoy and Hoddenbach, 966; Pianka, 970). In tropical regions, the reproduction is also affected by climatic variables. Some species reproduce continuously with usually several clutches per reproductive season, where the precipitation is better distributed throughout the year (e.g., Amazon Forest) or is unpredictable (e.g., Caatinga), and reproduce cyclically with only one or a few clutches per reproductive season, in regions with seasonal climate (e.g., Cerrado and Amazonian Savannas) (see Vitt, 982a; Vitt and Blackburn, 983; Vitt, 983; Vitt and Goldberg, 983; Colli, 99; Vitt and Colli, 994; Wiederhecker et al., 2002; Colli et

58 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS al., 2003; Mesquita and Colli, 2003b). Apparently, in temperate regions reproduction is affected by a coldwarm seasonality; whereas in tropical regions by a wetdry seasonality. The seasonality in reproduction influences directly the clutch sizes. The production of bigger clutches, distributed in only one or a few hatches, in populations that live in regions with seasonal climate appear to be an adaptation to concentrate the reproductive effort in a short period, differently of what occur in unpredictable environments and in places where the precipitation is well distributed throughout the year, where generally the species reproduce continuously with smaller clutches distributed in several hatches (Colli, 99; Vitt and Colli, 994; Colli et al., 2003; Mesquita and Colli, 2003b). This was reported for several species. For example, reproduce continuously with smaller clutches in the Caatinga and Amazon Forest, and seasonally with bigger clutches in Cerrado (Vitt, 982a; Colli, 99; Vitt and Colli, 994), and Cnemidophorus ocellifer and Gymnodactylus geckoides reproduce seasonally with bigger clutches in Cerrado and continuously with smaller clutches in the Caatinga (Vitt and Goldberg, 983; Vitt, 983; Colli et al., 2003; Mesquita and Colli, 2003b). Our results partially support this tendency. We showed that most lizard populations from Cerrado, Restinga and Amazonian Savannas (seasonal biomes) are singlebrooded and most populations from Amazon Forest are multiplebrooded, but our results for Caatinga contradict this hypothesis. However, data from a very well studied Caatinga site in Northeast Brazil, Pernambuco State, clearly reveal this tendency. From 3 species from this area, nine shows prolonged reproductive period and are multiplebrooded (Vitt, 992). Regarding the clutch size, even which our results showed the tendency of clutch sizes of lizards from Cerrado, Restinga and Amazonian Savannas being bigger than from Amazon Forest and Caatinga, the comparisons were not significant. However, studies comparing reproduction aspects from the same species among biomes, like, Cnemidophorus ocellifer and Gymnodactylus geckoides from Caatinga and Cerrado, confirm this trend (Colli, 99; Vitt and Colli, 994; Colli et al., 2003; Mesquita and Colli, 2003b). Several Anoline lizards are characterized by a clutch size of a single egg as a consequence of an extremely low relation between clutch and body weight, which is partly compensated by multiple broods (Andrews and Rand, 974). A characteristic of the genus Anolis is the possession of expanded subdigital lamellae or adhesive toe pads. These are adaptively associated with arboreal habitats in most species (Andrews and Rand, 974; Roff, 992). The number of subdigital lamellas is positively correlated with the degree of arboreality in Anolis species; the loading capacity of a female anole may limit the amount of additional weight she can

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 59 carry and still climb effectively (Collette, 96). In contrast, arboreal lizard species without toe pads (e.g., Polychrus, Iguana and Chamaleo) have a large clutch size (see Vitt and Lacher, 98; Campos, 2004). Thus, the low clutch number in some anoles is explained by their climbing habitats (Andrews and Rand, 974; Roff, 992). Also, the use of crevices to avoid predators could also play an important role in the evolution of body and egg morphology and clutch size in the lizard Tropidurus semitaeniatus (Vitt, 98). Unlike most Tropidurus species, which lay hatches of 38 eggs (, Vitt, 99c; Van Sluys, 993; Vitt, 993; Van Sluys et al., 2002; Wiederhecker et al., 2002), T. semitaeniatus lay only two elongated eggs as an adaptation for its habit (Vitt, 993). In addition, an unrelated genus with crevicedwelling habits, the African Cordylidae Platysaurus showed similar modifications to those in T. semitaeniatus (Roff, 992). However, our results do not corroborate this hypothesis. The CPO analysis indicated none significant effect of preferred habitat type on life history traits, accounting only 2% of the total variation. We have no doubt about the constraining of life history traits by mechanical factors imposed by habitat type; nevertheless, this constrains appear to be uncommon, in whole South America, only T. semitaeniatus appear to have this trait. Also, the anoles species used in the analysis (Anolis meridionalis and A. nitens), are not arboreal and probably do not suffer this constrains. The CPO detected a significant historical effect in life history aspects mainly in the node separating Iguania Scleroglossa and for the Cnemidophorus lizards. Similar results, based on dietary shifts, were reported elsewhere. In a study with diet data of 84 lizard species of four families from four continents reveal significant historic effects on dietary shifts, being the most striking divergence in the node separating Iguania Scleroglossa (Vitt et al., 2003; Vitt and Pianka, 2005). The authors suggested the hypothesis that ancient events in squamate cladogenesis, rather than present day interactions, caused dietary shifts in these major clades, which promoted that some lizards gained access to new resources, influencing much of the biodiversity observed today (Vitt et al., 2003; Vitt and Pianka, 2005). Even that the environmental variables influenced and still influence in life history traits of lizards, the separation between Iguania and Scleroglossa, when probably most of this influence occurred, was long ago in the evolutionary history of these clades (late Triassic). In addition, much of the life history variation exhibit today simply reflect phylogenetic conservatism, thus having an historical basis (see Harvey and Pagel, 99; Brooks and McLennan, 993). Regarding the historical effects encountered in Cnemidophorus lizards, the genus occurs from Argentina to north of Central America (Zug et al., 200; Reeder et al., 2002). In spite of their wide distribution, they exhibit similar

60 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS ecological traits along them (see Pianka, 970; Vitt et al., 997b; Mesquita and Colli, 2003b). Studies with South American Cnemidophorus, show that their ecological traits are very conservative, varying a little, even among drastically different biomes, which is an indication that these parameters have an historical basis (Vitt et al., 997b; Mesquita and Colli, 2003b), corroborating with the results encountered in the present work. Although there are some analyses to examine the historical influences on ecological aspects, the use of phylogenetically based analyses is in its infancy, and the nature of forces acting on species remains unclear. Previous studies have suggested that ecological aspects have both historical and non historical basis (Ballinger, 983; Dunham et al., 988; Vitt and Colli, 994; Mesquita and Colli, 2003b). In addition, observations on ecological characteristics of species and the use of great amount of data, especially involving a significant portion of clades (global ecology) are essential to elucidate the origins of life history variations. LITERATU CITED Anderson, R. A. and W. H. Karasov. (98). Contrasts in energy intake and expenditure in sitandwait and widely foraging lizards. Oecologia. 49: 6772. Andrews, R. and A. S. Rand. (974). Reproductive effort in anoline lizards. Ecology. 55: 37327. Andrews, R. M. (988). Demographic correlates of variable egg survival for a tropical lizard. Oecologia (Berlin). 76: 376382. Anjos, I. A., M. C. Kieferiefer and R. J. Sawaya. (2002). Kentropyx paulensis (NCN). Reproduction. Herp. Rev. 33: 52. Araújo, A. F. B. (99). Structure of a white sanddune lizard community of coastal Brazil. Rev. Bras. Biol. 5: 857865. Ballinger, R. E. (983). Lifehistory variations. In: Huey R. B., E. R. Pianka, and T. W. Schoener (eds.). Lizard Ecology: Studies of a Model Organism. Harvard University Press, Cambridge, Massachusetts. Pages 24260. Brooks, D. R. and D. A. McLennan. (993). Historical ecology: examining phylogenetic components of community evolution. In: Ricklefs R. E. and D. Schluter (eds.). Species Diversity in Ecological Communities, Historical and Geographical Perspectives. The University of Chicago Press, Chicago, Illinois. Pages 267280. Campos, Z. (2004). Iguana iguana (sinimbu, green iguana). Reproduction. Herp. Rev. 35: 6969. Censky, E. J. (995). Reproduction in two Lesser Antillean populations of Ameiva plei (Teiidae). J. Herpetol. 29: 553560. Collette, B. B. (96). Correlations between ecology and morphology in anoline lizards from Havana, Cuba and southern Florida. Bull. Mus. Comp. Zool. 25: 3762. Colli, G. R. (989). O ciclo reprodutivo e o dimorfismo sexual em (Sauria, Teiidae) nos cerrados do Distrito Federal. In: Departamento de Ecologia. Univer

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 6 sidade de Brasília, Brasília, Distrito Federal. Page 75. Colli, G. R. (99). Reproductive ecology of (Sauria: Teiidae) in the cerrado of central Brazil. Copeia. 99: 00202. Colli, G. R., D. O. Mesquita, P. V. V. Rodrigues and K. Kitayama. (2003). The ecology of the gecko Gymnodactylus geckoides amarali in a neotropical savanna. J. Herpetol. 37: 694706. Colli, G. R., A. K. Péres, Jr. and M. G. Zatz. (997). Foraging mode and reproductive seasonality in tropical lizards. J. Herpetol. 3: 490499. Dunham, A. E. and D. B. Miles. (985). Patterns of covariation in life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. Am. Nat. 26: 23257. Dunham, A. E., D. B. Miles and D. N. Reznick. (988). Life history patterns in squamate reptiles. In: Gans C. and R. B. Huey (eds.). Biology of the Reptilia. Vol. 6, Ecology B. Defense and Life History. Alan R. Liss, Inc., New York. Pages 44522. Estes, R., K. de Queiroz and J. Gauthier. (988). Phylogenetic relationships within Squamata. In: Estes R. and G. Pregill (eds.). Phylogenetic Relationships of the Lizard Families. Essays Commemorating Charles L. Camp. Stanford University Press, Stanford, California. Pages 928. Faria, R. G. (200). Ecologia de duas espécies simpátricas de Tropiduridae (Tropidurus itambere e Tropidurus oreadicus) no Cerrado do Brasil Central. In: Departamento de Ecologia. Universidade de Brasília, Brasília, Distrito Federal. Frost, D. R., M. T. Rodrigues, T. Grant and T. A. Titus. (200). Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): direct optimization, descriptive, efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phylogenet. Evol. 2: 35237. Galdino, C. A. B., V. B. Assis, M. C. Kiefer and M. Van Sluys. (2003). Reproduction and fat body cycle of Eurolophosaurus nanuzae (Sauria; Tropiduridae) from a seasonal montane habitat of southeastern Brazil. J. Herpetol. 37: 687694. Giannini, N. P. (2003). Canonical phylogenetic ordination. Syst. Biol. 52: 684695. Giugliano, L. G. (2003). Variação aloenzimática e sistemática de uma nova espécie de Cnemidophorus (Reptilia, Teiidae) de Rondônia. In: Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo, Ribeirão Preto, São Paulo. Page 57. Harvey, P. H. and M. D. Pagel. (99). The Comparative Method in Evolutionary Biology. Oxford Univ. Press, New York. Huey, R. B. and E. R. Pianka (98). Ecological consequences of foraging mode. Ecology. 62: 99999. Huey, R. B., E. R. Pianka and A. Schoener. (983). Lizard Ecology: Studies of a Model Organism. Harvard University Press, Cambridge, Mass. Instituto Nacional de Meteorologia. (998). Normais Climatológicas. Ministério da Agricultura, Instituto Nacional de Meteorologia, Rio de Janeiro. Luedemann, G., G. R. Colli and R. A. Brandão. (997). Polychrus acutirostris (Bichopreguiça). Reproduction.

62 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Herp. Rev. 28: 43. McCoy, C. J. and G. A. Hoddenbach. (966). Geographic variation ovarian cycles and clutch size in Cnemidophorus tigris (Teiidae). Science. 67672. Menezes, V. A., C. F. D. Rocha and G. F. Dutra. (2004). Reproductive ecology of the partenogenetic whiptail lizard Cnemidophorus nativo in a Brazilian restinga habitat. J. Herpetol. 38: 280282. Mesquita, D. O. (200). Uma análise comparativa da ecologia de populações do lagarto Cnemidophorus (Squamata: Teiidae) do Brasil. In: Departamento de Ecologia. Universidade de Brasília, Brasília, Distrito Federal. Page 73. Mesquita, D. O. and G. R. Colli. (2003a). The ecology of Cnemidophorus ocellifer (Squamata, Teiidae) in a neotropical savanna. J. Herpetol. 37: 498509. Mesquita, D. O. and G. R. Colli. (2003b). Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003: 285298. Mesquita, D. O., A. K. P. Jr, G. H. C. Vieira and G. R. Colli. (2000). Natural History: Mabuya guaporicola. Herp. Rev. 3: 24024. Miranda, J. P. and G. V. Andrade. (2003). Seasonality in diet, perch use, and reproduction of the gecko Gonatodes humeralis from eastern Brazilian Amazon. J. Herpetol. 37: 433438. Mojica, B. H., B. H. Rey, V. H. Serrano and M. P. Ramírez Pinilla. (2003). Annual reproductive activity of a population of Cnemidophorus lemniscatus (Squamata: Teiidae). J. Herpetol. 37: 3542. Pianka, E. R. (970). Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. Ecology. 5: 703720. Pinto, A. C. S. (999a). Dimorfismo sexual e comportamento social do lagarto Tropidurus torquatus (Squamata, Tropiduridae) em uma área de Cerrado no Distrito Federal. In: Departamento de Ecologia. Universidade de Brasília, Brasília, Distrito Federal. Pinto, M. G. M. (999b). Ecologia das espécies de lagartos simpátricos Mabuya nigropunctata e Mabuya frenata (Scincidae), no Cerrado de Brasília e Serra da Mesa (GO). In: Departamento de Ecologia. Universidade de Brasília, Brasília, Distrito Federal. Page 0. Reeder, T. W., C. J. Cole and H. C. Dessauer. (2002). Phylogenetic relationships of Whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am. Mus. Novit. 3365: 6. Rocha, C. F. D. (992). Reproductive and fat body cycles of the tropical sand lizard (Liolaemus lutzae) of Southeastern Brazil. J. Herpetol. 26: 723. Rocha, C. F. D. and D. Vrcibradic. (996). Thermal ecology of two sympatric skinks (Mabuya macrorhyncha and Mabuya agilis) in a brazilian restinga habitat. Aust. J. Ecol. 2: 03. Rocha, C. F. D. and D. Vrcibradic. (999). Reproductive traits of two sympatric viviparous skinks (Mabuya macrorhyncha and Mabuya agilis) in a brazilian restinga habitat. Herp. J. 9: 4353. Roff, D. A. (992). The Evolution of Life Histories:

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 63 Theory and Analysis. Chapman and Hall, London. Shine, R. and E. L. Charnov. (992). Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 39: 257269. Shine, R. and L. Schwarzkopf. (992). The evolution of reproductive effort in lizards and snakes. Evolution. 46: 6275. Stearns, S. C. (984). The effects of size and phylogeny on patterns of covariation in the life history traits of lizards and snakes. Am. Nat. 23: 5672. Stearns, S. C. (992). The Evolution of Life Histories. Oxford University Press, Oxford. Ter Braak, C. J. F. (986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology. 76: 6779. Tinkle, D. W. (969). The concept of reproductive effort and its relation to the evolution of life histories of lizards. Am. Nat. 03: 5056. Tinkle, D. W., H. M. Wilbur and S. G. Tilley. (970). Evolutionary strategies in lizard reproduction. Evolution. 24: 5574. Van Sluys, M. (993). The reproductive cycle of Tropidurus itambere (Sauria: Tropiduridae) in Southeastern Brazil. J. Herpetol. 27: 2832. Van Sluys, M. (2000). Population dynamics of the saxicolous lizard Tropidurus itambere (Tropiduridae) in a seasonal habitat of Southeastern Brazil. Herpetologica. 56: 5562. Van Sluys, M., V. M. Ferreira and C. F. D. Rocha. (2004). Natural history of the lizard Enyalius brasiliensis (Lesson, 828) (Leiosauridae) from an Atlantic Forest of southeastern Brazil. Braz. J. Biol. 64: 353356. Van Sluys, M., H. M. A. Mendes, V. B. Assis and M. C. Kiefer. (2002). Reproduction of Tropidurus montanus Rodrigues, 987 (Tropiduridae), a lizard from a seasonal habitat of southeastern Brazil, and a comparison with other Tropidurus species. Herp. J. 2: 8997. Vanzolini, P. E. and R. RebouçasSpieker. (976). Distribution and differentiation of animals along the coast and on continental islands of the state of São Paulo, Brazil. 3. Reproductive differences between and within Mabuya caissara and M. macrorhyncha (Sauria: Scincidae). Pap. Avulsos Zool. 29: 9509. Vieira, G. H. C., D. O. Mesquita, A. K. P. Jr, K. Kitayama and G. R. Colli. (2000). Natural History: Micrablepharus atticolus. Herp. Rev. 3: 24242. Vitt, L. J. (98). Lizard reproduction: habitat specificity and constraints on relative clutch mass. Am. Nat. 7: 50654. Vitt, L. J. (982a). Reproductive tactics of (Lacertilia: Teiidae) in a seasonally fluctuating tropical habitat. Can. J. Zool. 60: 33320. Vitt, L. J. (982b). Sexual dimorphism and reproduction in the microteiid lizard, Gymnophthalmus multiscutatus. J. Herpetol. 6: 325329. Vitt, L. J. (983). Reproduction and sexual dimorphism in the tropical teiid lizard Cnemidophorus ocellifer. Copeia. 983: 359366. Vitt, L. J. (985). On the biology of the little known lizard, Diploglossus lessonae in Northeast Brazil. Pap. Avulsos Zool. 36: 6976.

64 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Vitt, L. J. (986). Reproductive tactics of sympatric gekkonid lizards with a comment on the evolutionary and ecological consequences of invariant clutch size. Copeia. 986: 773786. Vitt, L. J. (99a). Ecology and life history of the scansorial arboreal lizard Plica plica (Iguanidae) in Amazonian Brazil. Can. J. Zool. 69: 5045. Vitt, L. J. (99b). Ecology and life history of the wideforaging lizard Kentropyx calcarata (Teiidae) in Amazonian Brazil. Can. J. Zool. 69: 2792799. Vitt, L. J. (99c). An introduction to the ecology of Cerrado lizards. J. Herpetol. 25: 7990. Vitt, L. J. (992). Diversity of reproductive strategies among brazilian lizards and snakes: the significance of lineage and adaptation. In: Hamlett W. C. (ed.). Reproductive Biology of South American Vertebrates. SpringerVerlag, New York. Pages 3549. Vitt, L. J. (993). Ecology of isolated openformation Tropidurus (Reptilia: Tropiduridae) in Amazonian lowland rain forest. Can. J. Zool. 7: 23702390. Vitt, L. J. (995). The ecology of tropical lizards in the Caatinga of northeast Brazil. Occas. Pap. Oklahoma Mus. Nat. Hist. : 29. Vitt, L. J. and T. C. S. ÁvilaPires. (998). Ecology of two sympatric species of Neusticurus (Sauria: Gymnophthalmidae) in the Western Amazon of Brazil. Copeia. 998: 570582. Vitt, L. J., T. C. S. ÁvilaPires and P. A. Zani. (996). Observations on the ecology of the rare amazonian lizard, Enyalius leechii (Polychrotidae). Herpetol. Nat. Hist. 4: 7782. Vitt, L. J. and D. G. Blackburn. (983). Reproduction in the lizard Mabuya heathi (Scincidae): a commentary on viviparity in new world Mabuya. Can. J. Zool. 6: 27982806. Vitt, L. J. and D. G. Blackburn. (99). Ecology and life history of the viviparous lizard Mabuya bistriata (Scincidae) in the Brazilian Amazon. Copeia. 99: 96927. Vitt, L. J. and J. P. Caldwell. (993). Ecological observations on Cerrado lizards in Rondônia, Brazil. J. Herpetol. 27: 4652. Vitt, L. J. and C. M. Carvalho. (992). Life in the trees: the ecology and lifehistory of Kentropyx striatus (Teiidae) in the Lavrado area of Roraima, Brazil, with comments on tropical teiid life histories. Can. J. Zool. 70: 9952006. Vitt, L. J. and G. R. Colli. (994). Geographical ecology of a neotropical lizard: (Teiidae) in Brazil. Can. J. Zool. 72: 9862008. Vitt, L. J. and J. D. Congdon. (978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Am. Nat. 2: 595608. Vitt, L. J. and S. R. Goldberg. (983). Reproductive ecology of two tropical iguanid lizards: Tropidurus torquatus and Platynotus semitaeniatus. Copeia. 983: 34. Vitt, L. J. and T. E. Lacher, Jr. (98). Behaviour, habitat, diet and reproduction of the iguanid lizard Polychrus

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 65 acutirostris in the Caatinga of Northeastern Brazil. Herpetologica. 37: 5363. Vitt, L. J. and E. R. Pianka. (994). Lizard Ecology. Princeton University Press, Princeton. Vitt, L. J. and E. R. Pianka. (2005). Deep history impacts presentday ecology and biodiversity. Proc. Natl. Acad. Sci. 02: 7877788. Vitt, L. J., E. R. Pianka, W. E. Cooper, Jr. and K. Schwenk. (2003). History and the global ecology of squamate reptiles. Am. Nat. 62: 4460. Vitt, L. J., and H. J. Price. (982). Ecological and evolutionary determinants of relative clutch mass in lizards. Herpetologica. 38: 237255. Vitt, L. J., R. A. Souza, S. S. Sartorius, T. C. d. AvillaPires and M. C. Espósito. (2000). Comparative ecology of sympatric Gonatodes (Squamata: Gekkonidae) in western Amazon of Brazil. Copeia. 2000: 8395. Vitt, L. J. and P. A. Zani. (996a). Ecology of the elusive tropical lizard Tropidurus [=Uracentron] flaviceps (Tropiduridae) in lowland rain forest of Ecuador. Herpetologica. 52: 232. Vitt, L. J. and P. A. Zani. (996b). Ecology of the lizard Ameiva festiva (Teiidae) in Southeastern Nicaragua. J. Herpetol. 30: 07. Vitt, L. J. and P. A. Zani. (997). Ecology of the nocturnal lizard Thecadactylus rapicauda (Sauria: Gekkonidae) in the Amazon region. Herpetologica. 53: 6579. Vitt, L. J., P. A. Zani and T. C. S. ÁvilaPires. (997a). Ecology of the arboreal tropidurid lizard Tropidurus (= Plica) umbra in the Amazon region. Can. J. Zool. 75: 876882. Vitt, L. J., P. A. Zani, J. P. Caldwell, M. C. D. Araujo and W. E. Magnusson. (997b). Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia. 997: 745757. Vitt, L. J., P. A. Zani, J. P. Caldwell and E. O. Carrillo. (995). Ecology of the lizard Kentropyx pelviceps (Sauria: Teiidae) in lowland rain forest of Ecuador. Can. J. Zool. 73: 69703. Vrcibradic, D., M. CunhaBarros and C. F. D. Rocha. (2004). Ecological observations on Mabuya dorsivittata (Squamata; Scincidae) from a high latitude habitat in SouthEastern Brazil. Herp. J. 4: 092. Vrcibradic, D. and C. F. D. Rocha. (998a). The ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil. J. Herpetol. 32: 229237. Vrcibradic, D. and C. F. D. Rocha. (998b). Reproductive cycle and lifehistory traits of the viviparous skink Mabuya frenata in Southeastern Brazil. Copeia. 998: 6269. Wiederhecker, H. C., A. C. S. Pinto and G. R. Colli. (2002). Reproductive ecology of Tropidurus torquatus (Squamata: Tropiduridae) in the highly seasonal Cerrado biome of central Brazil. J. Herpetol. 36: 829. Zug, G. R., L. J. Vitt and J. P. Caldwell. (200). Herpetology: an Introductory Biology of Amphibians and Reptiles. Academic Press, San Diego, California.

66 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Appendix LS B POP SVL CS CF PHT F Scleroglossa Anguidae Diploglossus lessonae 39 4.4 (28) 3.33 (9) SF (Vitt, 985) Gekkonidae Coleodactylus meridionalis 30 23.6 (7).00 () LL Coleodactylus meridionalis 46 26.40 (25).00 (4) LL Gonatodes humeralis 5 36.40 (7).00 (7) + TR (Vitt et al., 2000) Gonatodes humeralis 6.00 (4) + TR (Miranda and Andrade, 2003) Gonatodes hasemani 5 40.0 ().00 () + LG (Vitt et al., 2000) Gymnodactylus geckoides 30 4.98 (85).67 (6) TN Gymnodactylus geckoides 46 39.67 (75).75 (4) UL Gymnodactylus geckoides 39.55 (370).65 (32) UR (Colli et al., 2003) Gymnodactylus geckoides 25 47.7 (07) () TN Gymnodactylus geckoides 38 37.49 (5).00 (2) UR Gymnodactylus geckoides 23 38.29 (6) () UR Gymnodactylus geckoides 24 39.74 (287).7 (28) UR Gymnodactylus geckoides 39 4.8 (9) (47) + UR (Vitt, 986; Vitt, 995) Lygodactylus klugei 39 28.85 (355) (94) + TR (Vitt, 986; Vitt, 995) Hemidactylus mabouia 39 57.90 (29) (2) B (Vitt, 986; Vitt, 995) Phyllopezus pollicaris 39 75.25 (70) (2) + (Vitt, 986; Vitt, 995) Phyllopezus pollicaris 46 76.95 (9) (3) Thecadactylus rapicauda 3 05.90 (29).00 (7) + B (Vitt and Zani, 997) Thecadactylus rapicauda 2.30 (24).00 (7) + TR (Vitt and Zani, 997) Gymnophthalmidae Bachia bresslaui 35 90.67 (2) () LL Colobosaura modesta 35 47.43 (4) (5) LL Colobosaura modesta 46 5.33 (6) () LL

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 67 Continuation... Colobosaura modesta 25 37.30 (20) (3) + LL Micrablepharus atticolus 20 38.05 (45).90 (3) + (Vieira et al., 2000) Micrablepharus maximiliani 29 36. (27) (4) TN Micrablepharus maximiliani 7 42.67 (3) () Micrablepharus maximiliani 46 40.64 (4) 3.00 (4) + LL Micrablepharus maximiliani 25 38.77 (48) () Micrablepharus maximiliani 2 37.00 (6) (6) (Vitt, 99c) Neusticurus ecpleopus 4 60.75 (4) (8) + M (Vitt and ÁvilaPires, 998) Neusticurus juruazensis 4 33.27 (26) () + LL (Vitt and ÁvilaPires, 998) Vanzosaura rubricauda 39 34.83 (2) (45) (Vitt, 982b; Vitt, 995) Scincidae Mabuya agilis 42 66.80 (4) 3.50 (8) LL (Rocha and Vrcibradic, 999; Rocha and Vrcibradic, 996) Mabuya caissara 26 4.00 (9) (Vanzolini and RebouçasSpieker, 976) Mabuya caissara 45 5.60 (4) (Vanzolini and RebouçasSpieker, 976) Mabuya caissara 44 7.58 (6) 5.00 (7) (Vanzolini and RebouçasSpieker, 976) Mabuya caissara 47 4.80 (2) (Vanzolini and RebouçasSpieker, 976) Mabuya frenata 33 60.06 (264) 3.50 (5) (Pinto, 999b) Mabuya frenata 24 66.42 (206) 3.80 (3) + (Pinto, 999b) Mabuya frenata 52 7.95 (233) 4.90 (3) (Vrcibradic and Rocha, 998a) Mabuya frenata 2 65.40 (2) 4.00 (2) TR (Vitt, 99c) Mabuya dorsivittata MF 54.60 (6) 3.20 (5) (Vrcibradic et al., 2004) Mabuya guaporicola 35 76.00 () 4.00 () SS Mabuya guaporicola 30 60.80 (0) 4.00 (3) SS Mabuya guaporicola 59.00 (5) 4.25 (4) SS (Mesquita et al., 2000) Mabuya heathi 39 67.05 (272) 5.00 (3) (Vitt and Blackburn, 983) Mabuya cf heathi 25 59.54 (20) 3.00 (0) Mabuya macrorhyncha 42 66.80 (98) 2.66 (38) + BR (Rocha and Vrcibradic, 999) Mabuya macrorhyncha 4 3.30 (35) BR (Vanzolini and RebouçasSpieker, 976) Mabuya macrorhyncha 49 2.40 () BR (Vanzolini and RebouçasSpieker, 976)

68 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Continuation... Mabuya macrorhyncha 50 2.20 (5) BR (Vanzolini and RebouçasSpieker, 976) Mabuya macrorhyncha 5 3.20 (2) BR (Vanzolini and RebouçasSpieker, 976) Mabuya macrorhyncha 56 3.40 (5) BR (Vanzolini and RebouçasSpieker, 976) Mabuya macrorhyncha 48 2.33 (3) BR (Vanzolini and RebouçasSpieker, 976) Mabuya nigropunctata 82.30 (0) 3.00 (2) Mabuya nigropunctata 25 80.7 (6) 4.00 (4) Mabuya nigropunctata 33 80.40 (338) 5.30 (9) (Pinto, 999b) Mabuya nigropunctata 24 88.7 (307) 4.30 (97) (Pinto, 999b) Mabuya nigropunctata 89.5 (43) 4.70 (94) LG (Vitt and Blackburn, 99) Mabuya sp. 46 55.79 (35) 3.54 (3) LL Teiidae 7 85. (5) 2.60 (5) 39 35.0 (36) 5.65 (06) + (Vitt, 982a) 84.86 (80) 3.33 (3) 35 26.7 (6) 5.93 (4) + 46 28.00 (6) 5.50 (2) 33 33.69 (358) 6.40 (83) + (Colli, 989; Colli, 99) 2 78.07 (43) 8.00 () 24 3.42 (3) 3.67 (3) 3 8.26 (6) 4.20 (5) 2 22.80 () 4.30 (0) + (Vitt and Colli, 994) 4 25.30 (2) 4.40 (2) + (Vitt and Colli, 994) 9 4.00 (37) 3.20 (0) + (Vitt and Colli, 994) 3 26.50 (33) 3.90 (28) + (Vitt and Colli, 994) 5 5.00 (34) 4.80 (5) Cnemidophorus cryptus 58.89 (85).09 (23) Cnemidophorus cryptus 0 53.77 (8).48 (2) + (Mesquita, 200; Mesquita and Colli, 2003b) Cnemidophorus cryptus 4 64.90 (2).90 (5) (Vitt et al., 997b) Cnemidophorus gramivagus 9 55.84 (93).68 (3) (Mesquita, 200; Mesquita and Colli, 2003b) Cnemidophorus lemniscatus 2 5.3 (54).3 (8)

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 69 Continuation... Cnemidophorus lemniscatus 3 62.44 (25).88 (8) Cnemidophorus lemniscatus 57.45 (74).50 (6) (Mesquita, 200; Mesquita and Colli, 2003b) Cnemidophorus lemniscatus DF 2 63.03 (250) 2.7 (46) + (Mojica et al., 2003) Cnemidophorus nativo 40 56.0 (48) 2.20 (37) + (Menezes et al., 2004) Cnemidophorus mumbuca 27 50.63 (27).00 (3) Cnemidophorus mumbuca 25 49.5 (93).00 (43) 2 57.40 (2) 2.30 (2) (Vitt, 99c) 29 50.46 (77).50 (2) 35 57.46 (22) 3.00 (2) 30 52.33 (62).80 (5) 24 53.69 (42) 2.25 (6) 28 54.62 (29) (2) 22 53.29 (59).75 (4) 33 58.33 (28) 2.60 (5) 32 59.75 (20) (5) 3 56.50 (4) 2.25 (4) 34 56.22 (37) 3.25 (4) 8 59.49 (36).83 (6) 37 69.64 (45).50 (2) 36 59.9 (22).60 (5) 38 65.4 (63).75 (4) 23 60.33 (8) 2.20 (5) 59.35 (322) 2.07 (4) (Mesquita and Colli, 2003a; Mesquita and Colli, 2003b) 39 72.52 (464) 2.67 (4) + (Vitt, 983) (Mesquita, 200; Mesquita and Colli, 2003b) Cnemidophorus parecis Dracaena guianensis Kentropyx calcarata 57 0 65.85 (99) 65.78 (99) 303.38 (6) 80.28 (22).83 (23).58 (2) 6.00 () 6.00 () + TE (Mesquita, 200; Mesquita and Colli, 2003b) (Vitt, 99b) (Anjos et al., 2002)

70 LIFE HISTORY PATTERNS IN TPIL SOUTH AMERIN LIZARDS Continuation... Kentropyx paulensis 54 70.22 (5) 4.20 () Kentropyx striata 3 00.90 (46) 5.29 (7) + (Vitt and Carvalho, 992) Kentropyx striata 3 86.00 (0) 5.30 (2) + BR (Vitt and Caldwell, 993) Kentropyx vanzoi 57 46.9 (47) 3.00 (2) (Vitt et al., 995) Kentropyx pelviceps 05.00 (42) 6.50 () + LL Crocodilurus amazonicus 9 89.2 (62) 5.67 (3) WA Iguania Leiosauridae (Vitt et al., 996) Enyalius leechii 97.30 (4) 2.30 (6) BR (Van Sluys et al., 2004) Enyalius brasiliensis 43 8.25 (5) 7.50 (2) LL Polychrotidae (Vitt, 99c) Anolis meridionalis 2 58.00 ().00 () Anolis meridionalis 35 5.83 (53) 2.07 (3) + Anolis nitens 46 6.60 (9) 3.09 (35) + Polychrus acutirostris 46 04.63 (8) 7.50 (2) TE (Luedemann et al., 997) Polychrus acutirostris 33 3.00 () (Vitt and Lacher, 98; Vitt, 995) Polychrus acutirostris 39 4.05 (8) 6.80 (46) TE Tropiduridae (Galdino et al., 2003) Eurolophosauros nanuzae 55 5.00 (236) 2.06 (5) + (Rocha, 992; Araújo, 99) Liolaemus lutzae 42 56.80 (9) 2.27 (84) + (Vitt, 99a) Plica plica 27.35 (32) 2.90 (63) + TR (Vitt et al., 997a) Plica umbra 86.95 (32).90 (0) + TR (Vitt, 99c) Tropidurus etheridgei 2 67.50 (45) 4.90 (45) + SS Tropidurus hispidus 78.64 (44) 4.27 (5) + Tropidurus hispidus 3 74.08 (30) 7.20 (5) TR (Vitt and Goldberg, 983; Vitt, 995) Tropidurus hispidus 39 90.85 (478) 6.00 (95) + (Vitt and Goldberg, 983; Vitt, 995) Tropidurus semitaeniatus 39 76.70 (370) (02) + Tropidurus insulanus 7 74.60 (73) 3.68 (22) Tropidurus itambere 24 3.00 () Tropidurus itambere 35 68.2 (54) 3.98 (54) + (Faria, 200)

PDUCCIÓN EN PTILES: MORFOLÍA, ECOLÍA Y EVOLUCIÓN 7 Continuation... Tropidurus itambere 23 60.3 (94) 3.57 (35) + (Van Sluys, 993) Tropidurus itambere 7 7.60 (76) 3.50 (40) + (Van Sluys et al., 2002) Tropidurus montanus 55 73.95 (243) 3.48 (52) + (Vitt, 99c) Tropidurus spinulosus 2 86.20 (2) 4.00 (2) + TR (Wiederhecker et al., 2002; Pinto, 999a) Tropidurus torquatus 33 94.72 (299) 6.0 (56) + Tropidurus cf oreadicus 29 57.7 (4) 6.00 () Tropidurus cf oreadicus 27 69.3 (48) 4.2 (7) Tropidurus cf oreadicus 30 55.8 (5) 4.50 (2) Tropidurus cf oreadicus 46 79.73 (26) 5.00 (3) Tropidurus cf oreadicus 5 65.47 (72) 5.33 (3) Tropidurus cf oreadicus 25 42.62 (65) 4.00 () / (Faria, 200) Tropidurus cf oreadicus 23 7.94 (36) 3.65 (26) (Vitt, 993) Tropidurus cf oreadicus 8 80.00 (56) 3.40 (7) (Vitt, 993) Tropidurus cf oreadicus 7 89.65 (53) 3.50 (8) + (Vitt, 993) Tropidurus cf oreadicus 6 85.25 (82) 3.80 (45) + (Vitt, 993) Tropidurus cf oreadicus 4 92.60 (38) 4.20 (24) + (Vitt and Zani, 996a) Uracentron flaviceps 98.69 (20) (5) + TR Life history data per population of Tropical South American lizards. Note: LS lizard species, B biome, POP population, SVL mean Snout ventlength, CS clutch size, CF clutch frequency, FM foraging mode, PHT preferred habitat type, F Reference, AC active foragers, SW sit and wait foragers, B building, BR branches, BRbromeliads, bushes, LG log, LL leaf litter, open ground, rock outcrops, SF semifossorial, SS sandy soils, TE trees, TN termite nests, TR trunks, ULunder log, M Mud, UR under rock, WA water, Amazon Forest, Caatinga, Cerrado, DF Dry Forest, Restinga, MF Montane Fields and Amazonian Savanna. Population codes are defined in Figure. Sample sizes (in parenthesis) refer to individuals in each population.