Real-time PCR for detection of Brucella ovis and Histophilus somni in ovine urine and semen

Similar documents
Cercetări bacteriologice, epidemiologice şi serologice în bruceloza ovină ABSTRACT

Surveillance of animal brucellosis

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Finnzymes Oy. PathoProof Mastitis PCR Assay. Real time PCR based mastitis testing in milk monitoring programs

Index. Note: Page numbers of article titles are in boldface type.

PCR detection of Leptospira in. stray cat and

Pathogens commonly isolated from selected diseases

Validation of the PathoProof TM Mastitis PCR Assay for Bacterial Identification from Milk Recording Samples

Physical characteristics of the eggs of red-legged partridge (Alectoris rufa) reared in captivity

A rapid minor groove binder PCR method for distinguishing the vaccine strain Brucella abortus 104M

Rapid serum agglutination and agar gel immunodiffusion tests associated to clinical signs in rams experimentally infected with Brucella ovis

Different resistance patterns of reference and field strains of Brucella abortus

Food safety related to camelids products: Brucellosis and its impact on Public Health and the consumers as an example

DISEASE DETECTION OF BRUCELLOSIS IN GOAT POPULATION IN NEGERI SEMBILAN, MALAYSIA. Abstract

Acta Veterinaria Brasilica

A collaborative effortan investigation of suspect canine brucellosis

AKC Canine Health Foundation Grant Updates: Research Currently Being Sponsored By The Vizsla Club of America Welfare Foundation

EPIDIDYMITIS IN RANGE

THIS ARTICLE IS SPONSORED BY THE MINNESOTA DAIRY HEALTH CONFERENCE.

FIRST RECORD OF Platemys platycephala melanonota ERNST,

Sera from 2,500 animals from three different groups were analysed:

Revaccination with a reduced dose of Brucella abortus strain 19 vaccine of breeding cows in the Pampas region of Argentina

Guidelines for Laboratory Verification of Performance of the FilmArray BCID System

Implementation of Bovine and Small Ruminant s Brucellosis Eradication Programmes in Portugal PAFF Standing Committee Brussels, 8 June 2017

The surveillance and control programme

Recent Topics of Brucellosis

A Unique Approach to Managing the Problem of Antibiotic Resistance

Basics of Sheep Health Care

Dairy/Milk Testing Report Detecting Elevated Levels of Bacteria in Milk-On-Site Direct- From-The-Cow Within Minutes as Indicator of Mastitis

VETERINARY BACTERIOLOGY FROM THE DARK AGES TO THE PRESENT DAY

Brucellosis situation in Mongolia and Result of Bovine Brucellosis Proficiency Test

How to load and run an Agarose gel PSR

A Novel PCR Assay for Detecting Brucella abortus and Brucella melitensis

Presented at Central Veterinary Conference, Kansas City, MO, August 2013; Copyright 2013, P.L Ruegg, all rights reserved

Biological Threat Fact Sheets

Vaccine. Diagnostic and Vaccine Chapter. J.H. Wolfram a,, S.K. Kokanov b, O.A. Verkhovsky c. article info abstract

EXCEDE Sterile Suspension

DIFFERENT STRATEGIES FOR THE DIAGNOSIS OF OVINE BRUCELLOSIS BY BRUCELLA OVIS IN AN ENDEMIC FLOCK FROM ARGENTINA. Estein, S.M. 3

Abortion and fetal death in bitches due anemia caused by vector-borne diseases

Brucellosis diagnostics

COMPARISON OF DIFFERENT SEROLOGICAL ASSAYS FOR THE DIFFERENTIAL DIAGNOSIS OF BRUCELLOSIS

MRSA surveillance 2014: Poultry

Multiplex real-time PCR for the passive surveillance of ticks, tick-bites, and tick-borne pathogens

Enzootic abortion in sheep and its economic consequences

Infecção natural e experimental de Brucella ovis REO 198 em carneiros Santa Inês do Brazil

Received 7 December 1998/Returned for modification 5 April 1999/Accepted 22 June 1999

PROBE DESIGN FOR ENVIRONMENTAL DNA DETECTION OF CHELODINA OBLONGA IN THE CAPE YORK REGION

OCCURRENCE OF CAMPYLOBACTER JEJUNI AND CAMPYLOBACTER COLI AND THEIR BIOTYPES IN BEEF AND DAIRY CATTLE FROM THE SOUTH OF CHILE

Occurrence of anti-toxoplasma gondii antibodies in caprines from Pitanga City, Paraná State, Brazil

Safety and Accuracy Assessment of MALDI-TOF Mass Spectrometry Platforms for the Detection of Biological Threats

Epidemiological survey and pathological studies on Caprine arthritis-encephalitis (CAE) in Japan

Isolation and molecular identification of Moraxella ovis and Moraxella spp. from IKC in sheep in India

Nymph and Adult Performance of the Small Green Stink Bug, Piezodorus guildinii (Westwood) on Lanceleaf Crotalaria and Soybean

Comparative efficacy of DRAXXIN or Nuflor for the treatment of undifferentiated bovine respiratory disease in feeder cattle

Rapid molecular testing to detect Staphylococcus aureus in positive blood cultures improves patient management. Martin McHugh Clinical Scientist

Interpretation of results from milk samples tested for mastitis bacteria with Mastit 4 qpcr test from DNA Diagnostic

THE COST OF COMPANIONSHIP

MASTITIS DNA SCREENING

Sensitivity and specificity of an indirect enzyme-linked immunoassay for the diagnosis of Brucella canis infectionindogs


Bovine Mastitis Products for Microbiological Analysis

Activities of the Centre for Zoonoses, Animal Bacterial Diseases and Antimicrobial Resistance (ZOBA) in Switzerland

Why Don t These Drugs Work Anymore? Biosciences in the 21 st Century Dr. Amber Rice October 28, 2013

Diagnosis of Leptospira spp. Infection in Sheep Flocks in the State of Mato Grosso, Brazil

Bovine Brucellosis Control of indirect ELISA kits

EUROPEAN COMMISSION HEALTH & CONSUMERS DIRECTORATE-GENERAL. Unit G5 - Veterinary Programmes

Visit ABLE on the Web at:

Prevalence and spatial analysis of antileptospiral agglutinins in dairy cattle Microregion of Sete Lagoas, Minas Gerais, 2009/2010

2012 Work Programme of the

Outlines. Introduction Prevalence Resistance Clinical presentation Diagnosis Management Prevention Case presentation Achievements

BRUCELLOSIS BRUCELLOSIS. CPMP/4048/01, rev. 3 1/7 EMEA 2002

Use of Quantitative Real-Time PCR To Monitor the Response of Chlamydophila felis Infection to Doxycycline Treatment

Short information about the ZOBA. Participating on proficiency tests. Monitoring programme

Controlling Contagious Mastitis

Country Report Malaysia. Norazura A. Hamid Department of Veterinary Services, Malaysia

Veterinaria.com.pt 2009; Vol. 1 Nº 1: e13 (publicação inicial em Julho de 2008) Disponível em

Seroprevalence of small ruminant brucellosis in Werer Agricultural Research Center, Afar Region, North East Ethiopia

Test Method Modified Association of Analytical Communities Test Method Modified Germicidal Spray Products as Disinfectants

EUROPEAN REFERENCE LABORATORY (EU-RL) FOR BOVINE TUBERCULOSIS WORK-PROGRAMME PROPOSAL Version 2 VISAVET. Universidad Complutense de Madrid

Milk Excretion Study of Brucella Abortus S-19 Reduced Dose Vaccine in Lactating Cattle and Buffaloes

Boosting Biomedical Entity Extraction by Using Syntactic Patterns for Semantic Relation Discovery

Association between Brucella melitensis DNA and Brucella spp. antibodies

CHARACTERIZATION AND ANTIBIOTIC SUSCEPTIBILITY PATTERNS OF CATALASE-NEGATIVE GRAM-POSITIVE COCCI ISOLATED FROM BOVINE MASTITIS IN BRAZIL

Burn Infection & Laboratory Diagnosis

Index. Note: Page numbers of articles titles are in boldface type.

VPM 201-Lab 6 Bovine Mastitis, Bacillus & Mastitis (2012)

Xochitl Morgan: The human microbiome; the role of commensals in health and disease.

SYMMETRY FOAMING HAND SANITIZER with Aloe & Vitamin E Technical Data

HEALTHCARE-ACQUIRED INFECTIONS AND ANTIMICROBIAL RESISTANCE

Agarose Blenders. Code Description Size

Conventional and Doppler ultrasonography on a goat with gangrenous mastitis

and other serological tests in experimentally infected cattle

Diagenode Bordetella pertussis and parapertussis Real-Time PCR kit

Procedures for the Taking of Prevention and Eradication Measures of Brucellosis in Bovine Animals

Inactivation of Burkholderia mallei in equine serum for laboratory use.

Study Type of PCR Primers Identified microorganisms

Mastitis in non-bovine dairy species, companion animals and breastfeeding mothers. Chris Knight

Surveillance of Brucella Antibodies in Camels of the Eastern Region of Abu Dhabi, United Arab Emirates

Economically important trait. Increased demand: Decreased supply. Sheep milk cheese. 2007: $2.9 million for milk production (Shiflett, 2008)

A rapid test for evaluating B. melitensis infection prevalence in an Alpine ibex (Capra ibex) reservoir in the French Alps

Transcription:

Arq. Bras. Med. Vet. Zootec., v.67, n.6, p.1751-1755, 2015 Communication [Comunicação] Real-time for detection of Brucella ovis and Histophilus somni in ovine urine and semen [ em tempo real para detecção de Brucella ovis e Histophilus somni em urina e sêmen ovino] V.S. Moustacas 1, T.M.A. Silva 1, É.A. Costa 1, L.F. Costa 2, T.A. Paixão 2, R.L. Santos 1 * 1 Escola de Veterinária Universidade Federal de Minas Gerais Belo Horizonte, MG 2 Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte, MG Infectious ovine epididymitis affects rams worldwide, and it is considered to be one of the most important infectious diseases (Poester et al., 2013). Brucella ovis is one of the most important infectious agents associated with this disease, which may also be due to Histophilus somni infection, as well as other organisms (Díaz- Aparicio et al., 2009; Poester et al., 2013; Moustacas et al., 2014). B. ovis infection is associated with chronic epididymitis and infertility in rams and, occasionally, abortion in ewes and birth of weak lambs. H. somni is a component of the microbiota colonizing mucosal surfaces of cattle, goats, and sheep. However, H. somni may act as an opportunistic pathogen, and the infection may result in epididymitis as well as several other clinical manifestations such as vaginitis, placentitis, pneumonia, meningoencephalitis, mastitis, synovitis, septicemia, and other reproductive disorders (Díaz-Aparicio et al., 2009; Poester et al., 2013; Moustacas et al., 2014). The gold standard diagnosis of B. ovis infection is based on clinical examination, serology and semen bacteriology (Xavier et al, 2011; Poester et al., 2013), while for H. somni infections, only clinical examination and bacteriology are routinely performed. Semen and urine are the samples of choice for diagnosis (Xavier et al., 2010; Costa el al., 2012; Moustacas et al., 2013). These techniques are labor intensive and slow, whereas molecular techniques have been increasingly used, including (Xavier et al., 2010; Costa et al., 2012), nested (Costa et al., 2013), and multiplex (Saunders et al., 2007; Moustacas et al., 2013). These methods are highly specific and faster than techniques. Real-time, also known as quantitative, is another molecular tool that allows quantification of target DNA. Due to a shorter extension time, and no need of electrophoresis, is even less time consuming. Real-time protocols have been developed for Brucella spp. detection, and also for differentiation among Brucella spp. species (Hinic et al, 2008), but none of these protocols are B. ovis-specific. Furthermore, there are no previous reports of primers and probes for amplification of H. somni DNA by. Thus, the goal of this study was to develop protocols for B. ovis and H. somni detection in urine and semen samples from rams. B. ovis and H. somni-specific oligonucleotide primers and fluorescent dye-labeled probes were designed using Primer 3 software version 0.4.0. Primer pairs were designed to amplify approximately 100 base pairs (bp) of the target gene, with a melting point around 60 C. These parameters were verified by using the Oligo Analyzer 1.1.2 software. Specificity of the target sequences was evaluated by the Basic Local Alignment Search Tool from GenBank database in order to verify similarity with DNA sequences from other organisms. For amplification of B. ovis specific DNAa primer pair targeting a Recebido em 2 de outubro de 2014 Aceito em 7 de julho de 2015 *Autor para correspondência (corresponding author) E-mail: rsantos@vet.ufmg.br

Moustacas et al. sequence within the B. ovis-specific genomic island was constructed (Tsolis et al., 2009). For H. somni DNA amplification, a primer pair and probe sequence were based on the genome sequence available on GenBank (accession number CP000947.1). Probes were TaqMan MGB TM Probes (Applied Biosystems, USA) incorporating a FAM reporter for B. ovis and Cy5 for H. somni at the 5 end and a non-fluorescent quencher (BHQ, black hole quencher) at the 3 end. Sequences of primers and probes used for are detailed in Table 1. H. somni was cultured on GC medium (base medium for chocolate agar) (Becton Dickinson USA), supplemented with 1% bovine hemoglobin and 0.5% of yeast extract (Becton Dickinson), incubated at 37 C for 48 h with an atmosphere of 5% CO 2. B. ovis was cultured on Thayer-Martin modified selective medium, composed by GC (DIFCO, USA), 1% of bovine hemoglobin (BBL, USA) and VCN inhibitor (BBL, USA), incubated at 37 C, in a 5% CO 2 atmosphere for 5 to 7 days. An isolated colony from each agent was suspended in 100µL of Tris-EDTA (Tris-HCl 1M, EDTA 0.5M) and then boiled during 10min for genomic DNA extraction. DNA extraction from biological samples was performed by the proteinase K and phenol/chlorophorm method as previously described (Matrone et al., 2009) using 500μL of fresh semen or 1 ml of thawed urine. All DNA samples were stored at -20 C until amplification. Real-time was set up in a final volume of 25µL, with 12,5µL of commercial supermix (Platinum Quantitative SuperMix-UDG, Invitrogen, USA), 1µL of a solution of 10 mm of each primer, 0.5µL of a solution of 5mM of the TaqMan probe, 1µL of ROX (passive reference fluorochrome), 3µL of DNA template and 6µL of nuclease-free water. As a positive control, 1µL of DNA from pure cultures of B. ovis (ATCC 25840) and H. somni (3384Y) was used. Sterile nuclease-free water was used as a negative control. Reactions were performed at 50 C for 2 min, 95 C for 2 min, followed by 40 cycles of 95 C for 15 s and 60 C for 30 s, using a 7500 Fast Real-Time System (Applied Biosystems, USA). Sensitivity of the was assessed by performing reactions in triplicates with 0, 0.2, 2, 20, and 200 ng of genomic DNA from pure cultures of B. ovis (ATCC 25840), and H. somni (3384Y). To assess the specificity of, genomic DNA templates from bacterial species that can potentially cause epididymitis in rams were used, including B. ovis (ATCC 25840), H. somni (3384Y), Actinobacillus seminis (ATCC 15768), Staphylococcus aureus (ATCC 12600), Manheimia haemolitica (D0614057), Corynebacterium pseudotuberculosis (D0507204), and Trueperella (Arcanobacterium) pyogenes (D0602705) as well as an organism phylogenetically related to B. ovis, i.e. Ochrobactrum anthropi (ATCC 49188). The methods developed in this study were validated by using semen and urine, the biological samples of choice for diagnosis of ovine infectious epididymitis (Xavier et al., 2010; Moustacas et al. 2013). Thus, 21 semen and 15 urine samples which were positive for B. ovis by from experimentally infected rams (Xavier et al., 2010), and 30 semen samples and 15 urine samples positive for H. somni by from experimentally infected rams (Moustacas et al., 2013) were used in this study. Negative controls included semen (n = 20) and urine (n = 20) samples from B. ovisand H. somni-free rams, based on serology, semen bacteriology and semen for B. ovis detection, and bacteriology and for H. somni detection (Moustacas et al., 2013). Animal experiments were approved by the Universidade Federal de Minas Gerais Ethics Committee in Animal Experimentation (protocols CETEA 02/2007, 285/2008, and 2/2010). reactions were performed using 200-500 ng of DNA from biological samples per reaction. Frequency of positive samples through was compared to frequency obtained by by Fisher s exact test using GraphPad Instat software version 3.10. Differences were considered significant when P<0.05. Agreement between and real time was assessed by Kappa statistics. Several authors have evaluated assays for detection of Brucella spp. (Hinic et al., 2008). However, this is the first report of a B. ovis-specific. The species-specific diagnosis of B. ovis infection in rams is 1752 Arq. Bras. Med. Vet. Zootec., v.67, n.6, p.1751-1755, 2015

Real-time extremely important for differentiation of other Brucella species with high zoonotic potential (i.e. Brucella melitenis), which can also infect sheep. Therefore, the differential diagnosis between B. ovis and B. melitensis infections in sheep has significant public-health implications. Targeting the B. ovis-specific genomic island (Tsolis et al., 2009), non specific amplifications are efficiently avoided and primers and probe designed in this study had high specificity. Too date, there are no reports of for H. somni-dna amplification. Thus, this is the first report of H. somni protocol and its applicability in biological samples. According to in vitro assays, the for both agents was highly sensitive since DNA amplification was successful at all concentrations tested, including the minimum concentration evaluated in this study (0.2ng DNA/reaction) as well as all other concentrations (2, 20, and 200ng/reaction). Figure 1 demonstrates representative amplification curves. Analytical specificity was evaluated with DNA samples from other agents. B. ovis-specific real time amplified only B. ovis template DNA and yielded negative results with template DNA from all other organisms included in this experiment. Similarly, H somni-specific real time amplified only H somni template DNA. Figure 1. Representative amplification plot with amplification curves of Brucella ovis (red lines) and Histophilus somni (blue lines). Table 1. Primers and fluorescent probes sequences designed for Brucella ovis and Histophilus somni Table 1. Primers and fluorescent probes sequences designed for Brucella ovis and Histophilus somni detection by detection by Target Forward Primers (5-3 ) Reverse Fluorescent probes (5 Fluorophore - 3 Quencher) B. ovis GGCCAACACGTACTGGAGAT ACCGTTTCGGACGTGTCTAC 6-FAM/ CCTTCCAAAACGACATCCAT /BHQ1 104 H. somni GATCAGAGCCATTGGCAAC TGTATTTGCGCATCGGATAA CY5/GGCAAGATTTCCAACAACCA /BHQ2 104 products size (bp) 6-FAM = = Carboxifluorescein; BHQ1 = Black Hole BHQ1 Quencher = 1; Black CY5 = Cyanine Hole 5; Quencher BHQ2: Black Hole 1; CY5 Quencher = 2 Cyanine 5; BHQ2: Black Hole Quencher 2 The applicability of this technique in biological samples was also confirmed since there was no loss of efficacy (P>0.05) when compared to with semen and urine samples from experimentally infected rams (Table 2). Once again the assay s specificity was confirmed due the absence of fluorescence signals in all 40 samples of semen and urine from the negative control (Table 2). In conclusion, the assays described in this study are sensitive and highly specific. Therefore, these assays have a potential to be used as additional tools for a faster diagnosis of ovine infectious epididymitis associated with B. ovis or H. somni infections, using semen or urine samples. Keywords: infectious epididymitis, ovine, diagnosis, Arq. Bras. Med. Vet. Zootec., v.67, n.6, p.1751-1755, 2015 1753

Moustacas et al. Table 2. Brucella ovis and Histophilus somni detection by and in semen and urine samples from experimentally infected rams, and agreement between these techniques. Table 2. Brucella ovis and Histophilus somni detection by and in semen and urine samples from experimentally infected rams, and agreement between these techniques Semen Infected rams Negative control Infected rams Negative control Urine B. ovis 21/21 (100%) 16/21 (76.2%) 0.0% (0/20) 0.0% (0/20) 15/15 (100%) 70.6% (12/15) 0.0% (0/20) 0.0% (0/20) 0.787 89.5 H. somni 30/30 (100%) 21/30 (70.0%) 0.0% (0/20) 0.0% (0/20) 15/15 (100%) 86.7% (13/15) 0.0% (0/20) 0.0% (0/20) 0.744 87.1 Kappa Agreement (%) RESUMO A epididimite infecciosa ovina é uma das principais enfermidades reprodutivas de carneiros. O presente estudo teve por objetivo desenvolver protocolos de em tempo real para B. ovis e H. somni e avaliar sua aplicabilidade em amostras de sêmen e urina de carneiros. Delinearam-se primers e sondas espécieespecíficos para cada agente. As sondas foram delineadas com o sistema TaqMan incorporando um marcador FAM para B. ovis e Cy5 para H. somni na extremidade 5' e um quencher na extremidade 3'. A em tempo real para B. ovis e H. somni foi altamente sensível, uma vez que a amplificação de DNA ocorreu com até 0,2ng de DNA/reação. A especificidade dos iniciadores e sondas foi avaliada com amostras de DNA de outros agentes causadores de epididimite ovina e nenhuma amplificação inespecífica foi observada. A aplicabilidade da técnica em amostras biológicas também foi confirmada, pois não houve perda de eficácia (P>0,05) quando comparada à convencional com amostras de sêmen e urina de carneiros experimentalmente infectados. Palavras-chave: epididimite infecciosa, ovinos, diagnóstico, ACKNOWLEDGEMENTS Work in RLS lab is supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). REFERENCES COSTA, L.F.; NOZAKI, C.N.; LIRA, N.S.C. et al. Species-specific nested as a diagnostic tool for Brucella ovis infection in rams. Arq. Bras. Med. Vet. Zootec., v.65, p.55-60, 2013. COSTA, E.A.; SANT'ANA, F.M.; CARVALHO, C.J.S. et al. Diagnosis of Brucella ovis infection by serology and in urine samples from naturally infected rams in the state of Piauí. Arq. Bras. Med. Vet. Zootec., v.64, p.160-167, 2012. DÍAZ-APARICIO, E.; TENORIO-GUTIÉRREZ, V.R.; ARELLANO-REYNOSO, B. et al. Pathogenicity of different strains of Histophilus somni in the experimental induction of ovine epididymitis. Can. J. Vet. Res., v.73, p.157-160, 2009. HINIĆ, V.; BRODARD, I.; THOMANN, A. et al. Novel identification and differentiation of Brucella melitensis, B. abortus, B. suis, B. ovis, B. canis, and B. neotomae suitable for both and systems. J. Microbiol. Methods, v.75, p.375-378, 2008. MATRONE, M.; KEID, L.B.; ROCHA, V.C.M. et al. Evaluation of DNA extraction protocols for Brucella abortus detection in aborted fetuses or calves born from cows experimentally infected with strain 2308. Braz. J. Microbiol., v.40, p.480-489, 2009. MOUSTACAS, V.S.; SILVA, T.M.A.; COSTA, L.F. et al. Clinical and pathological changes in rams experimentally infected with Actinobacillus seminis and Histophilus somni. Sci.World J., v.2014, p.1-10, 2014. MOUSTACAS, V.S.; SILVA, T.M.A; COSTA, L.F. et al. Species-specific multiplex for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somniinfection in rams. BMC Vet. Res., v.9, p.1-8, 2013. 1754 Arq. Bras. Med. Vet. Zootec., v.67, n.6, p.1751-1755, 2015

Real-time POESTER, F.P.; SAMARTINO, L.E.; SANTOS, R.L. Pathogenesis and pathobiology of brucellosis in livestock. Rev. Sci. Tech., v.32, p.105-115, 2013. SAUNDERS, V.F.; REDDACLIFF, L.A.; BERG, T.; HORNITZKY, M. Multiplex for the detection of Brucella ovis, Actinobacillus seminis and Histophilus somni in ram semen. Aust. Vet. J., v.85, p.72-77, 2007. TSOLIS, R.M.; SESHADRI, R.; SANTOS, R.L. et al. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One, v.4, e5519, 2009. XAVIER, M.N.; SANT ANNA, F.M.; SILVA, T.M.A. et al. A comparison of two agar gel immunodiffusion (AGID) and a complement fixation (CF) assays for serologic diagnosis of Brucella ovis infection in experimentally infected rams. Arq. Bras. Med. Vet. Zootec., v.63, p.1016-1021, 2011. XAVIER, M.N.; SILVA, T.M.A.; COSTA, E.A. et al. Development and evaluation of a speciesspecific assay for detection of Brucella ovis infection in rams. Vet. Microbiol., v.145, p.158-164, 2010. Arq. Bras. Med. Vet. Zootec., v.67, n.6, p.1751-1755, 2015 1755