ORIGINAL INVESTIGATION. Doxycycline Is a Cost-effective Therapy for Hospitalized Patients With Community-Acquired Pneumonia

Similar documents
Control emergence of drug-resistant. Reduce costs

GUIDELINES FOR THE MANAGEMENT OF COMMUNITY-ACQUIRED PNEUMONIA IN ADULTS

Guidelines for the Initiation of Empirical Antibiotic therapy in Respiratory Disease (Adults)

Suitability of Antibiotic Treatment for CAP (CAPTIME) The duration of antibiotic treatment in community acquired pneumonia (CAP)

Guidelines for the Initiation of Empirical Antibiotic therapy in Respiratory Disease (Adults)

Community Acquired Pneumonia: An Update on Guidelines

Safety of an Out-Patient Intravenous Antibiotics Programme

Appropriate Management of Common Pediatric Infections. Blaise L. Congeni M.D. Akron Children s Hospital Division of Pediatric Infectious Diseases

Pneumonia considerations Galia Rahav Infectious diseases unit Sheba medical center

Compliance with antibiotic treatment guidelines in managed care patients with communityacquired pneumonia in ambulatory settings

CLINICAL PROTOCOL FOR COMMUNITY ACQUIRED PNEUMONIA. SCOPE: Western Australia. CORB score equal or above 1. All criteria must be met:

Pneumonia Antibiotic Guidance for Adults PAGL Inclusion Approved at January 2017 PGC

Measure Information Form

Pharmacokinetics. Absorption of doxycycline is not significantly affected by milk or food, but coadministration of antacids or mineral supplements

Srirupa Das, Associate Director, Medical Affairs, Tushar Fegade, Manager, Clinical Research Abbott Healthcare Private Limited, Mumbai.

ORIGINAL INVESTIGATION. Associations Between Initial Antimicrobial Therapy and Medical Outcomes for Hospitalized Elderly Patients With Pneumonia

Phase III Clinical Trial of Moxifloxacin Hydrochloride in the Treatment of Acute Exacerbations of Chronic Bronchitis in Comparison with Azithromycin

Bai-Yi Chen MD. FCCP

Community-acquired pneumonia: Time to place a CAP on length of treatment?

Treatment of Respiratory Tract Infections Prof. Mohammad Alhumayyd Dr. Aliah Alshanwani

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form

Antimicrobial treatment of community acquired pneumonia in adults: A conference report

Antibiotics Use And Concordance To Guidelines For Patients Hospitalized With Community Acquired Pneumonia (CAP)

Antibiotics in the Treatment of Acute Exacerbation of Chronic Obstructive Pulmonary Disease

Antimicrobial Update Stewardship in Primary Care. Clare Colligan Antimicrobial Pharmacist NHS Forth Valley

AZITHROMYCIN, DOXYCYCLINE, AND FLUOROQUINOLONES

Cost high. acceptable. worst. best. acceptable. Cost low

CME/CE QUIZ CME/CE QUESTIONS. a) 20% b) 22% c) 34% d) 35% b) Susceptible and resistant strains of typical respiratory

Objectives 4/26/2017. Co-Investigators Sadie Giuliani, PharmD, BCPS Claude Tonnerre, MD Jayme Hartzell, PharmD, MS, BCPS

Source: Portland State University Population Research Center (

National Clinical Guideline Centre Pneumonia Diagnosis and management of community- and hospital-acquired pneumonia in adults

IDSA GUIDELINES COMMUNITY ACQUIRED PNEUMONIA

Le infezioni di cute e tessuti molli

Antimicrobial Stewardship in Ambulatory Care

ORIGINAL INVESTIGATION. Antibiotic Therapy for Ambulatory Patients With Community-Acquired Pneumonia in an Emergency Department Setting

What is pneumonia? Infection of the lung parenchyma Causative agents include bacteria, viruses, fungi, protozoa.

Volume. December Infection. Notes. length of. cases as 90% 1 week. tonsillitis. First Line. sore throat / daily for 5 days. quinsy >4000.

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form Collected For: CMS Voluntary Only

Antibiotic Choice And Patient Outcomes In Community-Acquired Pneumonia

CHAPTER:1 THE RATIONAL USE OF ANTIBIOTICS. BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY

Treatment Duration for Uncomplicated Community-Acquired Pneumonia: The Evidence in Support of 5 Days

ESISTONO LE HCAP? Francesco Blasi. Sezione Medicina Respiratoria Dipartimento Toraco Polmonare e Cardiocircolatorio Università degli Studi di Milano

IMPLEMENTATION AND ASSESSMENT OF A GUIDELINE-BASED TREATMENT ALGORITHM FOR COMMUNITY-ACQUIRED PNEUMONIA (CAP)

Evaluating the Role of MRSA Nasal Swabs

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012

Period of study: 12 Nov 2002 to 08 Apr 2004 (first subject s first visit to last subject s last visit)

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Bacterial Resistance of Respiratory Pathogens. John C. Rotschafer, Pharm.D. University of Minnesota

UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients

OPTIMIZATION OF PK/PD OF ANTIBIOTICS FOR RESISTANT GRAM-NEGATIVE ORGANISMS

Doxycycline for strep pneumonia

Antibiotic usage in nosocomial infections in hospitals. Dr. Birgit Ross Hospital Hygiene University Hospital Essen

Newsflash: Hospital Medicine JOHN C. CHRISTENSEN, MD FACP AMERICAN COLLEGE OF PHYSICIANS, UTAH CHAPTER SCIENTIFIC MEETING FEBRUARY 10, 2017

CLINICAL USE OF BETA-LACTAMS

Prescribing Guidelines for Outpatient Antimicrobials in Otherwise Healthy Children

11/10/2016. Skin and Soft Tissue Infections. Disclosures. Educational Need/Practice Gap. Objectives. Case #1

Antibiotic Abyss. Discussion Points. MRSA Treatment Guidelines

Community-Acquired Pneumonia. Community-Acquired Pneumonia. Community Acquired Pneumonia (CAP): definition

Research & Reviews: Journal of Hospital and Clinical Pharmacy

NUOVE IPOTESI e MODELLI di STEWARDSHIP

Acute Pyelonephritis POAC Guideline

Potential for Cost-Savings in the Care of Hospitalized Low-Risk Community-Acquired Pneumonia Patients in China

Marc Decramer 3. Respiratory Division, University Hospitals Leuven, Leuven, Belgium

Antibiotic Stewardship Program (ASP) CHRISTUS SETX

Duke University Hospital Guideline for Empiric Inpatient Treatment of Cancer- Related Neutropenic Fever in Adult Patients

Combination vs Monotherapy for Gram Negative Septic Shock

moxifloxacin intravenous, 400mg/250mL, solution for infusion (Avelox ) SMC No. (650/10) Bayer Schering

Outpatient Antimicrobial Therapy. Role of Antibacterials in Outpatient Treatment of Respiratory Tract Infection. Acute Bacterial Rhinosinusitis

Appropriate antimicrobial therapy in HAP: What does this mean?

Pinni Meedha Mojutho Ammanu Dengina Koduku Part 1 Kama Kathalu

Outpatient Antimicrobial Therapy. Role of Antibacterials in Outpatient Treatment of Respiratory Tract Infection. Acute Bacterial Rhinosinusitis

Rational management of community acquired infections

Host, Syndrome, Bug, Drug: Introducing 2 Frameworks to Approach Infectious Diseases Cases with an Antimicrobial Stewardship Focus

Lefamulin Evaluation Against Pneumonia (LEAP 1) Phase 3 Topline Results. September 18, 2017

4/3/2017 CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA DISCLOSURE LEARNING OBJECTIVES

Let me clear my throat: empiric antibiotics in

M5 MEQs 2016 Session 3: SOB 18/11/16

Treatment of community-acquired lower respiratory tract infections in adults

Community Acquired Pneumonia (CAP)

Choosing the Ideal Antibiotic Therapy and the Role of the Newer Fluoroquinolones in Respiratory Tract Infections

10/13/14. Low: not well absorbed. Good: [blood and tissue] < than if given IV. High: > 90% absorption orally

Community-acquired pneumonia (CAP) is a common,

Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship

Cefazolin vs. Antistaphyloccal Penicillins: The Great Debate

Antibiotics & Common Infections: Stewardship, Effectiveness, Safety & Clinical Pearls. Welcome We will begin shortly.

ECHO: Management of URIs. Charles Krasner, M.D. Sierra NV Veterans Affairs Hospital University of NV, Reno School of Medicine October 16, 2018

Assessment of empirical antibiotic therapy in a tertiary-care hospital: An observational descriptive study

Outpatient Antimicrobial Therapy. Role of Antibacterials in Outpatient Treatment of Respiratory Tract Infection. Vicks Vapo Rub for Cold Symptoms

Outpatient Antimicrobial Therapy. Role of Antibacterials in Outpatient Treatment of Respiratory Tract Infection. Vicks VapoRub

Antibacterial Resistance: Research Efforts. Henry F. Chambers, MD Professor of Medicine University of California San Francisco

Updated recommended treatment regimens for gonococcal infections and associated conditions United States, April 2007

Volume 2; Number 16 October 2008

Paratek Announces FDA Approval of NUZYRA (Omadacycline)

A study on the management of acute respiratory tract infection in adults

Optimising antibiotic policies in the Netherlands, part VIII. Revised SWAB Guidelines for antimicrobial therapy of Community-acquired pneumonia

SECTION 3A. Section 3A Criteria for Optional Special Authorization of Select Drug Products

Scottish Medicines Consortium

Basic principles of antibiotic use

MAGNITUDE OF ANTIMICROBIAL USE. Antimicrobial Stewardship in Acute and Long Term Healthcare Facilities: Design, Implementation and Challenges

Randomized Controlled Trial on Adjunctive Lavage for Severe Peritoneal Dialysis- Related Peritonitis

Transcription:

ORIGINAL INVESTIGATION Doxycycline Is a Cost-effective Therapy for Hospitalized Patients With Community-Acquired Pneumonia Reba K. Ailani, MD; Gautami Agastya, MD; Rajesh K. Ailani, MD; Beejadi N. Mukunda, MD; Raja Shekar, MD Background: Doxycycline has a high degree of activity against many common respiratory pathogens and has been used in the outpatient management of lower respiratory tract infections, including pneumonia. Objective: To evaluate the efficacy of intravenous doxycycline as empirical treatment in hospitalized patients with mild to moderately severe community-acquired pneumonia. Patients and Methods: We conducted a randomized prospective trial to compare the efficacy of intravenous doxycycline with other routinely used antibiotic regimens in 87 patients admitted with the diagnosis of community-acquired pneumonia. Forty-three patients were randomized to receive 100 mg of doxycycline intravenously every 12 hours while 44 patients received other antibiotic(s) (control group). The 2 patient groups were comparable in their clinical and laboratory profiles. Results: The mean ± SD interval between starting an antibiotic and the clinical response was 2.21 ± 2.61 days in the doxycycline group compared with 3.84 ± 6.39 days in the control group (P =.001). The mean ± SD length of hospitalization was 4.14 ± 3.08 days in the doxycycline group compared with 6.14 ± 6.65 days in the control group (P =.04). The median cost of hospitalization was $5126 in the doxycycline group compared with $6528 in the control group (P =.04). The median cost of antibiotic therapy in the doxycycline-treated patients ($33) was significantly lower than in the control group ($170.90) (P.001). Doxycycline was as efficacious as the other regimens chosen for the treatment of community-acquired pneumonia. Conclusion: Doxycycline is an effective and inexpensive therapy for the empirical treatment of hospitalized patients with mild to moderately severe communityacquired pneumonia. Arch Intern Med. 1999;159:266-270 From the Department of Medicine, Meridia Huron Hospital, Cleveland, Ohio. PNEUMONIA IS the sixth leading cause of death in the United States and is the most common cause of infectionrelated mortality. 1 The cost of treating the illness in United States is estimated to be $23 billion per year. 2 In patients hospitalized with the diagnosis of community-acquired pneumonia (CAP), antibiotics are usually chosen empirically to treat the most likely causative organisms until a microbiologic cause is established. However, a definitive cause is not usually established; and if there is a good clinical response, the course of therapy is completed with the initially chosen antibiotic. Combinations of antibiotics are often used and these regimens can be expensive. Considerations in choosing antibiotics should include the following: antibacterial spectrum, efficacy, adverse effects, ease of administration, and cost. In various studies from the literature, percentage of cases where no definitive cause for CAP was established ranged from 32.9% 3 to 63.3%. 4 The most commonly detected organism was Streptococcus pneumoniae, ranging from 8.5% 5 to 37.6%. 4 Atypical pneumonias caused by Legionella, Chlamydia, and Mycoplasma together accounted for 8% to 20% of the cases. 3-6 Doxycycline has a high degree of activity against many common respiratory pathogens including S pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, anaerobes such as Bacteroides and anaerobic/microaerophilic streptococci and atypical agents like Legionella, Mycoplasma pneumoniae, and Chlamydia pneumoniae. 7 Doxycycline has been used as oral therapy in the outpatient management of lower respiratory tract infections (including pneumonia), where it has been compared with ofloxacin and spiramycin, and has been found to be comparable. 8-10 Doxycycline is an attractive alternative for hos- 266

PATIENTS, MATERIALS, AND METHODS The study was conducted in a 371-bed community teaching hospital from August 1995 to December 1997. Patients were eligible for the study if they had a clinical and radiological diagnosis of pneumonia acquired in the community before admission to the hospital. Patients were excluded if any of the following were present: younger than 18 years, pregnant or lactating women, history of allergic reaction to the use of tetracycline or doxycycline, severe hepatic or renal dysfunction, human immunodeficiency virus infection, immunocompromised state, clinical sepsis, patients requiring intubation, and patients from a nursing home or a longterm care facility. Patients were enrolled in the emergency department or soon after admission to the hospital. During the study period there were a total of 356 patients admitted with the diagnosis of pneumonia. Of these 356 patients, 136 were from long-term care facilities. Fortysix patients required intubation in the emergency department. Thirty-eight had 1 of the exclusion criteria including immunocompromised state, renal or hepatic failure, or pregnancy. Another 22 patients received antibiotics before enrollment. In 27 patients who were not enrolled in the study, consent could not be obtained. Eighty-seven patients hospitalized with CAP were randomly assigned to receive either doxycycline or 1 or more antibiotics selected by the patient s physician. The randomization process was done by a predetermined numbered sequence. As the patients were enrolled into the study, they were assigned to either the doxycycline group or the control group depending on the number to which they were assigned. The Institutional Research and Review Committee of the hospital approved the study protocol. All patients were informed about the study and a written consent was obtained. PATIENTS After enrollment, patients were interviewed and information was recorded on a standard data collection form. Data included demographic information, history, physical examination, and admission laboratory findings. All patients had baseline investigations that included a chest radiograph, complete blood cell count with differential, serum electrolytes, serum urea nitrogen, serum glucose, pulse oximetry or arterial blood gases, sputum Gram stain and culture, and blood cultures. All patients were examined daily for their complete blood cell counts and electrolyte levels. Additional tests such as sputum, acid-fast stains, serology for Chlamydia, Mycoplasma, and Legionella were performed when clinically indicated, at the discretion of the patient s physician. COMORBID CONDITIONS Conditions such as chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, neoplastic disease, diabetes mellitus, chronic renal failure, alcoholism, and smoking were recorded. Continued on next page pitalized patients with mild to moderately severe CAP. The objective of this study was to evaluate the efficacy of intravenous doxycycline as empirical treatment in hospitalized patients with mild to moderately severe CAP. RESULTS A total of 87 patients were enrolled into the study. Fortythree were randomized to receive doxycycline, and 44 were assigned to the control group. The clinical and laboratory features between the 2 groups of patients were not significantly different, as shown in Table 1 and Table 2. The ages of the patients in the doxycycline and control groups ranged from 18 to 84 years, and 23 to 81 years, respectively (Table 1). However, only 20 (23%) of the 87 patients were older than 60 years. Twenty-seven patients (63%) in the doxycycline group and 21 (48%) in the control group were women. The average number of comorbid conditions between the 2 groups were not statistically significant (P =.18). In both groups, 40% of the patients had documented underlying lung disease. The median cost of antibiotic(s) during hospitalization for the doxycycline group was $33, compared with $170.9 in the control group (P.001) (Table 3). The median cost of hospitalization in the doxycycline group was $5126, compared with $6528 in the control group (P =.04) (Table 3). The mean ± SD time to respond to treatment was 2.21 ± 2.61 days in the doxycycline group, compared with 3.84 ± 6.39 days in the control group (P =.001) (Table 3). The mean ± SD length of hospitalization was 4.14 ± 3.08 days in the doxycycline group, compared with 6.14 ± 6.65 days in the control group (P =.04) (Table 3). The mean ± SD number of antibiotics used, including the one given on discharge, was significantly lower in the doxycycline group than in the control group: 1.16 ± 1.04 in the doxycycline group vs 2.43 ± 1.59 in the control group (P.001) (Table 3). In the doxycycline group, 6 patients developed adverse effects, but none required a change of antibiotic because of the adverse effects. In the control group, 11 patients had adverse effects (P =.19) and 3 of these 11 required a change of antibiotic. Two patients had diarrhea with the use of clindamycin and 1 patient had severe vomiting with the use of erythromycin; hence, their antibiotics were changed. Three patients in the doxycycline group required a change in antibiotic because of a lack of response. Two patients failed to respond to the use of doxycycline. One patient was misdiagnosed and had tuberculosis on the basis of a strongly positive tuberculin skin test and a persistent infiltrate on chest radiograph. This was not confirmed by cultures; however, the patient improved with antituberculous treatment. Eight patients in the control group required a change in the antibiotic regimen, 3 because of adverse 267

TREATMENT Doxycycline (100 mg) was given intravenously every 12 hours in patients randomized to the study group. In patients randomized to the control group, the physician taking care of the patient chose antibiotics without restrictions. All patients were monitored daily by one of us for improvement or deterioration while receiving therapy and were also monitored for any adverse drug effects. CRITERIA FOR RESPONSE The time to respond to treatment was defined as the number of days between the day of randomization (day 1) and the day on which the last of the following parameters was met: (1) oral temperature of 37.9 C or lower over 3 consecutive 8-hour periods; (2) beginning of a decrease in total white blood cell counts, ie, the day the count showed a tendency toward normal in patients who had leukocytosis; (3) subjective improvement of symptoms for which the patient was admitted to the hospital. This was decided by the primary physician s clinical notes and interview of the patient by one of us; and (4) in patients with no underlying disease like chronic obstructive pulmonary disease, congestive heart failure, and who were hypoxic on admission, resolution of hypoxia. Patients who showed any sign of deterioration or who were not responding to therapy or who developed serious adverse effects had their antibiotic regimen changed at the discretion of the physician taking care of them. Patients who improved while receiving therapy were switched to an oral regimen, which in the study group was 100 mg of doxycycline orally every 12 hours. The attending physician determined the time of discharge. STUDY CRITERIA The 2 patient groups were then compared on the following parameters: (1) time to resolution of morbidity, (2) length of hospital stay, (3) cost of antibiotics during hospitalization, (4) cost of hospitalization, (5) adverse effects from the use of antibiotics, and (6) number of antibiotics used per patient, including the antibiotic on discharge. The time to respond to treatment was calculated as described earlier. The length of hospital stay was calculated by subtracting the admission date from the discharge date. The cost of antibiotics used during hospitalization was obtained from the number of antibiotic doses times the cost of each dose. The cost of each dose of antibiotic was obtained from the miniformulary of the pharmacy department of the hospital and was the amount charged to the patient. The mean cost of antibiotic in the doxycycline and the control groups included the antibiotics that were used even when the patient failed while receiving initial therapy. The cost of hospitalization was obtained from the computer records of the hospital bill and not the actual payment made. STATISTICAL ANALYSIS Comparison of patient age was done by Student 2-sample t test. All other variables were analyzed by Wilcoxon rank sum test rather than the Student t test, because of violation of the distributional normality assumption. Because of nonnormal distributions exhibited by most of these variables, medians along with the means and SDs were calculated. The adverse effects were compared by the 2 test. P.05 was considered to indicate statistical significance. effect (as described earlier) and 5 because of a lack of response. Of the 87 patients enrolled in the study, 7 were found to have pneumococcal bacteremia. Three of these 7 patients received doxycycline and 4 received other antibiotics. The pneumococci were sensitive to the use of penicillin in 6 of the 7 patients. One patient had intermediatelevel resistance to penicillin and he had been randomized to the control group. All these isolates were susceptible to the use of tetracycline. All 7 patients recovered and were discharged from the hospital. From January to June 1997 in our hospital system, 10% of S pneumoniae isolates had high-level resistance to penicillin (minimal inhibitory concentration, 2 µg/ ml) and another 10% had intermediate-level resistance to penicillin (minimal inhibitory concentration, 0.1-1.0 µg/ml). Resistance to tetracycline was 6.5%. Of the penicillin-resistant pneumococci, 16.6% were resistant to tetracycline (B.N.M., written communication, May 18, 1998). COMMENT Doxycycline has a good activity against most of the common pathogens causing CAP. 7,11 In this study, we have shown that doxycycline is an effective option for the treatment of patients admitted to the hospital with mild to moderately severe CAP. Doxycycline was more costeffective than other antibiotic options chosen for the empirical treatment of CAP. The cost of hospitalization, time to respond to treatment, and the length of hospitalization were significantly lower in the doxycycline group than in the control group. Besides being inexpensive and effective, the number of patients with adverse effects in the doxycycline group was less than in the control group. This was probably because many patients in the control group received complex regimens involving 2 or more antibiotics. The empirical treatment of CAP has many options. Some of the options involve the use of 2 agents to cover the common respiratory pathogens like S pneumoniae, H influenzae, as well as organisms that cause atypical pneumonia. According to the recommendations of the Infectious Diseases Society of America, 12 the empirical treatment for patients hospitalized to the general wards includes a -lactam antibiotic with or without a macrolide or a quinolone. 12 Doxycycline has been recommended only in the empirical treatment of outpatients with CAP. 12 Even in the recommendations of the American Thoracic Society, 13 tetracycline has been recommended only as an outpatient treatment of CAP. Historically, tetracycline is considered inferior to penicillin in the treatment of S pneumoniae infections. How- 268

Table 1. Clinical Features Comparing the Doxycycline-Treated Patients and Control Patients Clinical Features Doxycycline Control (n = 44) Age, y Mean ± SD 46.37 ± 16.91 47.86 ± 16.42 60 34 33 60 9 11 Sex Male 16 23 Female 27 21 History of Smoking 33 35 Alcohol abuse 9 15 Drug abuse 11 15 Comorbid diseases (average per 2.34 ± 1.52 1.93 ± 1.35 patient), mean ± SD Underlying lung disease 17 17 Heart disease 22 16 Diabetes mellitus 7 6 No underlying conditions 7 7 Fever No fever, temperature 38.0 C 15 10 Temperature, 38.1 C-38.5 C 12 11 Temperature, 38.6 C 16 23 Table 2. Laboratory Features Comparing the Doxycycline and Control s* Laboratory Features Doxycycline Control (n = 44) Cause, known 13 16 Streptococcus pneumoniae 8 9 Positive blood culture 3 4 Haemophilus influenzae 1 3 Staphylococcus aureus 1 1 Klebsiella... 1 Mycoplasma 1... Chlamydia... 1 Pseudomonas 1 1 Mixed 1... Not known 30 28 White blood cell count/µl 10 000 20 17 10 000-20 000 15 21 20 000 8 6 Hypoxia, PaO 2 60 mm Hg or pulse oximetry 92% on room air Present 17 17 *Ellipses indicate not applicable. ever, in certain places there has been a changing trend, with decreasing tetracycline resistance and increasing penicillin resistance. 14 In the United States, 7.5% of S pneumoniae are resistant to tetracycline. 15 Moreover, tetracycline resistance is not the same as doxycycline resistance. In a study of 256 clinical isolates of S pneumoniae described by Shea and Cunha, 7 30% were resistant to penicillin, 20% to tetracycline, and only 5% to doxycycline. Plouffe et al 16 reported antimicrobial susceptibilities on 499 isolates of Table 3. Response to Treatment: Comparison Between the Doxycycline-Treated Patients and Control Patients* Results Doxycycline Control (n = 44) P Time to respond, d Mean ± SD 2.21 ± 2.61 3.84 ± 6.39 Median 2.0 3.0.001 Length of hospitalization, d Mean ± SD 4.14 ± 3.08 6.14 ± 6.65 Median 3.0 5.0.04 Cost of hospitalization, $ Mean ± SD 6518 ± 5701 13 558 ± 36 690 Median 5126.0 6528.1.04 No. of antibiotics used per patient Mean ± SD 1.16 ± 1.04 2.43 ± 1.59 Median 1 2.001 Cost of antibiotics in hospital, $ Mean ± SD 51.36 ± 112.34 232.72 ± 209.42 Median 33.0 170.9.001 Adverse effects Nausea or vomiting 4 5 Diarrhea... 5 Rash... 1.19 Itching 1... Worsening azotemia 1... No. of patients requiring a change of antibiotic(s) 3 8.12 *Ellipses indicate not applicable. S pneumoniae from Franklin County, Ohio, between 1991 and 1994. Doxycycline was found to have excellent activity against pneumococcus (99.2% isolates susceptible) with no trend toward decreasing susceptibilities. High-level penicillin resistance was found in 5 isolates, and all of them were susceptible to doxycycline. Among isolates with intermediate level of sensitivity to penicillin, only 6% were not susceptible to doxycycline. 16 Our study shows doxycycline to be effective for the empirical treatment of hospitalized patients with mild to moderately severe CAP. Some limitations of this study include (1) the study was not blinded, (2) patients with severe disease requiring intubation were excluded, (3) the cause of pneumonia was not established in most of our patients, and (4) we did not perform antibacterial susceptibilities of the organisms isolated against doxycycline. Doxycycline has activity against the common respiratory pathogens, relatively low toxicity, very low cost, and a convenient twice-daily dosing. It should be considered in the empirical treatment of hospitalized patients with mild to moderately severe CAP. Accepted for publication May 26, 1998. Presented in part as an oral research abstract at the annual meeting of the American College of Physicians, Ohio chapter, Columbus, August 15, 1997. We thank Burton C. West, MD, for his contribution in this study and help in preparing the manuscript; Adrian Caracioni, Marketa Kasalova, Ali Malick, and Jan Kasal for their 269

contribution in enrolling patients during this study; and Gordon Jacobsen, statistician at the Henry Ford Health System, Detroit, Mich, for help with the statistical analysis. Reprints: Raja Shekar, MD, Department of Medicine, Meridia Huron Hospital, 13951 Terrace Rd, East Cleveland, OH 44112. REFERENCES 1. National Center for Health Statistics. Vital Statistics of the United States, 1989: Mortality, Part A. Vol 2. Washington, DC: Public Health Service; 1993. US Dept of Human and Health Services publication (PHS) 93-101. 2. Marie TJ. Community acquired pneumonia. Clin Infect Dis. 1994;18:501-515. 3. Fang GD, Fine M, Orloff J, et al. New and emerging etiologies for community acquired pneumonia with implications for therapy: a prospective multicenter study of 359 cases. Medicine. 1990;69:307-316. 4. Ostergaard L, Anderson PL. Etiology of community-acquired pneumonia: evaluation by transtracheal aspiration, blood culture, or serology. Chest. 1993;104: 1400-1407. 5. Marrie TJ, Durant H, Yates L. Community-acquired pneumonia requiring hospitalization: 5-year prospective study. Rev Infect Dis. 1989;11:586-599. 6. Bates JH, Campbell GD, Barron AL, et al. Microbial etiology of acute pneumonia in hospitalized patients. Chest. 1992;101:1005-1012. 7. Shea KW, Cunha BA. Doxycycline activity against Streptococcus pneumoniae. Chest. 1995;108:1775-1776. 8. Pedley JB. Treatment of acute exacerbations of chronic bronchitis in general practice. Br J Clin Pract. 1969; 23:280-283. 9. Harazim H, Wimmer J, Mittermayer HP. An open randomized comparison of ofloxacin and doxycycline in lower respiratory tract infections. Drugs. 1987;34(suppl 1):71-73. 10. Biermann C, Leken A, Riise R. Comparison of spiramycin and doxycycline in the treatment of lower respiratory infections in general practice. J Antimicrob Chemother. 1988;22(suppl B):155-158. 11. Schlick W. The problems of treating atypical pneumonia. J Antimicrob Chemother. 1993;31(suppl C):111-120. 12. Infectious Diseases Society of America. Community-acquired pneumonia in adults: guidelines for management. Clin Infect Dis. 1998;26:811-838. 13. American Thoracic Society. Guidelines for the initial management of adults with community-acquired pneumonia: diagnosis, assessment of severity, and initial antimicrobial therapy. Am Rev Respir Dis. 1993;148:1418-1426. 14. Linares J, Pallares R, Alonso T, et al. Trends in antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Bellvitge hospital, Barcelona, Spain (1979-1990). Clin Infect Dis. 1992;15:99-105. 15. Doern GV, Brueggemann A, Holly HP Jr, Rauch AM. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother. 1996;40:1208-1213. 16. Plouffe JF, Breiman RF, Facklam RR. Bacteremia with Streptococcus pneumoniae: implications for therapy and prevention. JAMA. 1996;275:194-198. 270