Improved Photoacoustic Generator

Similar documents
PRODUCT FAMILY DATASHEET LED SUPERSTAR CLASSIC B DIM

Optoacoustic imaging of an animal model of prostate cancer

ENGINEERING TEST SPECIFICATION

PRODUCT FAMILY DATASHEET LED Retrofit CLASSIC B DIM

Pet Selective Automated Food Dispenser

IQ Range. Electrical Data 3-Phase Power Supplies. Keeping the World Flowing

Pet Selective Automated Food Dispenser

FCI LT LM UNDERGROUND

MGL Avionics EFIS G2 and iefis. Guide to using the MGL RDAC CAN interface with the UL Power engines

SERIE ANTI REPELLERS ANTI VELTEK SYSTEMS, SL.

A Novel Approach For Error Detection And Correction Using Prefix-Adders

Biomedical Photoacoustic Imaging Using Gascoupled Laser Acoustic Detection

PRODUCT FAMILY DATASHEET LED Retrofit CLASSIC B

16-BIT CARRY SELECT ADDER. Anushree Garg B.Tech Scholar, JVW, University, Rajasthan, India

ULTRAVIOL. UltraViol is a dynamically developing. We invite you to become our business partner.

Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures

Color Vision by Prof/Faten zakareia King Saud University Physiology Dept

Active sensing. Ehud Ahissar

288 Seymour River Place North Vancouver, BC V7H 1W6

Design of a High Speed Adder

Supplementary information

Examination of Contrast Mechanisms in Optoacoustic Imaging of Thermal Lesions

AMOXICILLIN AND CLAVULANIC ACID TABLETS Draft proposal for The International Pharmacopoeia (February 2018)

PARATHOM advanced CLASSIC P

EX3 Stepper-Motor Driven Electronic Expansion Valve Technical Data

Effects of Cage Stocking Density on Feeding Behaviors of Group-Housed Laying Hens

AmpFlex Flexible Current Probes

Nathan A. Thompson, Ph.D. Adjunct Faculty, University of Cincinnati Vice President, Assessment Systems Corporation

ULTRAVIOL. UltraViol is a dynamically developing. We invite you to become our business partner.

LOOX 12 V ESSENTIALS

A Flexible natural gas membrane Reformer for m- CHP applications FERRET

Sensitive and selective analysis of fipronil residues in eggs using Thermo Scientific GC-MS/MS triple quadrupole technology

Simrad ITI Trawl monitoring system

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Industrial Batteries Network Power Marathon M FT AGM Modular Power.

Design of High Speed Vedic Multiplier Using Carry Select Adder with Brent Kung Adder

A Flexible natural gas membrane Reformer for m- CHP applications FERRET

Australian Journal of Basic and Applied Sciences. Performance Analysis of Different Types of Adder Using 3-Transistor XOR Gate

Gigahertz optoacoustic imaging for cellular imaging

E. Liischer/P. Korpiun H. J. Coufai/R. Tilgner (Eds.) Photoacoustic Effect

LIKAWAVE VARIO VET THE THERAPY SYSTEM FOR VETERINARY PRACTICES. SIMPLY VARIO. SIMPLY BETTER. WITH AN INNOVATIVE

ROUGH TERRAIN CRANE GR-120NL GR-120N

Medical Imaging Techniques Combining Light and Ultrasound

ICAO WCO Joint Conference on Enhancing Air Cargo Security and Facilitation

Performance Analysis of HOM in LTE Small Cell

Fiber-Optic Accessories

SIMPLE U.V. SPECTROPHOTOMETRIC METHODS FOR THE ESTIMATION OF OFLOXACIN IN PHARMACEUTICAL FORMULATIONS

Subdomain Entry Vocabulary Modules Evaluation

98-P-I Pendant Indirect. Ordering Guide. Key Features 98-P-I. Fixture Type: Project Name: Quick Find litecontrol.com

BuzziWrap Desk Product Specification Sheet

TECHNICAL BULLETIN Claude Toudic Broiler Specialist June 2006

Study on Acoustic Features of Laying Hens Vocalization

Distribution Unlimited

PRODUCT FAMILY DATASHEET LED STAR CLASSIC B

Use of a pulsed fibre laser as an excitation source for photoacoustic tomography.

Comparative Analysis of Adders Parallel-Prefix Adder for Their Area, Delay and Power Consumption

Dynamic Programming for Linear Time Incremental Parsing

DESIGN AND SIMULATION OF 4-BIT ADDERS USING LT-SPICE

Reptiles. Feeding and Breeding Equipment

Introduction. Analysis of Commercial Products

SUMMARY OF THESIS. Chapter VIII "The place of research, its purpose, the biological material and method"

Smart bark control collar BC-2. User manual

PO. Vasan, Gandhinagar District, Gujarat, India, 3 Dean at Faculty of Pharmacy, Dharmsinh Desai University, Nadiad, Gujarat, India.

Benjamin Franklin. Forefather of 21 st Century Dog Training. By Jack Jagoda

Compliance. Should you have any questions, please contact Praveen Pabba, Ph.D., ( or

Multi-Frequency Study of the B3 VLA Sample. I GHz Data

Controllability of Complex Networks. Yang-Yu Liu, Jean-Jacques Slotine, Albert-Laszlo Barbasi Presented By Arindam Bhattacharya

Improving the Safety of Telerobotic Drilling of the Skull Base via Photoacoustic Sensing of the Carotid Arteries

Cat Swarm Optimization

FEATURES OF DISTRIBUTION OF LOADING IN COD-END OF TRAWL OF A VARIOUS DESIGN

S M ALL. Up to 45 dbrw* Height 2.5 m. Custom layout* Air cooling* Height 2.2 m. Space capacity. Easy access. For 1 person. Up to. 2 persons.

XL³ 400 class II insulated distribution cabinets and cable compartments

SC500 53B. Model: SC B NIL. Part List US-English

Design of Carry Select Adder with Binary Excess Converter and Brent Kung Adder Using Verilog HDL

Inverter Multi Split System

Design of 32 bit Parallel Prefix Adders

Blue Malawi Operation Manual GB

Development and validation of a HPLC analytical assay method for amlodipine besylate tablets: A Potent Ca +2 channel blocker

Design of Low Power and High Speed Carry Select Adder Using Brent Kung Adder

Pre-1998 General Education Equivalency Tables (February, 2007)

INTRODUCTION PRODUCT FEATURES. Congratulations on your purchase of the Yapper Stopper Model YS500.

Genetics of behavior traits in dogs

Complete Solutions for BROILER BREEDERS

AALAS affiliate BETTER EDUCATION FOR BETTER SCIENCE

Visit ABLE on the Web at:

Module Egg. MODULE NO. 25: Internal Quality of Egg

HaloGLS, HaloCandle and HaloSpherical lamps

FREQUENTLY ASKED QUESTIONS Pet Owners

5 State of the Turtles

BuzziWrap FrontDesk Product Specification Sheet

arxiv: v1 [physics.optics] 8 Feb 2015

Context sensitivity in the force concept inventory

Effects of Dietary Modification on Laying Hens in High-Rise Houses: Part II Hen Production Performance

Lighting Practices for Successful Laying Hens

Effective Vaccine Management Initiative

A Critical Consideration of the Blink Reflex as a Means for Laser Safety Regulations

INTERNATIONAL STANDARD FOR FCI PIGEON FOOTRINGS

59-P-ID. Arcos Pendant Indirect /Direct. Ordering Guide. Key Features 59-P-ID. Fixture Type: Project Name: Quick Find litecontrol.

MOXIFLOXACIN HYDROCHLORIDE (MOXIFLOXACINI HYDROCHLORIDUM) Draft proposal for The International Pharmacopoeia. (January 2018)

WATERBOX PLATINUM SERIES

Transcription:

Int J Thermophys (2014) 35:2302 2307 DOI 10.1007/s10765-014-1751-9 Improved Photoacoustic Generator T. Borowski A. Burd M. Suchenek T. Starecki Received: 17 November 2013 / Accepted: 23 September 2014 / Published online: 15 October 2014 The Author(s) 2014. This article is published with open access at Springerlink.com Abstract In conventional photoacoustic setups, the photoacoustic signal results from stimulation of a sample placed in the photoacoustic cell by the light modulated at a selected frequency. The signal can be amplified in a resonance photoacoustic cell. For this purpose, different types of acoustic resonators are used. Acoustic resonators are passive, frequency selective elements. An acoustic resonator used in a photoacoustic cell offers the opportunity to design a system working on a basis similar to that of a self-oscillating generator. The geometrical dimensions of an acoustic resonator, and the temperature, composition, and concentration of substances in the gas filling its interior determine the resonance frequency. In conventional photoacoustic setups, in which the resonance method is used, the variability of parameters requires continuous adjusting of or searching for the actual resonance frequency. Use of a fixed and arbitrary selected modulation frequency of the light beam can cause considerable errors in detection of substances in the sample or in determination of their concentration. Unlike conventional photoacoustic methods, the frequency of a photoacoustic signal in an improved photoacoustic generator is self-tuned to the actual resonant frequency of the photoacoustic cell. The improved photoacoustic generator operates without an external circuit that controls the optical modulator. The improved photoacoustic generator has been tested in different measurements of the concentration of methane in air. The automatic gain control signal can be used for determination of the absorption by the sample. T. Borowski Baborowska 5/18, 01-464 Warsaw, Poland e-mail: borowskitomasz7@gmail.com A. Burd M. Suchenek (B) T. Starecki Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland e-mail: M.suchenek@ise.pw.edu.pl

Int J Thermophys (2014) 35:2302 2307 2303 Keywords Photoacoustic effect Photoacoustic generator circuit Photoacoustic self-oscillating generator 1 Introduction One of the reasons why photoacoustic methods are so attractive is their ability to measure low concentrations of substances. Such measurements are often associated with the necessity to detect very low amplitude signals which are comparable to the noise level. One of the methods used commonly to amplify a weak photoacoustic signal uses acoustic resonance cells [1 6]. In that case, the photoacoustic cell is stimulated by a light beam modulated at a frequency equal to the resonant frequency of the cell. The resonant photoacoustic signal is amplified, while amplitudes of signals at other frequencies are reduced. It is known that the resonance frequency of each acoustic resonator depends on the speed of sound in the gas sample filling the resonator. In photoacoustic measurements, samples with different gas compositions can be used. So, the gas filling a photoacoustic cell may have different chemical compositions and thermodynamic parameters. These parameters influence the speed of sound, which directly affects the resonant frequency [7 11]. Examples of changes of the resonant frequency of a Helmholtz resonator are shown in Fig. 1. These experimental results show that the signal amplitude and the resonant frequency of the photoacoustic cell depend strongly on the methane concentration. Although it is not a problem to modulate a light beam with a given frequency, it may be not easy to obtain information about the actual resonant frequency. Therefore, in conventional measuring systems used in photoacoustic experiments, the monitoring of environmental factors are applied. On the basis of these factors, the appropriate calculations and adequate corrections of the corresponding frequency of the light beam modulator are carried out. Without such corrections, even a small deviation of the modulation frequency from the actual resonant frequency of the photoacoustic cell changes the amplitude of the photoacoustic response [12]. This could, as a consequence, result in a strong decrease of the photoacoustic signal amplitude. Additionally, delays in the sensor s reaction time complicate the measure- Fig. 1 Resonance shift of the photoacoustic cell due to the CH 4 concentration in air

2304 Int J Thermophys (2014) 35:2302 2307 ments. A solution in which the measurements are based on a photoacoustic generator, which automatically tunes to the frequency defined by the actual resonant frequency of the photoacoustic cell, would solve this problem. The first experimental application of the photoacoustic generator was presented by Borowski and Starecki [13]. The concept was based on incorporation of the Helmholtz resonator into a positive feedback loop circuit similar to the solution used in electronic oscillators [14,15]. The acoustic signal induced by the photoacoustic effect was converted by an electret microphone into an electrical signal and then amplified. This signal controlled the light source modulation. Application of a positive feedback loop was the main feature distinguishing the mentioned solution from previous known methods of the photoacoustic signal excitation. It should be noted that operation of the photoacoustic generator was based on the use of very high gain and a positive feedback loop. Further research on the self-oscillating photoacoustic generator displayed distortions and instability on the generated signal [16]. In order to work exactly on the resonant frequency, a sinusoidal signal was required. This paper describes an improved photoacoustic generator, which is more stable and produces sinusoidal oscillations. 2 Introduction to Photoacoustic Generator Theory Generally, self-oscillating generators are circuits in which the frequency is produced without the need of supplying any external control signal. The idea of a sinusoidal wave photoacoustic generator is substantially similar to the idea of electronic sinusoidal wave generators, but instead of an LC or RC resonant circuit, a resonant photoacoustic cell is used. The main differences between the photoacoustic generator and the conventional electronic generator are: resonant frequency (determined by the properties of the acoustic resonator), a different technique of resonant circuit stimulation (light pulses), and a different way of outputting the signal from the resonant circuit (acoustic electric transducer, typically a microphone). Similar to electronic oscillators, the photoacoustic generator must satisfy at the same time amplitude and phase conditions. In the case of the photoacoustic generator, in order to excite oscillations, the presence of the photoacoustic signal must appear as a result of the release of the energy of a light beam absorbed by the sample. This means that the light used for stimulation of the photoacoustic generator must include wavelengths from the absorption spectrum of the substance contained in the sample. The overall concept of the first circuit of the photoacoustic self-oscillating generator is shown in Fig. 2. The first approach to the photoacoustic generator was composed of: a light source (LED diodes), an LED driver, a photoacoustic cell, a microphone, and an electronic amplifier. All the elements forming the photoacoustic generator are connected in a closed circuit, thus creating a positive feedback loop. The frequency of generated oscillations is determined by the resonance of the photoacoustic cell. 3 Experimental Setup of the Improved Photoacoustic Generator The improved photoacoustic generator has been tested experimentally; a block diagram is shown in Fig. 3.

Int J Thermophys (2014) 35:2302 2307 2305 Fig. 2 First approach to the photoacoustic generator Fig. 3 Improved photoacoustic generator Comparing the improved photoacoustic generator (Fig. 2) with the first version of the photoacoustic generator circuit (Fig. 1), the improved photoacoustic generator was significantly modified by adding a differential amplifier stage and a diode detector, which are parts of an automatic gain control (AGC) loop. The concept of the improved photoacoustic generator was tested by measuring samples with different methane concentrations. The measuring system consists of: an electronic circuit of the improved photoacoustic generator, an acoustic resonator (Helmholtz resonator with a sample cavity volume of 2 cm 3 ), a microphone cavity volume of 4 cm 3, a duct length of 15 mm, a duct diameter of 4 mm, a source of light (91 infrared LEDs, 890 nm), and a MEMS microphone. In the measurements, ten samples of methane in air mixtures were used. Gaseous samples were prepared by combining them in one large syringe, measured by using scaled syringe portions of 99.999 pure methane and portions of air. For homogenization, the gas samples were mixed. The methane concentration was gradually increased by increments of 10 % volume fraction in each gas sample, reaching finally 100 % concentration. Such samples were injected into the photoacoustic cell. A few seconds after the sample injection, the inlet and outlet valves were closed and measurements of the frequency and the AGC signal level of the generator were performed. All experiments were carried out at 25 C. Figure 4 shows that the operation frequency of the improved photoacoustic generator depends on the methane

2306 Int J Thermophys (2014) 35:2302 2307 Fig. 4 Dependence of resonance frequency on the CH 4 concentration in the sample Fig. 5 Dependence of the AGC signal level on the CH 4 concentration in the sample concentration. Figure 5 shows how the AGC signal level in the improved photoacoustic generator depends on the methane concentration. 4 Experiment Results The improved photoacoustic generator produces an oscillation immediately after the power is turned on. The oscillation frequency of the improved photoacoustic generator changes proportionally with the methane concentration in the gas sample, varying from 1410 Hz with the gas sample containing 10 % of methane in air to 1715 Hz with 100 % methane concentration. For all measured gas samples, the frequency of the improved photoacoustic generator is self-tuned to the actual resonant frequency of the photoacoustic cell. The resonant frequency depends on the gas composition due to its influence on the speed of sound. So, the variation of the photoacoustic cell resonance frequency was about 300 Hz. Over the whole range of the methane concentration, the amplitude of oscillations was maintained at a constant level. The automatic gain control loop delivers a DC voltage at the output of the detector, for which the level changes according to the methane concentration in the gas sample and shows high linearity over the whole tested concentration range.

Int J Thermophys (2014) 35:2302 2307 2307 5 Conclusions A positive feedback loop with automatic gain control efficiently controls operation of the photoacoustic generator. The frequency of the photoacoustic signal produced by the improved photoacoustic generator changes proportionally with gas concentration over the whole range of concentrations, i.e., from 10 % to 100 % volume fraction of methane in the air. Contrary to the conventional photoacoustic method, the improved photoacoustic generator always produces a photoacoustic signal at the actual resonant frequency of the photoacoustic cell. Since the sample composition has significant influence on the speed of sound, which affects the resonant frequency, self-tuning to the resonance is an important feature, especially if one is dealing with samples for which these parameters have a significant impact on the resonant frequency. As a result, the photoacoustic signal can be obtained at the maximum of the resonance curve, not on the slope. The AGC signal (internal negative feedback loop) controls and maintains the amplitude of the oscillations at a constant level. The level of the AGC signal correlates with the methane concentration in the sample. The feature of self-tuning to the cell resonance is advantageous in the case of high Q-factor resonators. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References 1. R.S. Quimby, P.M. Selzer, W.M. Yen, Appl. Opt. 10, 2630 (1977) 2. W.A. McClenny, C.A. Bennett Jr., G.M. Russwurm, R. Richmond, Appl. Opt. 4, 650 (1981) 3. J. Pelzl, K. Klein, O. Nordhaus, Appl. Opt. 1, 94 (1982) 4. D. Pereira, A. Scalabrin, Infrared Phys. 6, 549 (1992) 5. V. Zeninari, V.A. Kapitanov, D. Courtois, Yu.N. Ponomarev, Infrared Phys. 1, 1 (1999) 6. A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001) 7. M.F. Costa Gomes, J.P.M. Trusler, J. Chem, Thermodyn. 9, 1121 (1998) 8. B.A. Younglove, N.V. Frederick, Int. J. Thermophys. 5, 897 (1990) 9. C. Fischer, E. Sorokin, I.T. Sorokina, M.W. Sigrist, Opt. Lasers Eng. 43, 573 (2005) 10. J.-P. Besson, Photoacoustic Spectroscopy for Multi-gas Sensing Using Near Infrared Lasers, Ph.D. thesis No. 3670, École Polytechnique Fédérale de Lausanne, 2006 11. G.Z. Angeli, Z. Bozóki, A. Miklós, A. Lörincz, A. Thöny, M.W. Sigrist, Rev. Sci. Instrum. 3, 810 (1991) 12. A.A. Kosterev, L. Dong, D. Thomazy, F.K. Tittel, S. Overby, Appl. Phys. B 3, 649 (2010) 13. T. Borowski, T. Starecki, Eur. Phys. J. Spec. Top. 153, 439 (2008) 14. J. Groszkowski, Frequency of Self-Oscillations (Pergamon Press, New York, 1964) 15. J.R. Westra, C.J.M. Verhoeven, A.H.M. van Roermund, Oscillators and Oscillatory Systems: Classification, Analysis and Synthesis (Springer, Boston, 1999) 16. T. Borowski, T. Starecki, Eur. Phys. J. Spec. Top. 154, 319 (2008)