Genetic Evaluation and Selection Response of Birth Weight and Weaning Weight in Indigenous Sabi Sheep

Similar documents
Revised models and genetic parameter estimates for production and reproduction traits in the Elsenburg Dormer sheep stud

Genetic (co)variance components for ewe productivity traits in Katahdin sheep 1

The South African National Small Stock Improvement Scheme

Genetic parameters for ewe reproduction with objectively measured wool traits in Elsenburg Merino flock

RELATIONSHIP BETWEEN GROWTH OF SUFFOLK RAMS ON CENTRAL PERFORMANCE TEST AND GROWTH OF THEIR PROGENY

Relationship of ewe reproduction with subjectively assessed wool and conformation traits in the Elsenburg Merino flock

COMPARISON OF THE PERFORMANCE OF PROGENY FROM A MERINO SIRE EXTENSIVELY USED IN THE LATE 1980s AND TWO WIDELY USED MERINO SIRES IN 2012

Sheep Breeding. Genetic improvement in a flock depends. Heritability, EBVs, EPDs and the NSIP Debra K. Aaron, Animal and Food Sciences

Genetic evaluation of ewe productivity and its component traits in Katahdin and Polypay sheep. Hima Bindu Vanimisetti

EFFECT OF SOME FACTORS ON THE WOOL YIELD AND STAPLE LENGTH AT DIFFERENT AGES IN SHEEP FROM THE NORTHEAST BULGARIAN FINE FLEECE BREED - SHUMEN TYPE

NSIP EBV Notebook June 20, 2011 Number 2 David Notter Department of Animal and Poultry Sciences Virginia Tech

Breeding strategies within a terminal sire line for meat production

INFLUENCE OF FEED QUALITY ON THE EXPRESSION OF POST WEANING GROWTH ASBV s IN WHITE SUFFOLK LAMBS

Crossbreeding to Improve Productivity ASI Young Entrepreneur Meeting. David R. Notter Department of Animal and Poultry Sciences Virginia Tech

Animal Science 2003, 76: /03/ $ British Society of Animal Science

Sheep Breeding in Norway

Genetic approaches to improving lamb survival under extensive field conditions

Asian-Aust. J. Anim. Sci. Vol. 23, No. 5 : May

RELATIONSHIPS AMONG WEIGHTS AND CALVING PERFORMANCE OF HEIFERS IN A HERD OF UNSELECTED CATTLE

Genetic analysis of ewe productivity traits in Ghezel sheep using linear and threshold models

International sheep session Focus on Iceland Eyþór Einarsson 1, Eyjólfur I. Bjarnason 1 & Emma Eyþórsdóttir 2 1

GENETIC PARAMETERS FOR MILK PRODUCTION OF EWES IN FOUR SOUTH AFRICAN WOOLLED SHEEP FLOCKS UNDER DIFFERENT GRAZING CONDITIONS

Derivation of a new lamb survival trait for the New Zealand sheep industry 1

Level 1 Agricultural and Horticultural Science, 2017

An assessment of the benefits of utilising Inverdale-carrying texel-type rams to produce crossbred sheep within a Welsh context

7. Flock book and computer registration and selection

EAAP 2010 Annual Meeting Session 43, Paper #2 Breeding and Recording Strategies in Small Ruminants in the U.S.A.

SA MERINO SIRE EVALUATION TRIAL - UPDATE

CLUSTERING AND GENETIC ANALYSIS OF BODY RESERVES CHANGES THROUGHOUT PRODUCTIVE CYCLES IN MEAT SHEEP

Selection for Egg Mass in the Domestic Fowl. 1. Response to Selection

Body length and its genetic relationships with production and reproduction traits in pigs

SA MERINO SIRE EVALUATION SITE TRIAL NEWS DECEMBER 2017

Sheep Electronic Identification. Nathan Scott Mike Stephens & Associates

DETERMINATION OF THE BEST NONLINEAR MODEL FOR DESCRIBING COMPLETE LACTATION OF AKKARAMAN AND GERMAN BLACKHEADED MUTTON X AKKARAMAN CROSSBREED (F 1

AUTUMN AND SPRING-LAMBING OF MERINO EWES IN SOUTH-WESTERN VICTORIA

SHEEP SIRE REFERENCING SCHEMES - NEW OPPORTUNITIES FOR PEDIGREE BREEDERS AND LAMB PRODUCERS a. G. Simm and N.R. Wray

Analysis of genetic improvement objectives for sheep in Cyprus

Multi-trait selection indexes for sustainable UK hill sheep production

The change in the New Zealand flock and its performance

Assessing genetic gain, inbreeding, and bias attributable to different flock genetic means in alternative sheep sire referencing schemes

Genetic analysis of growth traits in Harnali sheep

1 of 9 7/1/10 2:08 PM

Effects on egg quality traits of crossing Egyptian Golden Montazah with White Leghorn chickens

Potential for Hair Sheep in the United States

The Power of NSIP to Increase Your Profits. August 17, 2015 Rusty Burgett, Program Director

Synonyms. Origins. Sub-types and races. Distribution. Ecological zones. Management systems.

Keeping and Using Flock Performance Records Debra K. Aaron, Animal and Food Sciences

Genotypic and phenotypic relationships between gain, feed efficiency and backfat probe in swine

OVULATION RATE AND LITTER SIZE OF BARBADOS, TARGHEE AND CROSSBRED EWES'

Genetic parameters and breeding value stability estimated from a joint evaluation of purebred and crossbred sows for litter weight at weaning

Evaluation of Egyptian sheep production systems: I. Breed crosses and management systems

Dr. Dave Notter Department of Animal and Poultry Sciences Virginia Tech Host/Moderator: Jay Parsons

Effects of ewe age and season of lambing on proli cacy in US Targhee, Suffolk, and Polypay sheep

OPPORTUNITIES FOR GENETIC IMPROVEMENT OF DAIRY SHEEP IN NORTH AMERICA. David L. Thomas

FINAL REPORT OF RABBIT PROJECTS

Crossbred lamb production in the hills

Genetic evaluation for egg production traits in Japanese quail.

Experiences with NSIP in the Virginia Tech Flocks Scott P. Greiner, Ph.D. Extension Animal Scientist, Virginia Tech

Adjustment Factors in NSIP 1

Across population genetic parameters for wool, growth, and reproduction traits in Australian Merino sheep. 1. Data structure and non-genetic effects

KANSAS SHEEP RESEARCH 1994

EverGraze: pastures to improve lamb weaning weights

LIFETIME PRODUCTION OF 1/4 AND 1/2 FINNSHEEP EWES FROM RAMBOUILLET, TARGHEE AND COLUMBIA DAMS AS AFFECTED BY NATURAL ATTRITION ABSTRACT

The effect of weaning weight on subsequent lamb growth rates

The BCSBANZ Registered Breeds Handbook

Crossbred ewe performance in the Welsh hills

Josefina de Combellas, N Martinez and E Gonzalez. Instituto de Producción Animal, Facultad de Agronomia, Universidad Central de Venezuela, Maracay

GROWTH OF LAMBS IN A SEMI-ARID REGION AS INFLUENCED BY DISTANCE WALKED TO WATER

DESIGN AND IMPLEMENTATION OF A GENETIC IMPROVEMENT PROGRAM FOR COMISANA DAIRY SHEEP IN SICILY

The BCSBANZ Registered Breeds Handbook

Relationship between pelvic and linear body measurements in Dorper ewes

GENETIC AND NON GENETIC FACTORS AFFECTING THE LITTER TRAITS OF BROILER RABBITS*

Evaluating the performance of Dorper, Damara, Wiltshire Horn and Merino breeds in the low rainfall wheatbelt of Western Australia Tanya Kilminster

Lifetime Wool. Optimising ewe nutrition to increase farm profit

Genetic parameters and factors influencing survival to twenty-four hours after birth in Danish meat sheep breeds

Breeding and feeding for more lambs. Andrew Thompson & Mark Ferguson

AN ABSTRACT OF THE THESIS OF. Breed and Heterosis Effects on Wool and Lamb Production of

KANSAS SHEEP RESEARCH

Ram Buyers Guide.

of the Grootfontein Agricultural Development Institute

Influence of some Genetic and Non-Genetic Factors on Total Milk Yield and Lactation Period in Iraqi Awassi Sheep

Level 1 Agricultural and Horticultural Science, 2011

Post-weaning Growth and Carcass Traits of St. Croix White and Dorper X St. Croix White Lambs Fed a Concentrate Diet in the U.S.

New French genetic evaluations of fertility and productive life of beef cows

Conception rate and fecundity of Dohne Merino ewes in a continuous mating system

REPRODUCTIVE PERFORMANCE FOR FOUR BREEDS OF SWINE: CROSSBRED FEMALES AND PUREBRED AND CROSSBRED BOARS

Evaluation of terminal sire breeds in hair sheep production systems

AGE OF ONSET OF PUBERTY IN MERINO EWES IN SEMI-ARID TROPICAL QUEENSLAND

Genetic parameters of number of piglets nursed

AN INITIATIVE OF. The New Ewe. Andrew Kennedy EVENT PARTNERS: EVENT SUPPORTERS:

Estimation of genetic and phenotypic parameters for sow productivity traits in South African Large White pigs

Inbreeding Effects on Reproductive Traits of Mehraban Sheep

Managing your flock during the breeding season

Estimates of Genetic Parameters and Environmental Effects of Hunting Performance in Finnish Hounds 1

Feedlot Performance and Carcass Characteristics of Lambs Sired by Texel, Romanov, St. Croix or Dorset Rams from Polypay and St.

Genetic and economic benefits of selection based on performance recording and genotyping in lower tiers of multi tiered sheep breeding schemes

LAMBPLAN and MERINOSELECT

Key Information. Mountain Hill Vs Lowland Production. Breeding Strategy

THE DOHNES ROLE IN THE AUSTRALIAN SHEEP INDUSTRY. Geoff Duddy, Sheep Solutions Leeton, NSW Australia

Breeding value evaluation in Polish fur animals: Estimates of (co)variances due to direct and litter effects for fur coat and reproduction traits

Transcription:

169 Genetic Evaluation and Selection Response of Birth Weight and Weaning Weight in Indigenous Sabi Sheep. Assan*, S. Makuza 1, F. Mhlanga 1 and O. Mabuku 2 Matopos Research Station, Private Bag K 5137, Bulawayo, Zimbabwe ABSTRACT : Genetic parameters were estimated for birth weight and weaning weight from three year (1991-1993) data totalling 11 records of 25 rams to 25 ewes of Indigenous Sabi flock maintained at Grasslands Research Station in Zimbabwe. AIREML procedures were used fitting an Animal Model. The statistical model included the fixed effects of year of lambing, sex of lamb, birth type and the random effect of ewe. Weight of ewe when first joined with ram was included as a covariate. Direct heritability estimates of.27 and.38, and maternal heritability estimates of.24 and.9, were obtained for birth weight and weaning weight, respectively. The total heritability estimates were.69 and.77 for birth weight and weaning weight, respectively. Direct maternal genetic correlations were high and positive. The corresponding genetic covariance estimates between direct and maternal effects were positive and low,.25 and.18 for birth weight and weaning weight, respectively. Responses to selection were.8 kg and.14 kg for birth weight and weaning weight, respectively. The estimated expected correlated response to selection for birth weight by directly selecting for weaning weight was.26. Direct heritabilities were moderate; as a result selection for any of these traits should be successful. Maternal heritabilities were low for weaning weight and should have less effect on selection response. Indirect selection can give lower response than direct selection. (Asian-Aust. J. Anim. Sci. 22. Vol 15, No. 12 : 169-1694) Key Words : Genetic Parameters, Variance Components, Selection Response, Indigenous Sabi Sheep INTRODUCTION The Sabi sheep is the most common indigenous breed in Zimbabwe. The breed is small in size and relatively slow growing, but is hardy and fecund under adverse conditions. Most sheep flocks in Zimbabwe have originated from the indigenous Sabi ewe but since the turn of the century there has been a continual infusion of Blackhead Persian (Donkin, 1973). The indigenous breed is a fat tailed type (Ward, 1959) characterized by a non-wooled hairy coat of a multiplicity of colours (Donkin, 1973). The coat of short stiff hair is generally fawn, brown and/or red in colour but black and pure white are also common as are the mixed colours. It has similar features to Red Maasai and Tswana sheep of Eastern and Southern Africa (Mason and Maule, 196). The resistance of their hairy coat to penetration by awned seeds allows the breed to enjoy wide distribution in the country. The Sabi is noted for its hardiness and fecundity under arduous conditions and in addition, for its resistance to certain local diseases and pests. Sabi sheep are relatively slow growing reaching adult mature weights of 35 kg (ewes) to 45 kg (rams) (Devendra and McLeroy, 1982). Females conceive first at ten months with a body * Corresponding Author: N. Assan. Tel: +263-838-264, Fax: +263-838-253, E-mail: ziimagadzire@gatorzw.com 1 Department of Animal Science, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe. 2 Grasslands Research Station, Private Bag 371, Marondera, Zimbabwe. Received November 1, 21; Accepted July 16, 22 mass of approximately 18 to 2 kg. Arrowsmith and Ward (1983) noted that males reach puberty (as judged by first ejaculation) at 169 days weighing 21 kg. The most notable feature is the fat tail which seems to function as a food reserve for periods of nutritional stress. Few attempts have been made to improve the genetic potential of this breed through selection. Genetic improvement of indigenous Sabi sheep is imperative considering the improvement in productivity that has been achieved by changes in management. Although there is an increasing national and international interest in indigenous species of animals for genetic conservation and improvement, relatively little attention in the field of quantitative genetics has been given to the indigenous Sabi sheep in Zimbabwe. Unlike for exotic sheep breeds, no estimates of both covariances components and genetic parameters for weight traits in indigenous Sabi sheep have been estimated to allow the development of sensible breeding programmes.the records of indigenous Sabi flock at Grasslands Research Station, Marondera, Zimbabwe although small provided an opportunity to estimate the genetic parameters for birth weight and weaning weight. The objectives of this study were: (a) to estimate direct and maternal heritability for birth weight and weaning weight. (b) to determine covariances and correlations between direct and maternal effects for birth weight and weaning weight. (c) to predict responses to direct selection for birth weight and weaning weight.

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 1691 MATERIALS AND METHODS Flock management All animals were grazed on free range, and protein concentrates were given during the dry season. The ewes plus their progeny were grazed on an extensively managed dryland veld during the day from 8: h to 15: h and were penned in a kraal at night. General flock health management included monthly dipping during the rainy season and two monthly dippings during the dry season. All animals were vaccinated against Pulpy Kidney and Rift Valley Fever. Animals had access to water in the kraal at all times. The ram were left to run with the flock both during grazing and the breeding/ mating period. The main breeding season was between May and June. Ewes which failed to conceive were remated after 2 days. Single sire flocks comprised of one ram to 3 ewes. Ewes were introduced to the breeding flock for mating when they attained one and half years of age and rams were not used for service until they were over one and half years old. Most lambs were born between late October and early November which is the start of the rain season. Lambs were weighed and ear tagged soon after birth and left to suckle their dams during grazing until weaning at three months of age. Lambs were separated by sex at weaning into two weaner flocks. The records taken on lambs included birth weights and weaning weights. Data and statistical analysis Data on birth weight and weaning weight were obtained from Grasslands Research Station, Marondera, Zimbabwe. The data included a total of 11 ewe progeny records from 25 rams and 25 ewes of Indigenous Sabi sheep, born between 1991 and 1993. All animals had the same genetic background and were subjected to the same selection and feeding procedure. The means (±SE), standard deviations and the coefficients of variation for the traits measured in the Indigenous Sabi sheep are presented in Table 1. The data were edited to remove outliers and incorrect data. Records were deleted if missing sire or dam identification or duplication of pedigree. An analysis was done using the General Linear Model (GLM) procedure of the Statistical Analysis System (SAS) (1996) to establish the significance of the non-genetic factors. Weight of ewe at first joining with ram for mating was fitted as a covariate. Only significant non-genetic factors were used in the animal Table 1. Summary statistics of the data set used to estimate variance components for birth weight and weaning weight in Indigenous Sabi sheep in Zimbabwe Trait No of records Mean Std. dev CV Birth weight 11 3.29±.33.926 28.13 Weaning weight 11 13.96±.142 4.42 26.75 model as fixed effects. The linear statistical model fitted was: Y ijkl =µ+y i +S j +T k +b(p ijkl )+e ijkl where; Y ijkl =the traits studied (birth weight, weaning weight); µ=overall mean (constant); Y i =fixed effect of year of lambing; i th =1991, 1992, 1993; S j =fixed effect of sex of lamb; j th = male, female; T k =fixed effect of birth type; k th = single, twins; b=linear regression coefficient of weight of ewe at joining on birth weight and weaning weight; e ijkl =is the error term, assumed to be randomly and independently distributed with a mean equal to and variance equal to. Animal model Genetic parameters were estimated using the Average Information Restricted Maximum Likelihood (AIREML) methodology (Gilmour, 1995) using an Animal Model. In matrix notation the univariate mixed linear model used was of the maternal form. y=xb+zu+wm+sl+e where; y=vector of birth weight and weaning weight; b=vector of year of lambing, sex and birth type; µ=vector of animal (direct) effects; m=vector of maternal (indirect) genetic effects; I=vector of common environmental (litter) effects of ewe; e=vector of random residual effects; X, Z, W and S are incidence matrices relating records to fixed, animal, maternal genetic and litter effects respectively. where : It is assumed that: var µ m l e = Ag 11 Ag 12 Ag 22 Ag 21 Iσ 2 I Iσ 2 e g 11 =additive genetic variance for direct effects; g 22 =additive genetic variance for maternal effects; g 12 =additive genetic covariance between direct and maternal effects; Iσ²I=variance due to common environmental (litter)

1692 ASSAN ET AL. effects of the ewe; Iσ² e =residual error variance. A is the numerator relationship matrix among animals and I is the identity matrix. Total heritability (h T ) was calculated as: h T =(σ² a +3/2σ² am + 1/2σ² m )/σ² p Estimation genetic progress Genetic progress (R) was calculated using the formula: R = [ ( i m +i f )/(L m +L f )] h 2 σ 2 p where : R= annual rate of response to selection; i m +i f =selection intensity for males and females respectively; L m +L f =generation interval for males and females respectively; h 2 =heritability for trait of importance; σ 2 = phenotypic standard deviation; The selection intensity (i) is a function of the proportion of animals selected to be the future parents (p). In order that the effects of selection intensity on genetic progress may be established, selection intensity used for sires were: i m =1.75 (p=1%), while for ewes was (i)=.52 (p=75%). Generation intervals were taken to be 3 years for males and 4 years for females. Correlated response to selection Correlated response was calculated using the following formula: where: CR x =ih X h Y r A σ 2 PY CR X =correlated response of birth weight resulting from selection applied to weaning weight; i=intensity for selection; h X =accuracy of selection for birth weight; h Y =accuracy for selection for weaning weight; r A =correlation between birth weight and weaning weight ; σ 2 PY=phenotypic variance for weaning weight; RESULTS AND DISCUSSION Covariance components and genetic parameter estimates for birth weight and weaning weight are presented in Table 2. Moderate estimates of direct heritability were obtained for birth weight,.27 and weaning weight,.38. There are comparable estimates of direct heritabilty estimates for birth weight (Campbell, 1971; Carriedo et al., 1988; Larqard et al., 1998) and for weaning weight (Babar et al., 1998; Maria et al., 1993, 1993). Literature estimates for direct heritability are variable and range from low to high. Lower direct heritability estimates than in present study have been reported in the ranges of.2 to.16 (Kirman et al., 1988; Singh et al., 1988; Tsenkov et al., 1989) for birth weight and.7 to.18 (Abboud, 1989; Notter, 1998) for weaning weight. The direct heritability estimates obtained in this study for birth weight were within the range of.3 to.43 from ten studies and the weaning weight estimates coincide with the range of.8 to.62 from 12 studies all summarised by Wiener, (1994). The estimates herein fall within the range also of.1 to.72 for birth weight and.8 to.59 reported by Bowman, (1968). Although this study was undertaken in a extensive management system the results are well within those reported for exotic breeds under intensive management (Olivier et al., 1994). The maternal heritability estimates are lower than direct heritability estimates (.24 vs.27) for birth weight and (.9 vs.38) for weaning weight. The maternal heritability estimate for birth weight is moderate and in agreement with Table 2. Variance components and genetic parameters in Indigenous Sabi sheep Component Birth weight Weaning weight σ² a 14.19 19.99 σ² m 12.42 4.599 σ² am 13.25 1.931 σ² litter 1.47 9.586 σ² p 52.58 53.278 σ² e 1.52 15.71 h² a.27.38 s.e..2.6 h² m.24.9 s.e..1.6 h² т.77.69 Cov am.25.18 r am 1. 1. R.8.14 CR x.26 X=birth weight. σ² a =direct additive genetic. σ² m =maternal additive genetic variance. σ² am =direct and additive variance. σ² litter =common environmental (litter) variance. σ² p =phenotypic variance = sum of variance and covariance components. σ² e =error variance. h² a =direct heritability. h² m =maternal heritability. h² т =total heritability (total genetic effect). cov am =direct and maternal genetic covariance. r am =direct and maternal genetic correlation.

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 1693 earlier observations in lambs (Maria et al., 1993; Larsqard et al., 1998; Neser et al., 21) but higher than those reported by other researchers (Snyman, 1996; Maria et. al., 1993; Tosh and Kemp, 199; Gray et al., 1999). South African breeds maternal heritability estimates vary from.7-.2 (Neser et al., 21). The maternal heritabilities reported for weaning weight in the present study are low,.9 and are within the range reported in literature of.6 to.14 (Larsqard et al., 1998; Khaldi et al., 1989; Snyman, 1996). Total heritability estimates were.77 and.69 for birth weight and weaning weight, respectively. Direct heritability was higher for weaning weight, but larger maternal component of birth weight gave higher total heritability. The total heritability values are higher than the range of estimates by other researchers (Burfening and Kress, 1993; Van Wyk et. al., 1993a; Tosh and Kemp, 1994; Snyman, 1996) which were.11 to.33 and.18 to.22 for birth weight and weaning weight, respectively. Understanding of the relationship between direct and maternal effects will facilitate formulation of optimum breeding programmes and improvement of selection efficiency (Robison, 1981). The results in literature dealing with the genetic correlations between direct and maternal effects for both traits vary (Neser et al., 21). The correlations estimates reported are mostly negative in contrast to the positive estimates reported in the present study. Genetic correlations of direct and maternal effects of -.74 to.1 were reported by other authors (Burfening and Kress, 1993; Mousa et al., 1999; Tosh and Kemp, 1994) while the results of Oku et al. (1999) reported estimates ranging from -.99 to.99 which agrees quite well with the value of 1. in the present study. Direct and maternal additive genetic correlation of 1. was also reported by Synman et al. (1996) in Merino sheep for weight at 18 month. The high positive direct- maternal additive genetic correlation could probably be the result of a small size of the data set used in this study. However it cannot be ruled out that the high positive direct-maternal additive genetic correlation is an indication of a possibility to improve maternal effect while selecting for both traits. For accurate and unbiased analysis of direct-maternal additive genetic correlation very large data sets are required. With a data set of the size (n=11) used in this study such deviations cannot be expected Positive estimates of covariances were obtained in this study,.25 and.18 for birth weight and weaning weight, respectively. Other researchers reported strong negative covariances (Burfening and Kress, 1993; Maria et al., 1993). Negative estimates for direct and maternal correlations have been reported in beef cattle (Tawonezvi, 1982). Yazidi et al. (1997) observed positive direct- maternal correlations for birth weight and weaning weight of approximately,.18 and.5, respectively which are lower than those observed in the present study. Responses to selection were.8 kg and.14 kg for birth weight and weaning weight, respectively. The estimated expected correlated response to selection for birth weight by directly selecting for weaning weight was.26. Direct heritabilities were moderate and so selection for any of these traits should be successful. Maternal heritabilities were low for weaning weight and should have less effect on selection response. CONCLUSION Direct heritabilities were moderate and so conventional selection for both traits should give genetic progress. Maternal heritabilties were low for weaning weight and should have no effect on selection response. Indirect selection gave lower responses than direct selection. IMPLICATIONS This study should be repeated with more records from a longer study period on different management regimes. REFERENCES Abboud, S. Y. 1989. Genetic and phenotypic parameters associated with growth of purebred and crossbred lambs. Dissertation Abst. International. B. Sci. and Eng. 5, 38. Arrowsmith, S. P. and H. K. Ward. 1983. Indigenous Sheep Selection Programme and Productivity of Indigenous Sheep and Goats. Annual Report 198/81, Division of Livestock and Pastures, Department of Research and Specialist Services, Harare, pp. 92-95. Babar, I. R., M. Tahir and M. K. Ahmad. 1989. Heritability estimates of weaning weight in Awassi sheep in Pakistan. Pakistan Vet. J. 9:183-85. Bowman, J. C. 1984. An introduction to animal breeding. Edward Arnold. London. UK. Burfening, P. J. and D. D. Kress. 1993. Direct and maternal effects on birth weight and weaning weight in sheep. Small Ruminant Res. 1:153-163. Campbell, Q. P. 1971. Breding problems in Dorper sheep. PhD. Thesis. University of Orange Free State, Bloemfontein, SA. Carriedo, J. A., A. Rio and F. San Primitivo. 1988. Heritability of body weight and preweaning growth of single born lambs and environmental factors affecting these. Anales de la Facultad de Veterinaria. 34:15-27. Devendra and McLeroy, 1982. Goat and sheep production in the tropics. Longman, London, UK. Donkin, D. J. 1973. Sheep breeds in Rhodesia In. Sheep handbook. Sheep Producers Association, Harare, pp 2.1-2.8. Gilmour, A. 1995 Average Information Restricted Maximum Likelihood (AIREML) manual. Polycopy. Gray, H. Q., F. W. C. Neser, G. J. Erasmus and J. B. Van Wyk. 1999. Genetic trends in South African nucleus breeding scheme. S. Afr. J. Anim. Sci. 29:48-53.

1694 ASSAN ET AL. Khaldi, G. and D. Boichard. 1989. Effects directs et maternels sur les caracteres de croissance en race ovine Barbarine. Intra- Ariana (Tunisie) 62:3-2. Kirkman, M. N., H. Singh, V. Singh and R. P. Choudhary. 1988. Genetic studies on growth in pure and crossbred sheep. Indian Vet. Med. J. 12:32-39. Lasqard, A. G. and I. Olensen. 1998. Genetic parameters for direct and maternal effects on weights and ultrasonic muscle and fat depth of lambs. Livest. Prod. Sci. Maria, G. A. and K. G. Moore- Dickerson. 1993. Genetic parameters of growth traits of Romanov sheep estimated by univariate and multivariate animal model. Archivos de Zootecnia, 42:147-154. Maria, G. A., K. G. Boldman and L. D. Vann Vleck. 1993. Estimates of variances due to direct and maternal effects for growth traits of Roman sheep. J. Anim. Sci. 71:845-849. Mason, I. L. and J. P. Maule. 196. The Indigenous Livestock of Eastern and Southern Africa. C.A.B., Farnham Royal, England. Mousa, E., L. D. Van Vleck and K. A. Leymaster. 1999. Genetic parameters for growth traits for a composite terminal sire breed of sheep. J. Anim. Sci. 77:1659-1665. Neser, F. W. C., G. J. Erasmus and J. B. Van Wyk. 21. Genetic parameter estimates for pre-weaning traits in Dorper sheep. Small Rum. Res. 4:197-22. Notter, D. R. 1998. Genetic parameters for growth traits in Suffolk and Polypay sheep. Livest. Prod. Sci. 55:25-213. Okut, H., C. M. Bromley, L. D. Van Vleck and G. D. Snoder. 1999. Genotypic expression with different ages. 1 Prolificacy traits of sheep. J. Anim. Sci. 77:2357-2365. Olivier, J. J., G. J. Erasmus, J. B. Van Wyk and K. V. Konstintatinov. 1994. Direct and maternal variance components for clean fleece weight, body weight and mean fibre diameter in the Grootfontein Merino Stud. S. Afr. J. Anim. Sci. 24:122-124. Robison, O. W. 1981. The influence of maternal effects on the efficiency of selection. Livest. Prod. Sci. 8:121-137. SAS (Statistical Analysis System), 1996. SAS Guide for Personal computers, Version 6.12. inst., Inc., Cary, NC. Singh, V. K., D. Gopal, S. C. Mehta and P. R. Sharma. 1998. Selection in Marwari sheep. 1 Performance of selection line. Indian J. Small Ruminants. 4:1-4. Synam, M. A., J. J. Olivier and W. J. Olivier. 1996. Variance components and genetic parameters for body weight and fleece traits of Merino sheep in an arid environment S. Afr. J. Anim. Sci. 26:11-14. Tawonezvi, H. P. R. 1982. Selection of beef females. Zimb. Agric. J. 79:65-71. Tosh, J. J. and R. A. Kemp. 1994. Estimation of variance components for lamb weight in three sheep populations. J. Anim. Sci. 72:1184-119. Tsenkov, I. and S. Laleva. 1989. The variability of birth weight in thrace fine wool lambs of the stara Zagora breed type. Genetikai Selektsiya. 22:429-434. Van Wyk, J. B., G. J. Erasmus and K. V. Konstantinov. 1993b. Relationship between early growth in the Elsenburg Dormer sheep stud. S. Afr. J. Anim. Sci. 23:81-84. Ward, H. K. 1959. Some observation on the Indigenous ewes. Rhodesia Agricultural Journal 56:218-223. Wiener, G. 1994. Animal Breeding. Macmillan, London, UK. Yazidi, M. H., G. Engstrom, A. Nasholm, H. Jorjani and L. E. Liljedahl. 1997. Genetic parameters for lamb weight at different ages and wool production in baluchi sheep. Anim. Sci. 65:247-255.

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 1695.

2 ASSAN ET AL...

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 3

4 ASSAN ET AL.

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 5

6 ASSAN ET AL.

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 7

8 ASSAN ET AL.

SELECTION FOR BIRTH AND WEANING WEIGHTS IN SABI SHEEP 9