HOW DID DINOSAURS REGULATE THEIR BODY TEMPERATURES?

Similar documents
Conservation (last three 3 lecture periods, mostly as a led discussion). We can't cover everything, but that should serve as a rough outline.

Sec KEY CONCEPT Reptiles, birds, and mammals are amniotes.

How Do Tuatara Use Energy from the Sun?

Biology. Slide 1of 50. End Show. Copyright Pearson Prentice Hall

Investigating Fish Respiration

Diversity of Animals

Characteristics of a Reptile. Vertebrate animals Lungs Scaly skin Amniotic egg

I will learn to talk about. groups of animals animal characteristics animal habitats. Unit Unit 7

Name Date When you put food away in the kitchen, you sort the food into groups. You put foods that are alike in certain ways into the same

Reproduction in Seed Plants (pp )

Talks generally last minutes and take place in one of our classrooms.

Vertebrates. Vertebrates are animals that have a backbone and an endoskeleton.

Animal Instincts. Modified from a lesson found at

! Three things needed to survive on land were: ! 1. Have lungs and breathe air. ! 2. Have a body resistant to drying out.

May 10, SWBAT analyze and evaluate the scientific evidence provided by the fossil record.

Time of Day. Teacher Lesson Plan Nocturnal Animals Pre-Visit Lesson. Overview

Vertebrate Structure and Function

VERTEBRATE READING. Fishes

Reptile Round Up. An Educator s Guide to the Program

1 What Is a Vertebrate?

Biology Slide 1 of 50

Name Date Class. From the list below, choose the term that best completes each sentence.

Teacher s Guide. All About Baby Animals series

Lab 9: Inventing Life Forms

BREATHING WHICH IS NOT RESPIRATION

What is the body structure of a sponge? Do they have specialized cells? Describe the process of reproduction in sponges.

Phylogeny of Animalia (overview)

Exceptions: Somebody liked snakes. Some people disliked dogs, geese, sharks

Lichens are indicators of the gas... (1) The chart shows how much pollution different lichens can tolerate.

What does it mean to be a tetrapod? What three things were needed to survive on land? What does it mean to be oviparous?

Vertebrate and Invertebrate Animals

Vocabulary. 1. the group of vertebrates that have hair and nourish their young with milk

Evolution of Birds. Summary:

Essential Question: What are the characteristics of invertebrate animals? What are the characteristics of vertebrate animals?

Q1. The photograph shows a bird called the korhaan. Korhaans live in South Africa.

Name Class Date. After you read this section, you should be able to answer these questions:

About This Book. Student-centered activities and reproducibles Literature links

CLIL READERS. Level headwords. Level headwords. Level 5. Level headwords. Level 6 1,200 headwords. Level headwords

Living Dinosaurs (3-5) Animal Demonstrations

All living things are classified into groups based on the traits they share. Taxonomy is the study of classification. The largest groups into which

Phylum Chordata. Fish, Amphibians, Reptiles

S7L2_Genetics and S7L5_Theory of Evolution (Thrower)

Class Reptilia Testudines Squamata Crocodilia Sphenodontia

Comparative Physiology 2007 Second Midterm Exam. 1) 8 pts. 2) 14 pts. 3) 12 pts. 4) 17 pts. 5) 10 pts. 6) 8 pts. 7) 12 pts. 8) 10 pts. 9) 9 pts.

Non-fiction: Sea Monsters. A new wave of fossils reveals the oceans prehistoric giants.

Unit 7: Adaptation STUDY GUIDE Name: SCORE:

Fishes, Amphibians, Reptiles

Vertebrates. What is a vertebrate?

#8964 Standards-Based Science Investigations 2 Teacher Created Resources, Inc.

Dinosaurs and Dinosaur National Monument

Vertebrates. Vertebrate Characteristics. 444 Chapter 14

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra

Who has got my ears? Animal Elephant Mouse Dog. Ear. Ear. Giraffe

HUMAN APPENDIX BATS & TROPICAL FLOWERS

Mechanism of a Crocodile s Circulatory System

ADAPTATION IN ANIMALS. 1. Which body feature of a frog MAINLY helps it to capture a flying insect? Ans

Fossilized remains of cat-sized flying reptile found in British Columbia

Non-Fiction. Reptile Edition. Close Reading PASSAGEs. Common Core Aligned. 1 st, 2 nd and 3 rd Grade Michelle Arold

RCPS7-Science-Evolution (RCPS7-Science-Evolution) 1. Which is an adaptation that makes it possible for the animal to survive in a cold climate?

Natural Selection. What is natural selection?

Grade Level: 3-5. Next Generation Sunshine State Standards SC.3.L.15.1 SC.4.L.16.2; SC.4.L.17.4 SC.5.L.15.1; SC.5.L.17.1

4 Many species of mammals, birds, reptiles, amphibians and fish 940L. Source 1 Habitats

Writing: Lesson 31. Today the students will be learning how to write more advanced middle paragraphs using a variety of elaborative techniques.

MANSFIELD SENIOR HIGH SCHOOL / SCIENCE / A. There is no God. B. All living things on Earth are related.

muscles (enhancing biting strength). Possible states: none, one, or two.

Field Trip: Harvard Museum of Natural History (HMNH)

Characteristics of Tetrapods

Carnivore An animal that feeds chiefly on the flesh of other animals.

Get the other MEGA courses!

Interpreting Evolutionary Trees Honors Integrated Science 4 Name Per.

Where Animals and Plants Are Found

Writing: Lesson 23. Today the students will practice planning for informative/explanatory prompts in response to text they read.

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years!

HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT. Zoology Quarter 3. Animal Behavior (Duration 2 Weeks)

SKELETONS: Museum of Osteology Tooth and Eye Dentification Teacher Resource

Did you know that the male great horned owl is smaller than the female? The great horned owl lives in the desert with other animals like rattle snakes

Let s Learn About: Vertebrates & Invertebrates. Informational passages, graphic organizers, study guide, flashcards, and MORE!

BIOLOGY Pam Dodman WALCH EDUCATION

Name: Per. Date: 1. How many different species of living things exist today?

When a species can t stand the heat

Name Class Date. After you read this section, you should be able to answer these questions:

Shedding Light on the Dinosaur-Bird Connection

Dinosaurs. Dinosaurs LEVELED BOOK N. A Reading A Z Level N Leveled Book Word Count:

When a species can t stand the heat

Living Planet Report 2018

LEVELED BOOK N. Extreme Animals. Written by Kathie Lester Illustrated by Signe Nordin.

Question Set 1: Animal EVOLUTIONARY BIODIVERSITY

Field Guide: Student Worksheet

First Facts by Rebecca Johnson

To be opened on receipt

Return to the sea: Marine birds, reptiles and pinnipeds

Why should we care about biodiversity? Why does it matter?

Evolution. Geology. Objectives. Key Terms SECTION 2

Habitats provide food, water, and shelter which animals need to survive.

When Dinosaurs Ruled the Earth

Comparative Zoology Portfolio Project Assignment

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms

Animals and Their Environments II

Population Dynamics: Predator/Prey Teacher Version

Unit 19.3: Amphibians

Transcription:

HOW DID DINOSAURS REGULATE THEIR BODY TEMPERATURES? INTRODUCTION: THERMOREGULATION IN LIVING ANIMALS This activity explores thermoregulation in living and extinct animals, including dinosaurs. The activity is divided into four parts. Read through this introduction and answer the questions included to become familiar with the topic. 1. Look at the images of the four animals in Figure 1. Imagine that you measured the temperature inside each animal and also the temperature in the environment where the animals live. Would you expect any differences between the animals and the environment? Would the pattern be the same for all the animals? Why or why not? Most animals have the ability to regulate their body temperatures in some way. Adjusting temperature allows them to survive changes in temperature in the environment. You may have heard about animals being either warm blooded or cold blooded. The main difference between these groups of animals is their source of body heat. Cold-blooded animals are more accurately called ectotherms, whereas warm-blooded animals are endotherms. The prefix ecto- comes from the Greek word for outside, and endo- from inside. Figure 1. Examples of endothermic and ectothermic animals.(credit: Photographs by Piotr Naskrecki, Museum of Comparative Zoology, Harvard University, Cambridge, MA.) Page 1 of 12

The body temperatures of ectothermic animals are mostly determined by the outside environment, whereas endotherms rely on heat generated inside their bodies to regulate temperature. Most ectotherms do regulate their body temperatures to some extent. For example, an ectothermic animal, such as a lizard, may move to a sunny spot to warm up or to a shady spot to cool down. Endotherms can maintain a stable internal body temperature even as outside conditions vary. Arctic foxes and polar bears, for example, maintain their body temperatures at about 38 C even as the air temperature dips down to 40 C. Ectotherms, on the other hand, cannot maintain stable internal body temperatures and generally cannot remain active across a wide range of external conditions. They are, however, better able to withstand wider internal fluctuations than endotherms. A freshwater bass fish, which is an ectotherm, can survive internal temperatures ranging from near 0 C to 35 C. An endothermic human could die if the person s internal temperature rises or drops outside a 5 C range (from about 35 C to 40 C). 2. Write definitions for endothermic and ectothermic using your own words. List four examples of animals that would fit into each category. How do endotherms maintain a relatively constant body temperature in different environments? They use the energy produced by breaking down food. Food is broken down by cellular respiration to produce energy in the form of ATP that is then used for all types of biological work, such as growing new tissues, locomotion, and reproduction. In the process of doing work, some of the chemical energy in food is converted into heat. Endotherms can also contract muscle fibers rapidly when shivering to generate extra heat when they are cold. Making a lot of heat, plus insulating fur and feathers (or clothes), allow endotherms to keep warm in cold environments. The process by which cells use energy to do biological work is called metabolism. The rate at which animals transform chemical energy in food and release heat is the metabolic rate, which is measured in joules or calories per second. To keep a constant body temperature, endotherms generally have higher metabolic rates than ectotherms. At similar masses, the metabolic rates of endotherms at rest (their resting metabolic rates ) tend to be 5 20 times higher than those of ectotherms. 3. A major scientific principle is that energy is neither created nor destroyed, but it can be transferred or transformed. Summarize some of the transformations of energy described in the two paragraphs above. Page 2 of 12

Endotherms tend to have higher metabolic rates than ectotherms, which allow them to stay warm and also to be more active, grow faster, and reproduce faster at a range of temperatures. Higher metabolic rates offer the benefits of a faster pace of life, but this comes at a cost. Endotherms must eat much more often than ectotherms. As a result, they are more at risk for running out of food. For instance, a lizard could go without food for several weeks, but a similarly sized shrew (a small mouse or mole-like mammal) would starve to death in a day without food. Amphibians and most reptiles, fish, and invertebrates are ectotherms, whereas mammals and birds are endotherms. What about dinosaurs? In the film, you learned that scientists used to think that dinosaurs were slow moving and probably ectothermic like most reptiles. However, when Dr. John Ostrom discovered the claw of Deinonychus, scientists started to think about dinosaurs differently. The slashing claw indicated that it hunted for prey. Could it be that dinosaurs were fast moving and more active than previously thought? Was it possible that they were endothermic like birds? In this activity, you will use data from a study published in the journal Science to investigate whether dinosaurs regulated their temperatures more like birds (endotherms) or reptiles (ectotherms) do. You will learn one method by which scientists determine whether living animals are ectothermic or endothermic and how similar tests can be applied to animals that are now extinct. 4. Make a prediction of whether you think dinosaurs were more like endotherms or ectotherms. Include the reasons for your prediction. PART 1: METABOLISM AND MASS OF LIVING ANIMALS Evolutionary biologist Dr. John Grady and coworkers at the University of New Mexico in Albuquerque compiled data from many earlier studies that measured metabolic rates and metabolic masses for a wide variety of animals living today. A subset of the data they compiled is shown in Table 1. Metabolic rates are typically measured based on how much oxygen animals consume while at rest at a particular temperature. The metabolic mass is the mass of the animal when the metabolic rate measurement was taken. In some cases, the measurement was taken on a juvenile instead of a fully-grown animal. For example, you can tell that the mass of the alligator in Table 1 is that of a juvenile because its mass is similar to that of a raven, which is much smaller than an adult alligator. The Nile crocodile is also a juvenile. Page 3 of 12

Table 1. Metabolic Mass and Resting Metabolic Rate of a Sample of Vertebrates Animal Type of Animal Metabolic Mass (g) Metabolic Rate (joules/s) Alligator Reptile 1,287 0.67 Boar Mammal 135,000 104.2 Bobcat Mammal 9,400 23.54 Chimpanzee Mammal 45,000 52.32 Cod Fish 761.1 0.045 Dog Mammal 38,900 49.02 Elephant Mammal 3,672,000 2336.0 Emerald rock cod Fish 178.1 0.035 Gila monster Reptile 463.9 0.148 Grouse Bird 4,010 11.63 Horse Mammal 260,000 362.9 Kangaroo Mammal 28,500 31.35 Lemon shark Fish 1,600 0.959 Monitor lizard Reptile 32.5 0.017 Nile crocodile Reptile 215.3 0.064 Partridge Bird 475 1.961 Python Reptile 1,307 0.13 Rabbit Mammal 3,004 6.063 Raven Bird 1,203 5.534 Saltwater crocodile Reptile 389,000 38.52 Sandbar shark Fish 3,279 1.153 Spear-nosed bat Mammal 84.2 0.559 Sperm whale Mammal 11,380,000 4325.0 Tiger Mammal 137,900 133.9 Page 4 of 12

Figure 2. Metabolic Rate versus Metabolic Mass of Vertebrates. Each data point represents an animal listed in Table 1. The filled red circles are endotherms, whereas the filled blue diamonds are ectotherms. Source: Adapted from Grady, John M., Brian J. Enquist, Eva Dettweiler-Robinson, Natalie. A. Wright, and Felisa A. Smith. 2014. Evidence for Mesothermy in Dinosaurs. Supplementary Materials. Science, 344, no. 6189 (2014): 1268 1272. Note that the graph uses logarithmic scales on each axis to display data points that span over many orders of magnitude. Why do you think the data were plotted on a log-log graph (i.e., both axes have a logarithmic scale)? If the data were plotted as a regular linear graph, it would be hard to show all the data, because some animals and their metabolic rates are tiny and some huge. Straight lines on a log-log graph become curved lines if plotted on an ordinary linear scale. Answer Questions 1 4 relating to the graph in Figure 2. Page 5 of 12

1. Look first at the general trends on the graph. How do the metabolic rates of endotherms compare with those of ectotherms? 2. An average adult cheetah has a mass of 44,010 grams and a metabolic rate of 61.77 joules per second. Use these data to place the cheetah on the graph. Based on these data, would you characterize the cheetah as an endotherm or ectotherm? How do you know? 3. Briefly describe data you could collect that would provide additional evidence to directly support the placement of the cheetah as an ectotherm or an endotherm. 4. As the masses of the animals increase, how do their metabolic rates change? Ectotherms Endotherms 5. Use the data in Figure 2 to make a claim about how the metabolic rates of endotherms compare with those of ectotherms for animals of similar mass. Support your claim with at least three pieces of evidence. 6. Fossils are our only link to dinosaurs we cannot observe their internal temperatures directly, nor can we analyze their soft tissues or DNA. What ideas do you have for the kinds of evidence you could collect from fossils that might allow you to make a claim about whether dinosaurs were ectothermic or endothermic? Page 6 of 12

PART 2: ESTIMATING DINOSAUR GROWTH AND METABOLISM Read the questions at the end of Part 2 to prepare for the reading below. As you find information to help you answer the questions, stop and complete the questions. You learned in Part 1 that mass and metabolic rate can be used to distinguish ectotherms and endotherms. So knowing the masses and metabolic rates of dinosaurs could help settle the question of whether they regulated their temperatures more like birds (endothermic) or like reptiles (ectothermic). But how can we tell how heavy dinosaurs were or how fast their metabolisms were when they haven t been around for millions of years? Fossilized bones can help. Bone size usually correlates with the mass of an animal. A mouse has narrow, light bones compared to an elephant. We can estimate the mass of an extinct animal by measuring its fossilized bones and comparing these measurements to those of living animals bones. Just as bones can be an indicator of mass, bones can also tell you something about an animal s metabolism. The bones of many animals have growth rings similar to the growth rings in trees. The number of bone rings tells you how old the animal is (one ring = a year), and the width can tell you how fast it grows. A fast-growing animal, like a mouse, has wide rings in its bones, while a more slowly growing animal, like a lizard, has narrower bone rings. Scientists can use growth rings to estimate resting metabolic rates. Estimates of metabolic rates calculated this way are in close agreement with metabolic rates measured directly by looking at oxygen consumption. In fact, if you were to draw a graph of growth rates versus mass it would look quite similar to the graph in Figure 2 that plots metabolic rates versus mass. Bone rings have been preserved in the fossilized bones of some dinosaurs. This gives researchers a way to estimate the metabolic rates of these long-extinct animals. Grady and colleagues compiled a database of the estimated metabolic rates of 21 dinosaurs. Table 2 lists five of them. Table 2. Masses and Estimated Resting Metabolic Rates of Five Dinosaurs Dinosaur Mass (kg) Metabolic Rate (joules/s) Allosaurus 1,862 205.85 19,170 2,999.04 Apatosaurus Coelophysis 33 7.405 Tyrannosaurus 5,654 853.38 Troodon 52 10.956 (Dinosaur images courtesy of Nobu Tamura and Jim Robins through Wikimedia Commons.) Page 7 of 12

Plot the data from Table 2 in the graph in Figure 2 and then answer the questions below. 7. From the reading, summarize the evidence that scientists use to estimate the mass and the metabolic rate of dinosaurs. 8. Explain why a mouse has wider rings in its bones than a lizard. 9. As the masses of the dinosaurs increase, how do their metabolic rates change? How does this compare to living animals? 10. Draw a line of best fit through the endotherms, through the ectotherms, and through the dinosaurs in Figure 2. Make a claim about whether the relationship between mass and metabolic rate in dinosaurs follows a pattern more similar to ectotherms or endotherms. Support your answer with evidence. 11. Based on the graph, which animal would you expect to have wider rings in its bones: a mountain lion or a type of dinosaur called a Troodon? (Troodons were about the same mass as mountain lions and looked like feathered velociraptors.) Explain your answer. Page 8 of 12

PART 3: THE ENERGETICS OF DINOSAURS In Part 2, you learned that metabolic rate can be inferred from growth rate. You also discovered that animals with greater mass have higher metabolic and growth rates. For example, both an alligator and a dog have higher metabolic rates than small birds called warblers because they are bigger in size, regardless of whether they are ectotherms or endotherms. So what happens if you take mass out of the equation? In the graph in Figure 3, which is from the original Science paper, Grady and colleagues plotted growth rates and metabolic rates for various animals, including dinosaurs, in a way that controls for mass. In other words, if the alligator and the warbler were the same size, what would their metabolic and growth rates be? The growth rates and metabolic rates of dinosaurs were calculated from fossilized bone rings. Figure 3. Mass-Independent Growth Rate versus Resting Metabolic Rate. This graph uses logarithmic scales on each axis to display data points that span over many orders of magnitude. Note that the metabolic rate unit watts (W) is equal to joules per second. (A) Mass-adjusted rates of living vertebrates. The shaded area represents 95% confidence intervals. (B) Estimated rates for dinosaurs. The line represents predicted rate ranges for living ectotherms (blue, lower left), endotherms (red, upper right), and animals in between the two (black, middle). Estimated dinosaur rates are shown as open squares. Source: Grady, John M., Brian J. Enquist, Eva Dettweiler- Robinson, Natalie A. Wright, and Felisa A. Smith. 2014. Evidence for Mesothermy in Dinosaurs. Science, 344, no. 6189 (2014): 1268 1272. Page 9 of 12

12. In the graph in Figure 3, which types of animals have the highest weight-independent growth rate? Which have the lowest? Highest Lowest 13. In the graph, which types of animals have the highest weight-independent resting metabolic rate? Which have the lowest? Highest Lowest 14. As the resting metabolic rate increases, how does the growth rate change? 15. In their paper, Grady and colleagues conclude that dinosaurs were mesotherms (meso- means middle ). Compare the growth rates of dinosaurs with the growth rates of living ectotherms and endotherms. Why do you think these scientists describe dinosaurs this way, and do you agree with their conclusion? Refer to specific data points to support your answer. 16. Grady and colleagues made their data available to all other scientists. One scientist reanalyzed their data using some different assumptions and came to an alternative conclusion. This scientist also carefully described the methods he used for his calculations. Grady and colleagues reviewed the work of the other scientist and replied with an argument about why their method of calculating metabolic rates was correct. Describe how these events exemplify how science works. Page 10 of 12

PART 4: THERMOREGULATION IN DINOSAURS The data in Figure 3 suggest that dinosaurs fall somewhere in the middle on the continuum between ectotherms and endotherms in terms of their metabolic and growth rates. Because dinosaurs are in between ectotherms and endotherms, Grady and colleagues classified them as mesotherms a term used for animals who have features of both these categories of animals. Dinosaurs are not the only mesotherms. Great white sharks, tuna, and leatherback turtles are examples of living mesotherms (Figure 4). These animals use their metabolisms to maintain temperatures higher than the environment around them, but they do not regulate their temperatures as closely around a fixed point as most mammals and birds do. Figure 4. Examples of mesotherms. Leather back turtles, great white sharks, bluefin tuna are living mesotherms. (Photos courtesy of U.S. Fish and Wildlife Service Headquarters and Elias Levy through Wikimedia Commons.) How Can Being a Mesotherm Be an Advantage? There are both costs and benefits associated with being endothermic or ectothermic. Consider the following information about endotherms: To maintain their body temperatures, endotherms need to take in much more energy than ectotherms as much as 5 10 times the number of joules at any given body mass. Endotherms can maintain a stable internal temperature even when outside temperatures rise far above or far below their body temperatures. Ectotherms can tolerate more variable internal conditions than endotherms can. Endotherms can have higher levels of activity than ectotherms because of efficient respiratory and circulatory systems, and because they are optimized to use more energy. Ectotherms can have high levels of activity in warm conditions, but they tend to become very sluggish when their bodies are cold. Although large reptiles exist, they are mainly limited to areas that lack endothermic predators of similar size. For instance, crocodiles hunt in rivers where few mammals go. Large Komodo dragons and tortoises live on islands lacking mammalian predators. The reason there are few large reptiles in our present time is that, due to their relatively slow growth, reproduction, and overall activity rates, large ectotherms would be likely outcompeted (or eaten) by large endotherms. Only in the ocean, where air-breathing endotherms (such as dolphins) are less dominant, do large ectothermic sharks and fish coexist with endothermic mammals. Page 11 of 12

17. From an evolutionary point of view, how could being mesothermic have been an advantage for dinosaurs as compared to being ectothermic or endothermic? 18. In the previous answer, you described how being mesothermic can be an advantage. Why do you think that more animals are not mesotherms at this point in time? 19. The HHMI film presented research findings that support the idea that birds evolved from theropod dinosaurs. Much of the information in the film focuses on structures in the body that were either more reptile-like or more bird-like. How do the data in this activity add to your understanding of the relationship between dinosaurs and birds? REFERENCE Grady, John M., Brian J. Enquist, Eva Dettweiler-Robinson, Natalie A. Wright, and Felisa A. Smith. Evidence for Mesothermy in Dinosaurs. Science, 344, no. 6189 (2014): 1268 1272. Page 12 of 12