Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City

Similar documents
The First Report of CMY, AAC(6')-Ib and 16S rrna Methylase Genes among Pseudomonas aeruginosa Isolates from Iran

Other β-lactamase Inhibitor (BLI) Combinations: Focus on VNRX-5133, WCK 5222 and ETX2514SUL

Mechanism of antibiotic resistance

Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

Intrinsic, implied and default resistance

DR. MICHAEL A. BORG DIRECTOR OF INFECTION PREVENTION & CONTROL MATER DEI HOSPITAL - MALTA

Tel: Fax:

ETX2514SUL (sulbactam/etx2514) for the treatment of Acinetobacter baumannii infections

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

2015 Antimicrobial Susceptibility Report

Epidemiological Characteristics and Drug Resistance Analysis of Multidrug-Resistant Acinetobacter baumannii in a China Hospital at a Certain Time

Doripenem: A new carbapenem antibiotic a review of comparative antimicrobial and bactericidal activities

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

ESCMID Online Lecture Library. by author

Antimicrobial Cycling. Donald E Low University of Toronto

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

Antimicrobial Resistance

Antimicrobial Resistance Acquisition of Foreign DNA

Nosocomial Infections: What Are the Unmet Needs

Antibiotic resistance a mechanistic overview Neil Woodford

ETX2514: Responding to the global threat of nosocomial multidrug and extremely drug resistant Gram-negative pathogens

β-lactams resistance among Enterobacteriaceae in Morocco 1 st ICREID Addis Ababa March 2018

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

An evaluation of the susceptibility patterns of Gram-negative organisms isolated in cancer centres with aminoglycoside usage

International Journal of Health Sciences and Research ISSN:

Title: N-Acetylcysteine (NAC) Mediated Modulation of Bacterial Antibiotic

In Vivo Efficacy of the Novel Aminoglycoside ACHN-490 in Murine Infection Models

Do clinical microbiology laboratory data distort the picture of antibiotic resistance in humans and domestic animals?

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

crossm Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-negative pathogens between

Acinetobacter baumannii: from S to PDR

Sepsis is the most common cause of death in

Antimicrobial Resistance Strains

CONTAGIOUS COMMENTS Department of Epidemiology

Appropriate antimicrobial therapy in HAP: What does this mean?

Overnight identification of imipenem-resistant Acinetobacter baumannii carriage in hospitalized patients

EARS Net Report, Quarter

ETX0282, a Novel Oral Agent Against Multidrug-Resistant Enterobacteriaceae

Clinical Center of Microbiology Research, Ilam University of Medical Sciences, Ilam, Iran b

WHY IS THIS IMPORTANT?

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Acinetobacter Resistance in Turkish Tertiary Care Hospitals. Zeliha KOCAK TUFAN, MD, Assoc. Prof.

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); August 2017

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

International Journal of Antimicrobial Agents

Available online at ISSN No:

Mechanisms and Pathways of AMR in the environment

Chemotherapy of bacterial infections. Part II. Mechanisms of Resistance. evolution of antimicrobial resistance

Michael Hombach*, Guido V. Bloemberg and Erik C. Böttger

Presenter: Ombeva Malande. Red Cross Children's Hospital Paed ID /University of Cape Town Friday 6 November 2015: Session:- Paediatric ID Update

DRUG-RESISTANT ACINETOBACTER BAUMANNII A GROWING SUPERBUG POPULATION. Cara Wilder Ph.D. Technical Writer March 13 th 2014

Comparative Assessment of b-lactamases Produced by Multidrug Resistant Bacteria

Antimicrobial Resistance

Dr Vivien CHUANG Associate Consultant Infection Control Branch, Centre for Health Protection/ Infectious Disease Control and Training Center,

THE NAC CHALLENGE PANEL OF ISOLATES FOR VERIFICATION OF ANTIBIOTIC SUSCEPTIBILITY TESTING METHODS

10/15/08. Activity of an Antibiotic. Affinity for target. Permeability properties (ability to get to the target)

Co-transfer of bla NDM-5 and mcr-1 by an IncX3 X4 hybrid plasmid in Escherichia coli 4

Fighting MDR Pathogens in the ICU

Samantha Trumm, Pharm.D. PGY-1 Resident Avera McKennan Hospital and University Center

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

Selective toxicity. Antimicrobial Drugs. Alexander Fleming 10/17/2016

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

How is Ireland performing on antibiotic prescribing?

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Mono- versus Bitherapy for Management of HAP/VAP in the ICU

What does multiresistance actually mean? Yohei Doi, MD, PhD University of Pittsburgh

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents

MDR Acinetobacter baumannii. Has the post antibiotic era arrived? Dr. Michael A. Borg Infection Control Dept Mater Dei Hospital Malta

Summary of the latest data on antibiotic resistance in the European Union

In Vitro Activity of Netilmicin, Gentamicin, and Amikacin

Report on the APUA Educational Symposium: "Facing the Next Pandemic of Pan-resistant Gram-negative Bacilli"

APPENDIX III - DOUBLE DISK TEST FOR ESBL

Multi-drug resistant Acinetobacter (MDRA) Surveillance and Control. Alison Holmes

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Prevalence of Extended-spectrum β-lactamase Producing Enterobacteriaceae Strains in Latvia

Influence of ph on Adaptive Resistance of Pseudomonas aeruginosa to Aminoglycosides and Their Postantibiotic Effects

Other Enterobacteriaceae

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002

Epidemiology and Burden of Antimicrobial-Resistant P. aeruginosa Infections

Multi-drug resistant microorganisms

New Opportunities for Microbiology Labs to Add Value to Antimicrobial Stewardship Programs

ANTIBIOTICS USED FOR RESISTACE BACTERIA. 1. Vancomicin

GENERAL NOTES: 2016 site of infection type of organism location of the patient

Educating Clinical and Public Health Laboratories About Antimicrobial Resistance Challenges

2017 Antibiogram. Central Zone. Alberta Health Services. including. Red Deer Regional Hospital. St. Mary s Hospital, Camrose

Protein Synthesis Inhibitors

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Antimicrobial Stewardship Strategy: Antibiograms

on February 12, 2018 by guest

Presence of extended spectrum β-lactamase producing Escherichia coli in

2015 Antibiogram. Red Deer Regional Hospital. Central Zone. Alberta Health Services

Transcription:

Journal of Antimicrobial Chemotherapy Advance Access published July 31, 2010 J Antimicrob Chemother doi:10.1093/jac/dkq278 Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City David Landman, Elizabeth Babu, Neha Shah, Paul Kelly, Martin Bäcker, Simona Bratu and John Quale* State University of New York-Downstate Medical Center, Brooklyn, New York, NY, USA *Corresponding author. Tel: +1-718-270-2148; Fax: +1-718-270-2465; E-mail: jquale@downstate.edu Received 11 May 2010; returned 1 June 2010; revised 30 June 2010; accepted 30 June 2010 Objectives: Reports of Enterobacteriaceae resistant to all commonly used antimicrobial agents, including b-lactams, fluoroquinolones and aminoglycosides, are increasing in hospitals worldwide. The activity of ACHN-490, a next-generation aminoglycoside, was examined against clinical isolates of Escherichia coli and Klebsiella pneumoniae from hospitals in New York City, an area where multidrug-resistant organisms are endemic. Methods: Unique patient isolates of E. coli and K. pneumoniae were gathered from 16 hospitals located in New York City in 2009 and underwent susceptibility testing to aminoglycosides and ACHN-490. Subsets of isolates were characterized by PCR for the presence of genes encoding aminoglycoside-modifying enzymes, ribosomal methylases and KPC-type carbapenemases. Results: Although most isolates of E. coli were susceptible to the aminoglycosides, the MIC 90 values of gentamicin, tobramycin and amikacin were 32, 8 and 4 mg/l, respectively. The MIC 90 of ACHN-490 was 1 mg/l. Multidrug resistance, including resistance to aminoglycosides and the presence of bla KPC, was much more common in isolates of K. pneumoniae. However, the MIC 90 of ACHN-490 for K. pneumoniae was also 1 mg/l. The MICs of ACHN-490 did not correlate with the presence of commonly recovered aminoglycosidemodifying enzymes. Bactericidal activity was evident in most isolates at concentrations 4 the MIC. Conclusions: The novel aminoglycoside ACHN-490 retains activity against most isolates of E. coli and K. pneumoniae, including multidrug-resistant strains. Additional studies examining the roles of efflux systems and outer membrane permeability alterations are recommended in isolates with reduced susceptibility to this agent. Keywords: antimicrobial resistance surveillance, multidrug resistant, mechanisms of resistance Introduction The emergence and rapid spread of multidrug-resistant Gramnegative pathogens in hospitals throughout the world has been alarming. The spread of Klebsiella pneumoniae possessing the carbapenemase KPC has been especially disconcerting. Originally confined to isolates in the north-eastern USA, KPC-producing isolates have now become commonplace in New York City and have been reported throughout North America and in Asia, South America and Europe. 1,2 In addition, isolates of Escherichia coli carrying the KPC b-lactamase have also been identified in New York City. 3 Already resistant to b-lactam agents, many of the KPC-producing isolates are also resistant to fluoroquinolones and older aminoglycosides (for example gentamicin, tobramycin and amikacin), leaving only extremely limited therapeutic options. The urgent need for new antimicrobial agents has been highlighted by the recent 10 20 initiative by the Infectious Diseases Society of America. 4 ACHN-490 is a derivative of sisomicin with enhanced activity against many multidrug-resistant Gram-negative and Grampositive bacteria. 5 8 Preliminary studies indicate bactericidal activity against several Gram-negative pathogens. 9 In this report, we determined the activity of ACHN-490 against contemporary clinical isolates of E. coli and K. pneumoniae from hospitals in New York City. Materials and methods Bacterial isolates Single-patient isolates of E. coli and K. pneumoniae were gathered from hospital microbiology laboratories during a 3 month surveillance study # The Author 2010. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 1of5

Landman et al. conducted in 2009, as previously described. 1 Participating hospitals included the 15 hospitals in Brooklyn, NY, and one hospital in Staten Island, NY. Susceptibility testing was performed on all isolates using the agar dilution method, according to established guidelines. 10 ACHN-490 was kindly supplied by Achaogen, Inc. (South San Francisco, CA, USA). Based on their various aminoglycoside MICs, a subset of isolates was selected for additional studies to investigate the potential mechanisms of resistance. Time kill studies were performed on some of these isolates using 4 the MIC of ACHN-490 (MIC range 0.25 4 mg/ L). 9 Bactericidal activity was defined as a 3 log drop in the inoculum after 24 h of incubation. 11 For some isolates, MICs were repeated by the broth microdilution method with and without the presence of the efflux pump inhibitors 1-(1-naphthmethyl)-piperazine (NMP) and phenyl-arginine-b-naphthylamide (PABN). 12 NMP was included at 200 mg/l (0.5 the MIC for the tested isolates). PABN was included at 100 mg/l, representing 0.5 to 0.0625 the MIC for the tested isolates. PCR studies For a subset of isolates, the presence of genes encoding aminoglycosidemodifying enzymes was determined by PCR using previously reported primers and conditions. 13,14 The following genes were screened: aac(6 )-Ib (aaca4); aac(3)-ia (aacc1); ant(3 )-I (aada1); ant(2 )-Ia (aadb); aph(3 )-VI (apha6); and aac(3)-iia (aacc2). Genes encoding aminoglycoside-modifying enzymes were also detected by amplifying and sequencing class 1 integrons using primers derived from the 5 and 3 conserved segments. 15 PCR amplicons of integrons were cloned into pcr2.1 TOPO with One Shot TOP10 E. coli (Invitrogen, Carlsbad, CA, USA) and identified by bidirectional DNA sequencing. Isolates with highlevel resistance (.32 mg/l) to all three aminoglycosides were screened Table 1. Susceptibility data for 3050 isolates of E. coli gathered in 2009 MIC 50 MIC 90 range for the presence of genes encoding 16S rrna methylases (arma, rmta, 16 19 rmtb, rmtc and rmtd) by PCR using previously identified primers. Additionally, for these isolates, the presence of the following modifying enzymes was determined using the designated primers (5 3 ): aac(3)-iiia, forward GACTTTATCGACTCGCTGCC and reverse AACAGGTAAG CATCCGCATC; and aac(3)-vb, forward CCCTATGAGGAGACGCTGAA and reverse GAGACGATATCCTGCGCTTC. Finally, the presence of bla KPC was screened by PCR using previously identified primers and conditions. 20 The following integron sequences have been deposited in GenBank: GU358475 (E. coli ME451); GU358476 (K. pneumoniae KB20); and GU35 8477 (K. pneumoniae KB18). Results E. coli A total of 3050 isolates of E. coli were collected during the surveillance study involving the 16 hospitals (Table 1). Although most were susceptible to the three aminoglycosides, the MIC 90 values for gentamicin, tobramycin and amikacin were 32, 8 and 4 mg/l, respectively. Only three isolates (0.1%) had MICs of ACHN-490 8 mg/l; two were obtained from urine cultures and one was from a blood culture. A subset of 36 isolates, including one with bla KPC, was selected based on the MICs of gentamicin, tobramycin, amikacin and ACHN-490 (Table 2). Among these isolates, 61% were resistant to ciprofloxacin and 44% to trimethoprim/sulfamethoxazole, and 56% had a ceftazidime MIC.1 mg/l. Isolates were grouped according to the aminoglycoside-modifying enzymes genes that were detected. Susceptible Intermediate Resistant Gentamicin 0.5 32 0.25 to.64 86.5% 0.6% 12.9% Tobramycin 0.5 8 0.12 to.64 86.9% 6.2% 6.9% Amikacin 2 4 0.5 to.64 99.1% 0.4% 0.5% ACHN-490 a 0.5 1 0.06 to.8 a Clinical breakpoints have not been defined. Table 2. Susceptibility profiles and the presence of aminoglycoside-modifying enzymes in 36 selected isolates of E. coli No. of isolates Genes detected Predicted resistance GEN TOB AMK ACHN-490 3 log kill in time kill a 3 aac(3)-iia; aada5 GEN, TOB, SIS.32 8 to.32 2 4 0.5 to 1 1/3 1 aac(6 )-Ib; aada5 TOB, AMK, SIS 4.32.32 1 10 aac(6 )-Ib TOB, AMK, SIS 0.5 to.32 32 to.32 16 to.32 0.25 to.8 2/2 1 aac(3)-iia; aac(6 )-Ib GEN, TOB, AMK, SIS.32.32 8 2 1/1 1 aac(3)-iia GEN, TOB, SIS 32 8 4 4 1 aac(6 )-Ib; ant(3 )-I TOB, AMK, SIS.32.32.32 4 1/1 19 none,0.25 to.32 0.5 to.32 1 to.32 0.25 to 8 2/2 GEN, gentamicin; TOB, tobramycin; AMK, amikacin; SIS, sisomicin. a Time kill studies were performed at 4 the MIC of ACHN-490. 2of5

Activity of ACHN-490 JAC Occasional isolates had aminoglycoside resistance, particularly to gentamicin, that could not be explained based on the screening for modifying enzymes. None of the isolates was found to carry ribosomal methylases. There was no clear correlation between the MICs of ACHN-490 and the presence of aminoglycoside-modifying enzymes. Of the three isolates that had ACHN-490 MICs of 8 mg/l, two possessed aac(6 )-Ib and one did not have genes for modifying enzymes detected. The aac(6 )-Ib gene was detected in 11 other isolates with lower ACHN-490 MICs. For the three highly ACHN-490-resistant isolates, only one had a 4-fold MIC reduction with the addition of PABN. Among these three isolates, two [both with aac(6 )-1b] were resistant to tobramycin and amikacin, and one was resistant to gentamicin. Time kill studies were conducted with nine isolates with concentrations of ACHN-490 at 4 MIC (Table 2). Bactericidal killing was evident in seven isolates. Two isolates, possessing aac(3)-iia and an integron-associated aada5, had evidence of regrowth at 24 h. Insertion of the integron carrying aada5 into a susceptible TOP10 E. coli did not change the MIC of ACHN-490 (0.25 mg/l) when compared with a TOP10 isolate without this enzyme. For the two isolates exhibiting regrowth, Table 3. Susceptibility data for 1155 isolates of K. pneumoniae gathered in 2009 MIC 50 MIC 90 range the isolates recovered after 24 h of incubation had an 8- to 16-fold increase in the MIC of ACHN-490. The addition of the efflux inhibitor NMP had no effect on the ACHN-490 MICs, and the addition of PABN caused a 4-fold decrease in one isolate. Only one of the two isolates exhibiting regrowth had a 4-fold rise in the MICs of gentamicin, tobramycin and amikacin. K. pneumoniae During the surveillance study, 1155 isolates of K. pneumoniae were gathered. Although resistance to the aminoglycosides was common (Table 3), only two isolates (0.2%) had ACHN- 490 MICs 8 mg/l. It is noteworthy that, although the two isolates originated from two separate hospitals, they belonged to the same ribotype (data not shown). Among the surveillance isolates with bla KPC, the ACHN-490 MIC 50 and MIC 90 were unchanged at 0.5 and 1 mg/l, respectively. Forty isolates (including 25 multidrug-resistant isolates with bla KPC ) were chosen for further analysis based on their range of MICs of the aminoglycosides (Table 4). Among these isolates, 80% were resistant to ciprofloxacin and 88% to trimethoprim/sulfamethoxazole, and 83% possessed extended-spectrum b-lactamases. As with the Susceptible Intermediate Resistant Gentamicin 1 64 0.25 to.64 71.2% 3.1% 25.7% Tobramycin 1.64 0.12 to.64 52.5% 1.5% 46.0% Amikacin 1 32 0.5 to.64 70.4% 25.1% 4.5% ACHN-490 a 0.5 1 0.12 to.8 a Clinical breakpoints have not been defined. Table 4. Susceptibility profiles and presence of aminoglycoside-modifying enzymes in 40 selected isolates of K. pneumoniae No. of isolates Genes detected Predicted resistance GEN TOB AMK ACHN-490 3 log kill in time kill a 4 aac(6 )-Ib; ant(3 )-I; ant(3 )-I a TOB, AMK, SIS 8 to.32 32 to.32 32 0.5 2 1/1 14 aac(6 )-Ib; ant(3 )-I TOB, AMK, SIS 4 to.32 16 to.32 8 32 0.25 2 2/2 4 aac(6 )-Ib TOB, AMK, SIS 4 to.32 16 to.32 16 to.32 1 to.8 2/2 2 ant(3 )-I,0.25 0.5 0.5 1 2 1 2 1/1 2 aac(3)-iia; aac(6 )-Ib GEN, TOB, AMK, SIS.32.32.32 0.5 1 2/2 1 aac(6 )-Ib; ant(3 )-I; aph(3 )1a GEN, TOB, AMK, SIS.32.32.32 2 1/1 1 aac(6 )-Ib; ant(3 )-I; ant(3 )-Ia; aph(3 )1a GEN, TOB, AMK, SIS.32.32.32 2 1/1 1 ant(3 )-Ia.32.32.32 2 1 aac(6 )-Ib; ant(2 )-Ia; ant(3 )-I GEN, TOB, AMK, SIS 8 32 16 0.25 1/1 1 aac(6 )-Ib; ant(3 )-I; ant(2 )-Ia; aac(6 )-33 GEN, TOB, AMK, SIS 16.32 32 0.25 1/1 1 aac(6 )-Ib; ant(2 )-Ia GEN, TOB, AMK, SIS 32.32 32 0.5 8 none,0.25 to.32 0.5 to.32 1 to.32 0.5 4 3/3 GEN, gentamicin; TOB, tobramycin; AMK, amikacin; SIS, sisomicin. a Time kill studies were performed at 4 the MIC of ACHN-490. 3of5

Landman et al. E. coli isolates, gentamicin resistance could not be accounted for in several isolates, and genes for ribosomal methylases were not detected in any of the isolates. There was again no clear correlation between the presence of genes encoding aminoglycosidemodifying enzymes and the MICs of ACHN-490. The two isolates with high-level resistance to ACHN-490 had aac(6 )-Ib alone; this gene was also present in 27 isolates with lower MICs of ACHN-490. The two resistant isolates were also highly resistant to gentamicin, tobramycin and amikacin. For these two isolates, the addition of PABN had no appreciable effect on the ACHN-490 MICs. Fifteen isolates underwent time kill studies, and in all 15 cases ACHN-490 had bactericidal activity. Discussion The emergence of multidrug-resistant Gram-negative nosocomial pathogens has created serious therapeutic challenges. In New York City, 22% of K. pneumoniae isolates are resistant to all commonly used antimicrobial agents, 1 and carbapenem-resistant isolates of E. coli have been reported. 3 Resistance to aminoglycosides is also common, particularly among K. pneumoniae, due to the acquisition of several aminoglycoside-modifying enzymes. Resistance to tigecycline and polymyxin B has also been noted in 5% of isolates of K. pneumoniae. 1 The development of new agents is sorely needed. ACHN-490, a derivative of sisomicin, possesses activity against a broad range of Enterobacteriaceae, with MIC 90 values of 1 2 mg/l. 5 8 The activity of ACHN-490 is retained against most aminoglycoside-resistant isolates, including multidrugresistant KPC-producing strains. ACHN-490 MICs do not seem to correlate with commonly found aminoglycoside-modifying enzymes. Although isolates in our study with increased ACHN- 490 MICs were found to carry AAC(6 )-Ib, this enzyme was also found in more susceptible strains. It is likely that the presence of a hydroxymethyl group at the 6 position may stabilize this site against AAC(6 )-Ib enzymes, and the occurrence of the enzyme in these isolates reflects its high prevalence in clinical isolates rather than any effect on ACHN-490 activity. Bactericidal activity is evident at concentrations 4 the MIC for most strains. However, regrowth has been found upon exposure to either ACHN-490 or traditional aminoglycosides in occasional isolates at this concentration. 9 The mechanisms behind elevated MICs of ACHN-490 remain unclear. In Acinetobacter baumannii, increased expression of the efflux system AdeB may correlate with reduced susceptibility to ACHN-490. 7 Although not encountered in this study, the presence of ribosomal methylases may affect susceptibility to this agent. 8 Additional investigations involving Enterobacteriaceae, particularly studies examining the roles of efflux systems, ribosomal alterations and changes in outer membrane permeability, will be needed. Based on our in vitro results, ACHN-490 is a potentially useful therapeutic agent against multidrug-resistant E. coli and K. pneumoniae, including KPC-producing strains. Funding This work was supported by a research grant from Achaogen (D. L. and J. Q.). Transparency declarations None to declare. References 1 Landman D, Bratu S, Kochar S et al. Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother 2007; 60: 78 82. 2 Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9: 228 36. 3 Urban C, Bradford PA, Tuckman M et al. Carbapenem-resistant Escherichia coli harboring Klebsiella pneumoniae carbapenemase b-lactamases associated with long-term care facilities. Clin Infect Dis 2008; 46: e127 30. 4 Infectious Diseases Society of America. The 10 20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 2010; 50: 1081 3. 5 Aggen JB, Goldblum AA, Dozzo P et al. Synthesis, structure, and in vitro activity of the neoglycoside ACHN-490. In: Abstracts of the Forty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 2009. Abstract F1-840. American Society for Microbiology, Washington, DC, USA. 6 Biedenbach D, Jones RN, Armstrong ES et al. Activity of ACHN-490, a novel neoglycoside antibiotic, against complicated urinary tract infection pathogens from the United States and Europe. In: Abstracts of the Forty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 2009. Abstract F1-843. American Society for Microbiology, Washington, DC, USA. 7 Georgescu G, Martin D, Bratu S et al. Activity of ACHN-490, a novel neoglycoside antibiotic, against contemporary Gram-negative clinical isolates from Brooklyn, NY hospitals. In: Abstracts of the Forty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 2009. Abstract F1-842. American Society for Microbiology, Washington, DC, USA. 8 Endimiani A, Hujer KM, Hujer AM et al. ACHN-490, a neoglycoside with potent in vitro activity against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrob Agents Chemother 2009; 53: 4504 7. 9 Zurenko GE, Stapert DA, Knechtel ML et al. The bactericidal activity of the neoglycoside ACHN-490 against aminoglycoside-resistant bacteria. In: Abstracts of the Forty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 2009. Abstract F1-841. American Society for Microbiology, Washington, DC, USA. 10 Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Seventh Edition: Approved Standard M7-A7. CLSI, Wayne, PA, USA, 2006. 11 National Committee for Clinical Laboratory Standards. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline M26-A. NCCLS, Wayne, PA, USA, 1999. 12 Pannek S, Higgins PG, Steinke P et al. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthmethyl)- piperazine and phenyl-arginine-b-naphthylamide. J Antimicrob Chemother 2006; 57: 970 4. 13 Hujer KM, Hujer AM, Hulten EA et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 2006; 50: 4114 23. 14 Noppe-Leclercq I, Wallet F, Haentjens S et al. PCR detection of aminoglycoside resistance genes: a rapid molecular typing method for Acinetobacter baumannii. Res Microbiol 1999; 150: 317 22. 4of5

Activity of ACHN-490 JAC 15 Levesque C, Piche L, Larose C et al. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995; 39: 185 91. 16 Doi Y, Yokoyama K, Yamane K et al. Plasmid-mediated 16S rrna methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother 2004; 48: 491 6. 17 Yamane K, Wachino J, Doi Y et al. Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis 2005; 11: 951 3. 18 Yokoyama K, Doi Y, Yamane K et al. Acquisition of 16S rrna methylase gene in Pseudomonas aeruginosa. Lancet 2003; 362: 1888 93. 19 Yu Y-S, Zhou H, Yang Q et al. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenemresistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 2007; 60: 454 5. 20 Bratu S, Landman D, Haag R et al. Rapid spread of carbapenemresistant Klebsiella pneumoniae in New York City. A new threat to our antibiotic armamentarium. Arch Intern Med 2005; 165: 1430 5. 5of5