Burkholderia Cepacia Causing Nosocomial Urinary Tract Infection in Children

Similar documents
1. The preferred treatment option for an initial UTI episode in a 22-year-old female patient

Guidelines for Treatment of Urinary Tract Infections

2016/LSIF/FOR/007 Improving Antimicrobial Use and Awareness in Korea

Appropriate antimicrobial therapy in HAP: What does this mean?

Northwestern Medicine Central DuPage Hospital Antimicrobial Criteria Updated 11/16/16

21 st Expert Committee on Selection and Use of Essential Medicines Peer Review Report Antibiotics Review

GENERAL NOTES: 2016 site of infection type of organism location of the patient

OPTIMIZATION OF PK/PD OF ANTIBIOTICS FOR RESISTANT GRAM-NEGATIVE ORGANISMS

4/3/2017 CLINICAL PEARLS: UPDATES IN THE MANAGEMENT OF NOSOCOMIAL PNEUMONIA DISCLOSURE LEARNING OBJECTIVES

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

DATA COLLECTION SECTION BY FRONTLINE TEAM. Patient Identifier/ Medical Record number (for facility use only)

ESBL Positive E. coli and K. pneumoneae are Emerging as Major Pathogens for Urinary Tract Infection

These recommendations were approved for use by the Pharmaceutical and Therapeutics Committee, RCWMCH on 1 February 2017.

Antimicrobial stewardship in managing septic patients

Acute Pyelonephritis POAC Guideline

PSEUDOMONAS AERUGINOSA IN THE ETIOLOGY OF PAEDIATRIC HEALTHCARE-ASSOCIATED INFECTIONS

Changing trends in clinical characteristics and antibiotic susceptibility of Klebsiella pneumoniae bacteremia

ANTIBIOTIC USE GUIDELINES FOR URINARY TRACT AND RESPIRATORY DISEASE

Meropenem for all? Midge Asogan ICU Fellow (also ID AT)

Antibiotic Prophylaxis in Spinal Surgery Antibiotic Guidelines. Contents

General Approach to Infectious Diseases

PIPERACILLIN- TAZOBACTAM INJECTION - SUPPLY PROBLEMS

NEONATAL Point Prevalence Survey. Ward Form

Detecting / Reporting Resistance in Nonfastidious GNR Part #2. Janet A. Hindler, MCLS MT(ASCP)

Safety of an Out-Patient Intravenous Antibiotics Programme

National Antimicrobial Prescribing Survey

Inappropriate Use of Antibiotics and Clostridium difficile Infection. Jocelyn Srigley, MD, FRCPC November 1, 2012

Nosocomial Infections: What Are the Unmet Needs

Bacteriological Study of Catheter Associated Urinary Tract Infection in a Tertiary Care Hospital

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Perichondritis: Source: UpToDate Ciprofloxacin 10 mg/kg/dose PO (max 500 mg/dose) BID Inpatient: Ceftazidime 50 mg/kg/dose q8 hours IV

UCSF guideline for management of suspected hospital-acquired or ventilatoracquired pneumonia in adult patients

2010 ANTIBIOGRAM. University of Alberta Hospital and the Stollery Children s Hospital

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

RISK FACTORS AND CLINICAL OUTCOMES OF MULTIDRUG-RESISTANT ACINETOBACTER BAUMANNII BACTEREMIA AT A UNIVERSITY HOSPITAL IN THAILAND

Antimicrobial Susceptibility Patterns

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

Evaluating the Role of MRSA Nasal Swabs

Antibiotic Updates: Part II

Clinical Characteristics, Antimicrobial Susceptibilities, andoutcomesofpatientswithchryseobacterium indologenes Bacteremia in an Intensive Care Unit


Cystic Fibrosis- management of Burkholderia. cepacia complex infections

Antimicrobial Update. Alison MacDonald Area Antimicrobial Pharmacist NHS Highland April 2018

Measure Information Form

VCH PHC SURGICAL PROPHYLAXIS RECOMMENDATIONS

Rational management of community acquired infections

Changes in Bacterial Species and Antibiotic Sensitivity in Intensive Care Unit: Acquired Urinary Tract Infection during 10 Years Interval ( )

Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units

Sri Lankan Journal of Infectious Diseases 2018 Vol.8 (2):93-99 DOI: :

Hospital Acquired Infections in the Era of Antimicrobial Resistance

PATIENT DEMOGRAPHICS. Surname. Given name. Pacific Islander (non-maori) ADMISSION DETAILS

Learning Points. Raymond Blum, M.D. Antimicrobial resistance among gram-negative pathogens is increasing

Bacterial infections in the urinary tract

Antimicrobial Susceptibility Profile of E. coli Isolates Causing Urosepsis: Single Centre Experience

Community Antibiotic Stewardship Hot Topic: Urinary Tract Infections in Post-Acute Patients and Long-Term Care Residents

Acinetobacter baumannii Infection and Colonization among Pediatric Patients at Chiang Mai University Hospital

Resistance pattern of breakthrough urinary tract infections in children on antibiotic prophylaxis

Author's response to reviews

2009 ANTIBIOGRAM. University of Alberta Hospital and the Stollery Childrens Hospital

SHC Clinical Pathway: HAP/VAP Flowchart

Available online at ISSN No:

Principles of Antimicrobial Therapy

UTI Dr S Mathijs Department of Pharmacology

Update on Resistance and Epidemiology of Nosocomial Respiratory Pathogens in Asia. Po-Ren Hsueh. National Taiwan University Hospital

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Carbapenemase-Producing Enterobacteriaceae (CPE)

Antibiotics utilization ratio in a Neonatal Intensive Care Unit

Surveillance of Antimicrobial Resistance among Bacterial Pathogens Isolated from Hospitalized Patients at Chiang Mai University Hospital,

Initial Management of Infections in the Era of Enhanced Antimicrobial Resistance

Jump Starting Antimicrobial Stewardship

Preventing Multi-Drug Resistant Organism (MDRO) Infections. For National Patient Safety Goal

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

Antibiotic Resistance in Pseudomonas aeruginosa Strains Isolated from Various Clinical Specimens

Antimicrobial Susceptibility Testing: Advanced Course

2015 Antimicrobial Susceptibility Report

Standing Orders for the Treatment of Outpatient Peritonitis

Developed by Kathy Wonderly RN, MSEd,CPHQ Developed: October 2009 Most recently updated: December 2014

Childrens Hospital Antibiogram for 2012 (Based on data from 2011)

PrevalenceofAntimicrobialResistanceamongGramNegativeIsolatesinanAdultIntensiveCareUnitataTertiaryCareCenterinSaudiArabia

Objectives. Antibiotic Prophylaxis in Urologic Procedures: A Review of the CUA Guidelines & Local Epidemiology of Drug Resistance

Case 2 Synergy satellite event: Good morning pharmacists! Case studies on antimicrobial resistance

Research Article Neonatal Meningitis by Multidrug Resistant Elizabethkingia meningosepticum Identified by 16S Ribosomal RNA Gene Sequencing

Antibiotic Susceptibility Patterns of Community-Acquired Urinary Tract Infection Isolates from Female Patients on the US (Texas)- Mexico Border

Antibiotic Prophylaxis Update

Antimicrobial Resistance Surveillance from sentinel public hospitals, South Africa, 2013

Intravenous Antibiotic Therapy Information Leaflet

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form

Abstract. Introduction. Editor: M. Paul

Standing Orders for the Treatment of Outpatient Peritonitis

Methicillin-Resistant Staphylococcus aureus Nasal Swabs as a Tool in Antimicrobial Stewardship

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

1/30/ Division of Disease Control and Health Protection. Division of Disease Control and Health Protection

OPAT discharge navigator and laboratory monitoring Select OPAT button for ALL patients that discharge on intravenous antimicrobials

Dr. Shaiful Azam Sazzad. MD Student (Thesis Part) Critical Care Medicine Dhaka Medical College

Isolation of Urinary Tract Pathogens and Study of their Drug Susceptibility Patterns

The Inpatient Management of Febrile Neutropenia

Reducing nosocomial infections and improving rational use of antibiotics in children in Indonesia

Outline. Antimicrobial resistance. Antimicrobial resistance in gram negative bacilli. % susceptibility 7/11/2010

Rational use of antibiotics

Transcription:

Original article Child Kidney Dis 2015;19:143-147 DOI: http://dx.doi.org/10.3339/chikd.2015.19.2.143 ISSN 2384-0242 (print) ISSN 2384-0250 (online) Burkholderia Cepacia Causing Nosocomial Urinary Tract Infection in Children Ki Wuk Lee, M.D. Sang Taek Lee, M.D. Heeyeon Cho, M.D. Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Corresponding author: Heeyeon Cho, M.D. Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea Tel: +82-2-3410-3539 Fax: +82-2-3410-0043 E-mail: choheeyeon@gmail.com Received: 3 September 2015 Revised: 13 October 2015 Accepted: 25 October 2015 Purpose: Burkholderia cepacia is an aerobic, glucose non-fermenting, gramnegative bacillus that mainly affects immunocompromised and hospitalized patients. Burkholderia cepacia has high levels of resistance to many antimicrobial agents, and therapeutic options are limited. The authors sought to analyze the incidence, clinical manifestation, risk factors, antimicrobial sensitivity and outcomes of B. cepacia urinary tract infection (UTI) in pediatric patients. Methods: Pediatric patients with urine culture-proven B. cepacia UTI between January 2000 and December 2014 at Samsung Medical Center, a tertiary referral hospital in Seoul, Republic of Korea, were included in a retrospective analysis of medical records. Results: Over 14 years, 14 patients (male-to-female ratio of 1:1) were diagnosed with B. cepacia UTI. Of 14 patients with UTI, 11 patients were admitted to the intensive care unit, and a bladder catheter was present in 9 patients when urine culture was positive for B. cepacia. Patients had multiple predisposing factors for UTI, including double-j catheter insertion (14.2%), vesico-ureteral reflux (28. 6%), congenital heart disease (28.6%), or malignancy (21.4%). Burkholderia cepacia isolates were sensitive to piperacillin-tazobactam and sulfamethoxazoletrimethoprim, and resistant to amikacin and colistin. Treatment with parenteral or oral antimicrobial agents including piperacillin-tazobactam, ceftazidime, meropenem, and sulfamethoxazole-trimethoprim resulted in complete recovery from UTI. Conclusion: Burkholderia cepacia may be a causative pathogen for nosocomial UTI in pediatric patients with predisposing factors, and appropriate selection of antimicrobial therapy is necessary because of high levels of resistance to empirical therapy, including aminoglycosides. Key words: Burkholderia cepacia, Children, Urinary tract infection Introduction This is an open-access article distributed under the terms of the Creative Commons Attribu tion Non-Commercial License (http:// crea tivecom mons.org/licenses/bync/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright 2015 The Korean Society of Pediatric Nephrology Burkholderia cepacia is an aerobic, glucose non-fermenting, gram-negative bacillus that mainly affects immunocompromised and hospitalized patients as well as those with chronic granulomatous disease and cystic fibrosis 1-3). There have also been reports of B. cepacia causing endocarditis, infections of the central nervous system, and neonatal sepsis 2-4). This organism is not normal human flora, and is usually found in hospital environments, such as in contaminated disinfectants, nebulizer solutions, medical devices, and on

144 Chil Kidney Dis 2015;19:143-147 www.chikd.org the skin of healthcare workers 3, 5-7). Recently, B. cepacia infections have increased because of increased use of broad-spectrum antimicrobial agents, longer duration of hospitalization and indwelling device-related infections 4,7,8). This organi sm has high levels of resistance to many antimicrobial agents, and sulfamethoxazole-trimethoprim has been the drug of choice for treatment 1,4). There have been rare reports of urinary tract infection (UTI) caused by B. cepacia. Hosts with predisposing factors, such as post renal transplant, vesico-ureteral reflux (VUR), neurogenic bladder, bladder irrigation, or use of contaminated medical devices, have been reported to be susceptible to B. cepacia UTI 9-11). We sought to analyze the incidence, clinical manifestations, risk factors, antimicrobial sensitivity and outcomes of B. cepacia UTI in pediatric patients. Methods This retrospective study was conducted at Samsung Medical Center, a tertiary referral hospital in Seoul, Republic of Korea. Patients with urine culture-proven B. cepacia UTI between January 2000 and December 2014 were included in the retrospective analysis of medical records. Urinary tract infection was defined as a positive urine test plus at least one of the symptoms or signs of infection, including temperature > 38, dysuria, or costovertebral angle tenderness. A positive urine test was defined as a urine culture with 10 5 colony forming units (CFU)/mL of B. cepacia from a urine sample collected either via catheter (if during the catheterization period), or by voiding (if the age was more than 3 years) or intermittent catheterization (if the age was less than 3 years). Collected data included gender, age, primary disease, risk factors, antimicrobial sensitivity and outcomes. Antimicrobial susceptibility was determined via VITEK 2 (Bio-Merieux, Durham, NC, USA) according to Clinical and Laboratory Standards Institute guideline. Result with intermediate was considered as resistance. Results 1. Annual incidence of B. cepacia UTI During 14 years, 14 patients (male-to-female ratio of 1:1) 6 5 4 3 2 1 0 were diagnosed with B. cepacia UTI. The annual incidence of B. cepacia UTI is shown in Fig. 1. Although B. cepacia UTI sporadically occurred from 2000 to 2013, 5 such patients (35.7%) were treated in the pediatric intensive care unit in 2014. 2. Host factors for B. cepacia UTI The characteristics of the studied patients are presented in Table 1. Of 14 patients with UTI, 11 patients were admitted to the pediatric intensive care unit. Nine of these 11 patients had a bladder catheter (Foley) in place when urine culture grew B. cepacia. Patients had multiple predisposing factors for UTI, including double-j catheter insertion, VUR, congenital heart disease, or malignancy. 1) Catheter-related infection Two patients developed double-j catheter-related B. cepacia UTIs, and were treated with parenteral antimicrobial agents. Subsequent urine culture was negative after treatment, and they were discharged after the removal of the double-j catheter. During follow-up, they did not develop recurrent UTI. Number of patients Fig. 1. Annual incidence of B. cepacia urinary tract infection in pediatric patients 2) Vesico-ureteral reflux-associated infection Four patients with VUR developed B. cepacia UTI. A 1-month-old girl with a cloaca anomaly associated VUR developed UTI after colostomy operation. A subsequent urine culture was negative after the treatment, and she was discharged with no further antimicrobial agents. During follow-up, the patient did not develop recurrent UTI. A 2-month-old boy with bilateral VUR grade IV developed B. cepacia UTI in spite of chemoprophylaxis, and follow-

www.chikd.org Lee KW, et al. Burkholderia Cepacia Urinary Tract Infection 145 Table 1. Demographic characteristics and risk factors of 14 pediatric patients with Burkholderia cepacia urinary tract infection Case no. Sex Age at diagnosis of UTI Year at diagnosis of UTI Primary disease Etiology for admission ICU admission 1 M 16 years 2000 Renal stone Stone removal N Genitourinary catheter Double-J stent, PCN 2 F 13 months 2000 CHD OHS Y Foley 3 F 1 month 2000 Cloaca anomaly, VUR Antimicrobial agents Outcomes Colostomy op Y Foley ceftazidime 4 M 17 years 2001 UPJ obstruction endpyelotomy N Double-J stent tobramycin, flomoxef 5 M 2 months 2001 chromosome 9 deletion, VUR No admission N - 6 M 3 months 2002 preterm Preterm Y Foley Cefdinir 7 F 12 years 2007 leukemia BMT Y Foley Imipenem Death 8 F 3 months 2008 CHD OHS Y Foley 9 M 2 years 2010 10 M 1 month 2014 VUR, Rubinstein- Taybe syndrome single kidney, VUR, CHD 11 F 18 years 2014 Glioblastoma Tumor removal Y Foley Piperacillintazobactm Piperacillintazobactm Sulfamethoxazoletrimethoprim Piperacillinetazobactm Death UNC Y PCN Ceftazidime OHS Y Foley Levofloxacin Piperacillintazobactam 12 F 8 days 2014 Neuroblastoma Chemotherapy Y - Meropenem 13 F 1 month 2014 CHD OHS Y Foley Piperacillin-tabactam 14 M 2 momths 2014 CHD respiratory distress Y Foley Meropenem Death UTI Urinary tract infection, CHD Congenital heart disease, VUR Vesico-ureteral reflux, UPJ Uretero-pelvic junction, OHS Open heart surgery, BMT Bone marrow transplantation, UNC Ureteroneocystostomy, PCN Percutaneous nephrostomy up urine culture was negative after the treatment. He suffered from recurrent UTI, and ureteroneocystostomy was performed at the age of 18 months. A 2-year-old boy with Rubinstein-Taybe syndrome and bilateral VUR developed B. cepacia UTI after the operation of ureteroneo cystostomy under the condition of PCN. After the treatment, he was discharged after removal of PCN, and did not suffer from recurrent UTI. Finally, a 1-month-old boy with ventricular septal defect (VSD) and a single kidney associated with VUR developed B. cepacia UTI despite the use of a third-generation cephalosporin, and levofloxacin was given intravenously for 14 days, and the infection resolved. the operation. They were treated with intravenous antimicrobial, and the subsequent urine culture showed no growth. Finally, a 2-month-old boy with total anomalous pulmonary venous return was admitted to the pediatric intensive care unit because of severe respiratory distress. While in the intensive care unit receiving mechanical ventilation, he developed fever despite use of a third-generation cephalosporin. His urine sample from a bladder catheter grew over 10 5 CFU/mL of B. cepacia. The patient was treated with parenteral meropenem for 14 days. The subsequent urine culture was negative, but he died of uncompensated respiratory failure. 3) Congenital heart disease and prolonged catheterization Four patients with congenital heart disease were diagnosed with B. cepacia UTI from bladder catheter urine samples. Three patients were admitted to the pediatric intensive care unit for congenital heart disease repair, and febrile UTI developed while a bladder catheter was in place after 4) Immunocompromised hosts Three patients had malignancies including leukemia, glioblastoma, and neuroblastoma, and 2 patients with leukemia and neuroblastoma were on chemotherapy. A 12-year-old girl with acute lymphoblastic leukemia developed B. cepacia UTI during treatment with parenteral antimicrobial agents (cefotaxime and amikacin). She was treated

146 Chil Kidney Dis 2015;19:143-147 www.chikd.org 120 100 80 60 40 20 0 Susceptibility of B. cepacia (%) Fig. 2. Antimicrobial susceptibility of B. cepacia isolates Abbreviations: Pip-tazo, Piperacilline-tazobactam; SXT, trimethoprim-sulfamethoxazole. with parenteral imipenem for 14 days, and follow-up urine culture did not grow any organisms. Unfortunately, she died of uncontrolled sepsis. Next, an 18-year-old girl with glioblastoma developed B. cepacia UTI after tumor removal, and treated with parenteral piperacillin-tazobac tam for 14 days. The subsequent urine culture was negative. An 8-day-old girl with prenatally diagnosed neuroblastoma developed B. cepacia UTI after the first cycle of chemotherapy during the use of empirical antimicro bial agents (cefotaxime and amikacin). The antimicrobial agents were changed to parenteral meropenem, and urine culture demonstrated clearance after treatment. Finally, a 3-monthold boy who was born at a gestational age of 25+2 weeks developed B. cepacia UTI during the hospitaliza tion of neonatal intensive care unit. He was treated with oral cefdinir, and follow-up urine culture was negative. He improved clinically and was discharged without the need for further antimicrobial agents. 3. Antimicrobial susceptibility pattern of B. cepacia Pediatric patients were treated with piperacillin-tazobactam, ceftazidime, meropenem, levofloxacin, sulfamethoxazole-trimethoprim, and other third-generation cephalosporins for 7 to 14 days. Most patients were treated with parenteral antimicrobial agents. Follow-up urine cultures were sterile in all patients after this treatment period. The antimicrobial sensitivity pattern of B. cepacia is shown in Figure 2. B. cepacia isolates were sensitive to piperacillintazobactam and sulfamethoxazole-trimethoprim, and resistant to amikacin and colistin. Discussion Burkholderia cepacia usually causes nosocomial infections in immunocompromised hosts, and the most common infectious focus is the respiratory tract, followed by intravascular catheters 2,3,8). Burkholderia cepacia survives in moist environments, and outbreaks of B. cepacia infection have been described in association with contaminated nebulizers, indigo-carmine dye, mouthwash, and moisturizing body milk 3,5-7). In our study, the incidence of B. cepacia in 2014 was relatively high, and surveillance cultures for intensive care unit environments were conducted; however, negative results were found. There have been few reports of the characteristics of B. cepacia UTI. Affected patients often have predisposing factors, such as renal transplantation, prolonged bladder catheterization, or urethrocystoscopy 9-11). In our study, predis posing host factors such as prolonged genitourinary cathe terization, VUR, congenital heart disease, and immunocompromised status were suggested. Twelve of 14 patients with B. cepacia UTI had genitourinary catheterization such as bladder catheter, PCN, or double-j stents. Zeeshan et al. reported that VUR in a renal transplant recipient was a risk factor for B. cepacia UTI 11). In our study, 4 patients (29%) showed VUR-related UTI in spite of prophylactic antimicrobial agents. VUR was also associated with other anomalies such as cloaca anomaly or chromosome abnormality. In cases of congenital heart disease, patients required prolonged pediatric intensive care unit stays and bladder catheterization, which increased their susce ptibility to B. cepacia UTI. In addition, immunocom promised oncology patients have been reported to be susceptible to B. cepacia infection 8). Burkholderia cepacia is a multidrug-resistant organism, and therapeutic options are limited 1). Although trimethoprim-sulfamethoxazole has been the drug of choice, it is difficult to administer because of hypersensitivity, lack of availability, and resistance in some cases. Avgeri et al. reported that ceftazidime, meropenem, and piperacillin, either alone or in combination, may be used as alternative options in B. cepacia infections 1). Patra et al. reported that piperacillin-tazobactam, ciprofloxacin, and trimethoprimsulfamethoxazole, either alone or in combination, could result in complete recovery of B. cepacia sepsis in neonates.

www.chikd.org Lee KW, et al. Burkholderia Cepacia Urinary Tract Infection 147 The highest susceptibility was observed with meropenem 4). In our study, piperacillin-tazobactam, ceftazidime, trimethoprim-sulfamethoxazole, levofloxacin, and meropenem were used in the majority of cases. All patients experienced complete recovery from UTI. In our study, the highest susce ptibility was observed with piperacillin-tazobactam and trimethoprim-sulfamethoxazole. Importantly, there was 100% resistance to amikacin and colistin. Even so, Li et al. reported a case of B. cepacia UTI after renal transplan tation that required a graft nephre ctomy because B. cepacia showed in vivo resistance to all available antimicrobial agents, and long-term use of pipera cillin could not resolve the septic foci 9). Because of such antimicrobial resistance, a combination of antimicrobial agents and surgical treatment in some cases may be required. Burkholderia cepacia is a pathogen with intrinsic resistance to numerous antimicrobial agents that causes nosocomial UTI in pediatric patients with risk factors such as prolonged genitourinary catheterization, VUR, congenital heart disease, or malignancy. Prompt removal of catheters and appropriate antimicrobial therapy for B. cepacia UTI in high-risk patients can ensure complete recovery. In addition, a surveillance program for nosocomial infection in intensive care units is necessary to prevent B. cepacia infections. There is no conflict of interest to declare This study was approved by Samsung Medical Center Institutional Review Board and informed consent was not applicable because the study was designed to perform the retrospective analysis of medical records. Falagas ME. Therapeutic options for Burkholderia cepacia infections beyond co-trimoxazole: a systematic review of the clinical evidence. Int J Antimicrob Agents 2009; 33:394-404. 2. Lu DC, Chang SC, Chen YC, Luh KT, Lee CY, Hsieh WC. Burkholderia cepacia bacteremia: a retrospective analysis of 70 episodes. J Formos Med Assoc 1997; 96:972-8. 3. Pegues CF, Pegues DA, Ford DS, Hibberd PL, Carson LA, Raine CM, et al. Burkholderia cepacia respiratory tract acquisition: epide miology and molecular characterization of a large nosocomial outbreak. Epidemiol Infect 1996; 116:309-17. 4. Patra S, Bhat Y R, Lewis LE, Purakayastha J, Sivaramaraju VV, Kalwaje E V, et al. Burkholderia cepacia sepsis among neonates. Indian J Pediatr 2014; 81:1233-6. 5. Alvarez-Lerma F, Maull E, Terradas R, Segura C, Planells I, Coll P, et al. Moisturizing body milk as a reservoir of Burkholderia cepacia: outbreak of nosocomial infection in a multidisciplinary intensive care unit. Crit Care 2008; 12:R10. 6. Gravel D, Sample ML, Ramotar K, Toye B, Oxley C, Garber G. Outbreak of burkholderia cepacia in the adult intensive care unit traced to contaminated indigo-carmine dye. Infect Control Hosp Epidemiol 2002; 23:103-6. 7. Martin M, Winterfeld I, Kramme E, Ewert I, Sedemund-Adib B, Mattner F. Outbreak of Burkholderia cepacia complex caused by contaminated alcohol-free Mouthwash. Anaesthesist 2012; 61:25-9. 8. Durham SH, Lee AE, Assanasen C. Burkholderia cepacia septicemia in a pediatric oncology patient: a pharmacotherapy challenge. Ann Pharmacother 2012; 46:e16. 9. Li FK, Chan KW, Chan TM, Lai KN. Burkholderia urinary tract infection after renal transplantation. Transpl Infect Dis 2003;5: 59-61. 10. Loertzer H, Höhne SO, Finke R, Fornara P. Intramural bladderwall abscess: a late complication arising after a urethrocystoscopy? Pediatr Surg Int 2005; 21:323-5. 11. Zeeshan M, Aziz T, Naqvi F. Recurrent urinary tract infection by Burkholderia cepacia in a live related renal transplant recipient. J Pak Med Assoc 2012; 62:496-8. References 1. Avgeri SG, Matthaiou DK, Dimopoulos G, Grammatikos AP,